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SHARP BOUNDS FOR TOADER MEAN IN TERMS OF
CONTRAHARMONIC MEAN WITH APPLICATIONS

YU-MING CHU, MIAO-KUN WANG AND XIAO-YAN MA

(Communicated by G. Toader)

Abstract. We find the greatest value A and the least value p in (1/2,1) such that the dou-
ble inequality C(Aa+ (1 —2A)b,Ab+ (1 —A)a) < T(a,b) < C(pa+ (1—p)b,ub+ (1—p)a)
holds for all a,b >0 with a # b, and give new bounds for the perimeter of an ellipse. Here,

/2
T(a,b) =2 [ Va2cos? 0 +b2sin> 040, and C(a,b) = (a> +b%)/(a+b) denote the Toader,
0

and contraharmonic means of two positive numbers a and b, respectively.

1. Introduction

For a,b > 0 with a # b, the Toader mean T (a,b) was introduced by Toader [11]
as follows:

2 (w2
T(ab) == / Va2cos? 6 + bPsin” 0d6
0

_{2aé”(\/l—(b/a)2)/77:,a>b, (1)
~ 266 (\/1—(a/b)?)/m,a<b, ’

/2
where &(r) = [ (1—r2sin’r)!/2dz, r €[0,1) is the complete elliptic integrals of the

0
second kind. In particular, the perimeter L(a,b) of an ellipse with the semiaxes a and
b can be written as L(a,b) = 2nT (a,b).
In the recent past, investigation of the inequalities between Toader and other means
has attracted the attention of a considerable number of mathematicians [1-6, 8—13].
Let Mp(a,b) = [(a? +b)/2]"'?, H(a,b) =2ab/(a+Db), G(a,b) = ab, A(a,b) =
(a+b)/2, S(a,b) = (a—b)/[2arctan((a — b)/(a+ b))], and

2 2
a - +b
Cla,b) = (1.2)
(@b) =425
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be the p-th power, harmonic, geometric, arithmetic, Seiffert, and contraharmonic means
of two distinct positive numbers a and b, respectively. Then it is well-known that

min{a,b} < H(a,b) =M_;(a,b) < G(a,b) = My(a,b) < A(a,b)
=M, (a,b) < S(a,b) < C(a,b) < max{a,b}

forall a,b > 0 with a # b.
Vuorinen [12] conjectured that

M3/2(avb) < T(avb)

forall a,b >0 with a # b. This conjecture was proved by Barnard, Pearce and Richards
in [4].

In [2], Alzer and Qiu presented a best possible upper power mean bound for the
Toader mean as follows:

T(aab) < Mlog2/10g(n’/2)(a7b)

for all a,b > 0 with a # b.
Very recently, Chu et al. [10] proved that

T(a,b) < S(a,b) (1.3)

forall a,b > 0 with a # b.
For fixed a,b > 0 with a # b and x € [1/2,1], let

g(x) =C(xa+ (1 —x)b,xb+ (1 —x)a).

Then it is not difficult to verify that g(x) is continuous and strictly increasing in
[1/2,1]. Note that g(1/2) =A(a,b) < T(a,b) and g(1) =C(a,b) >T(a,b). Therefore,
it is natural to ask what are the greatest value A and the least value u in (1/2,1) such
that the double inequality C(Aa+ (1 —A)b,Ab+ (1 —2A)a) < T(a,b) < C(na+ (1 —
w)b,ub+ (1 — u)a) holds for all a,b > 0 with a # b. The main purpose of this paper
is to answer these questions. Our main result is the following Theorem 1.1.

THEOREM 1.1. If A,u € (1/2,1), then the double inequality
C(Aa+(1—=A)b,Ab+(1—A)a) <T(a,b) <C(ua+(1—p)b,ub+(1—p)a) (1.4)

holds forall a,b >0 with a#b ifand onlyif A <3/4 and u > 1/2+V4n —n%/(2x).

In order to establish our main result we need several formulas (see [3, Appendix
E, pp. 474-475]).

Let r € [0,1), # (r) = fon/ 2(1— r2sin?r)~1/2dr be the complete elliptic integrals
of the first kind. Then

HO)=1/2, H(1)=—4e, &E0)=n/2, E17)=1,
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dx'(ry Er)—1—r)A(r) d&F) EF)—H(r)

dr r(1—r2%) T dr r ’
d[&(r) — (1= 1)K ()] 2yr\ _28(r) = (1—r) A (r)
dr =rX (), g(l—kr): 147 '

Moreover, for each ¢ € [1/4,0) the function f(r) = (1 —r?)°# (r) is decreasing
from [0,1) onto (0,7/2] (see [3, Theorem 3.21(7)]).

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let a =3/4 and B =1/2+ v4rx —n?/(2x). Then from
the monotonicity of the function g(x) = C(xa+ (1 —x)b,xb+ (1 —x)a) in [1/2,1] we
know that to prove inequality (1.4) we only need to prove that inequalities

T(a,b) > C(aa+ (1 —o)b,ob+ (1 —t)a) (2.1)
and
T(a,b) <C(Ba+(1—P)b,fb+ (1 —P)a) (2.2)

hold for all a,b > 0 with a # b.
Without loss of generality, we assume that @ > b. Let r =b/a € (0,1), r =
(I1—¢)/(1+1t)€(0,1) and p € [1/2,1]. Then from (1.1) and (1.2) one has

T(a,b)—C(pa+ (1—p)b,pb+ (1 —p)a)
2a [p+ (1 =p)(b/a)]*+[p(b/a) +1—p]
Fﬁ( 1—(b/a)2>—a

1+b/a
2a [p+ (1 —p)P+pt+1—p]?
e (Vi) el
~2a28(r)—(1— VAL [1—(1- 2p)r]2—|— [14(1— 2p)r}2
3 I+r A 2(1+7)
= :‘L - {% [26(r) — (1= ) (r)] — (1—2p)*r? — 1} . (2.3)
Let 5
f(r)= — [26(r)— (1= )2 (r)] — (1-2p)** — 1, (2.4)
fi(ry=rf'(r), and fo(r) = fi’(r)/r. Then simple computations lead to
f(0) =0, (2.5)
F) =21 (-2p), (2.6)

f1(0) =0, 2.7)
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A7) =2 -20-2p) @8
falr) = 2 () 401~ 2p), 29
£(0)=1-4(1-2p)?, (2.10)
f2(17) = oo 2.11)

We divide the proof into two cases.

Case 1. p= o =3/4. Then equation (2.10) reduces to
f2(0) =0. (2.12)

From (2.12), (2.9), (2.7) and (2.5) we clearly see that f(r) > 0 for r € (0,1).
Therefore, inequality (2.1) follows from (2.3) and (2.4) together with f(r) > 0.

Case 2. p= =1/2++4n—r2/(2x). Then equations (2.6), (2.8) and (2.10)
lead to

f(17) =0, (2.13)
f(17)=(2n—6)/m >0, (2.14)
£(0)=(57—16)/m < 0. (2.15)

From (2.11) and (2.15) together with the monotonicity of f>(r) we clearly see that
there exists rg € (0,1) such that f>(r) <0 for r € (0,r9) and f>(r) >0 for r € (rp, 1).
Hence f(r) is strictly decreasing in (0,ry) and strictly increasing in (ro, 1).

It follows from (2.7) and (2.14) together with the piecewise monotonicity of f;(r)
that there exists r; € (0,1) such that fi(r) <0 for r € (0,r;) and f1(r) > 0 for r €
(r1,1). Hence f(r) is strictly decreasing in (0,r;) and strictly increasing in (ry,1).

Therefore, inequality (2.2) follows from (2.3)—(2.5) and (2.13) together with the
piecewise monotonicity of f(r).

Next, we prove that the parameter o = 3/4 is the best possible parameter in
(1/2,1) such that inequality (2.1) holds for all a,b > 0 with a # b. In fact, if p >
o = 3/4, then equation (2.10) leads to f>(0) < 0. From the continuity of f(r), fi(r)
and f>(r) we know that there exists 8 = 6;(p) > 0 such that

f(r)<o0 (2.16)

for r € (0,6).

It follows from (2.3), (2.4) and (2.16) that T'(a,b) < C(pa+ (1 —p)b,pb+ (1 —
p)a) for bjae ((1—061)/(1+6),1).

Finally, we prove that the parameter 8 = 1/2 + V471 — n2/(27) is the best possi-
ble parameterin (1/2, 1) such that inequality (2.2) holds for all a,b >0 with a #b. In
fact,if 1/2< p < B =1/2+V4r—n%/(2r), then equation (2.6) leads to f(17) > 0.
Hence, there exists & = & (p) € (0,1) such that

f(r)>0 (2.17)
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forre (1—68,1).
Therefore, T (a,b) > C(pa+ (1 —p)b,pb+ (1 —p)a) for b/a € (0,6,/(2—62))
follows from equations (2.3) and (2.4) together with inequality (2.17).

REMARK 2.1. Let B =1/2+V4r—nr%/(2x)) and a,b > 0 with a # b. Then
from inequality S(a,b) > C(Ba+ (1—B)b,Bb+ (1—B)a) [7] and Theorem 1.1 we get

T(a,b) < C(Ba+ (1 —B)b,Bb+ (1—B)a) < S(a,b),

which is a refinement of inequality (1.3).
The following Corollary 2.2 can be derived directly from Theorem 1.1.

COROLLARY 2.2. The double inequality
2nC(aa+ (1 —a)b,ob+ (1 —o)a) < L(a,b) < 2rC(Ba+ (1 —B)b,Bb+ (1 —B)a)

holds for . =3/4,8 =1/24+V4rx —r%?/(2x) and a,b > 0 with a # b.
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