THE BEST CONSTANT IN A GEOMETRIC INEQUALITY RELATING MEDIANS, INRADIUS AND CIRCUMRADIUS IN A TRIANGLE

SHI-CHANG SHI AND YU-DONG WU

(Communicated by L. Yang)

Abstract. In this paper, the authors give a refinement of the inequality associated with the medians, inradius and circumradius in a triangle by making use of certain analytical techniques for systems of nonlinear algebraic equations.

1. Introduction and main results

For a given \(\triangle ABC \), let \(a, b \) and \(c \) denote the side-lengths facing the angles \(A, B \) and \(C \), respectively. Also let \(m_a, m_b \) and \(m_c \) denote the corresponding medians, \(h_a, h_b \) and \(h_c \) the altitudes, \(s = \frac{1}{2}(a+b+c) \) the semi-perimeter, \(R \) the circumradius and \(r \) the inradius of \(\triangle ABC \). In addition, we let

\[
\begin{align*}
 m_1 &= \frac{1}{2} \sqrt{(b+c)^2 - a^2}, \\
 m_2 &= \frac{1}{2} \sqrt{2a^2 + \frac{1}{4}(b+c)^2}, \\
 r_0 &= \frac{a \sqrt{s(s-a)}}{2s}, \\
 R_0 &= \frac{(b+c)^2}{8 \sqrt{s(s-a)}}.
\end{align*}
\]

In 1986, Janous [3] posed the following conjecture involving the geometrical inequality

\[
\frac{5}{s} < \frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c}.
\]

Later, in 1988, Gmeiner and Janous [2] proved the inequality (1.1) by using calculus. Later, inequality (1.1) was sharpened by An [1], Shi [8, 9], Yang [13] and Srivastava et al. [7], etc. It is easy to prove the reverse of inequality (1.1)

\[
\frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c} \leq \frac{1}{r}.
\]
with the well-known inequalities \(m_a \geq h_a \), etc.

In 1996, Liu considered a refinement of inequality (1.2), and he [4] posed the following interesting and beautiful geometric inequality conjecture with regard to the medians, inradius and circumradius.

Conjecture 1.1. In \(\triangle ABC \), prove or disprove

\[
\frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c} \leq \frac{2}{3} \left(\frac{1}{R} + \frac{1}{r} \right).
\] (1.3)

Recently, Liu [5] proved inequality (1.3). The main goal of this paper is to refine inequality (1.3) as follows.

Theorem 1.1. In \(\triangle ABC \), the best constant \(k \) for the following inequality

\[
\frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c} \leq \frac{1}{r} - k \left(\frac{1}{r} - \frac{2}{R} \right)
\] (1.4)

is the real root in the interval \(\left(\frac{1}{3}, \frac{2}{5} \right) \) of equation

\[
354294k^6 - 509571k^5 + 1927260k^4 - 2145600k^3 + 133376k^2 + 99328k + 12288 = 0.
\] (1.5)

Furthermore, the constant \(k \) is approximately equal to 0.3440653.

2. Preliminary results

In order to prove Theorem 1.1, we need the following results.

Lemma 2.1. In \(\triangle ABC \), if \(a \geq b \geq c \), then

\[
(m_2 + m_b)(m_2 + m_c) \geq s \left(a + 2\sqrt{(s-b)(s-c)} \right).
\] (2.1)

Proof. From the well-known inequalities \(m_b \geq \sqrt{s(s-b)} \), \(m_c \geq \sqrt{s(s-c)} \) and the obvious inequality \(m_2 \geq \sqrt{\frac{1}{2}as} \), we get

\[
(m_2 + m_b)(m_2 + m_c) - s \left(a + 2\sqrt{(s-b)(s-c)} \right)
\geq \left(\sqrt{\frac{1}{2}as} + \sqrt{s(s-b)} \right) \left(\sqrt{\frac{1}{2}as} + \sqrt{s(s-c)} \right) - s \left(a + 2\sqrt{(s-b)(s-c)} \right)
= -\frac{1}{2}as + \sqrt{\frac{1}{2}as} (\sqrt{s(s-b)} + \sqrt{s(s-c)}) - \sqrt{s^2(s-b)(s-c)}
= s \left(\sqrt{\frac{1}{2}a - \sqrt{s-b}} \right) \left(\sqrt{s-c} - \sqrt{\frac{1}{2}a} \right)
= \frac{s(b-c)^2}{2(\sqrt{a} + \sqrt{2(s-b)})(\sqrt{a} + \sqrt{2(s-c)})} \geq 0.
\]

Hence, inequality (2.1) holds true.
LEMMA 2.2. In $\triangle ABC$, if inequality (1.4) holds, then $k \leq \frac{4}{9}$.

Proof. Let $b = c = 1$ and $a = x$ ($0 < x < 2$), then inequality (1.2) is equivalent to

$$\frac{2}{\sqrt{4 - x^2}} + \frac{4}{\sqrt{2x^2 + 1}} \leq \frac{2(2 + x)}{x\sqrt{4 - x^2}} - k \left[\frac{2(2 + x)}{x\sqrt{4 - x^2}} - 2\sqrt{4 - x^2} \right]$$

$$\iff k \cdot \frac{2(2 + x)(1 - x)}{x\sqrt{4 - x^2}} \leq \frac{2(2 + x)}{x\sqrt{4 - x^2}} - \frac{2}{\sqrt{4 - x^2}} - \frac{4}{\sqrt{2x^2 + 1}}$$

$$\iff k \cdot \frac{2(2 + x)(1 - x)}{x\sqrt{4 - x^2}} \leq \frac{4}{x\sqrt{4 - x^2}} - \frac{4}{\sqrt{2x^2 + 1}}$$

$$\iff k \cdot \frac{2(2 + x)(1 - x)}{x\sqrt{4 - x^2}} \leq \frac{4(x^2 - 1)}{x\sqrt{(2x^2 + 1)(4 - x^2)(x\sqrt{4 - x^2} + \sqrt{2x^2 + 1})}}.$$

Thus,

$$(2 + x)k \leq \frac{2(x + 1)^2}{\sqrt{2x^2 + 1}(x\sqrt{4 - x^2} + \sqrt{2x^2 + 1})}. \quad (2.2)$$

Taking $x = 1$ in inequality (2.2), we obtain that $k \leq \frac{4}{9}$.

LEMMA 2.3. In $\triangle ABC$, if $a \geq b \geq c$, then

$$\frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c} - \frac{1}{m_1} - \frac{2}{m_2} \leq \frac{9(b + c)^2(b - c)^2}{32\sqrt{\frac{1}{2}as(s - b)(s - c) \cdot s^2[a + 2\sqrt{(s - b)(s - c)}]}}. \quad (2.3)$$

Proof. It is obvious that

$$\frac{1}{m_a} - \frac{1}{m_1} = \frac{m_1^2 - m_a^2}{m_1m_a(m_a + m_1)} = -\frac{(b - c)^2}{4m_1m_a(m_a + m_1)}. \quad (2.4)$$

For $a \geq b \geq c$, we have that

$$m_1 \leq m_a \leq m_b \leq m_2 \leq m_c, \quad (2.5)$$

then by Cauchy’s Inequality, we get

$$m_c + m_2 \geq m_b + m_c$$

$$\geq m_b + m_2$$

$$\geq \frac{1}{2} \sqrt{a^2 + 2c^2} + \frac{1}{2} \sqrt{2a^2 + \frac{1}{4}(b + c)^2}$$

$$\geq \frac{a + 2c}{2\sqrt{3}} + \frac{2a + \frac{b + c}{2}}{2\sqrt{3}}$$

$$= \frac{6a + b + 5c}{4\sqrt{3}}$$

$$\geq \frac{\sqrt{3}}{2}(b + c). \quad (2.6)$$
And
\[m_b^2 + m_c^2 - 2m_2^2 = \frac{(b-c)^2}{8} \geq 0, \]
so
\[m_b^2 + m_c^2 \geq 2m_2^2. \] (2.7)
Hence, by inequalities \(a \geq b \geq c \) and (2.5)–(2.7), we obtain
\[
\frac{1}{m_b} + \frac{1}{m_c} - \frac{2}{m_2} = \frac{m_2^2 - m_b^2}{m_b m_2 (m_b + m_2)} + \frac{m_2^2 - m_c^2}{m_c m_2 (m_c + m_2)}
\]
\[
= \frac{(5b+7c)(b-c)}{16m_b m_2 (m_b + m_2)} + \frac{(7b+5c)(c-b)}{16m_c m_2 (m_c + m_2)}
\]
\[
= -\frac{(b-c)^2}{16m_b m_2 (m_b + m_2)} - \frac{(b-c)^2}{16m_c m_2 (m_c + m_2)} + \frac{3(b+c)(b-c)}{8m_b m_2 (m_b + m_2)} + \frac{3(b+c)(c-b)}{8m_c m_2 (m_c + m_2)}
\]
\[
= -\frac{(b-c)^2}{16m_b m_2 (m_b + m_2)} - \frac{(b-c)^2}{16m_c m_2 (m_c + m_2)} + \frac{3(b+c)(c-b)[(m_b^2 - m_c^2) + m_2(m_b - m_c)]}{8m_b m_c (m_b + m_2)(m_c + m_2)}
\]
\[
= -\frac{(b-c)^2}{16m_b m_2 (m_b + m_2)} - \frac{(b-c)^2}{16m_c m_2 (m_c + m_2)} + \frac{3(b+c)(c-b)m_2^2 - m_c^2}{8m_b m_c (m_b + m_2)(m_c + m_2)}
\]
\[
= -\frac{(b-c)^2}{16m_b m_2 (m_b + m_2)} - \frac{(b-c)^2}{16m_c m_2 (m_c + m_2)} + \frac{9(b+c)^2(b-c)}{32m_b m_c (m_b + m_2)(m_c + m_2)}
\]
\[
= -\frac{(b-c)^2}{16m_b m_2 (m_b + m_2)} - \frac{(b-c)^2}{16m_c m_2 (m_c + m_2)} + \frac{9(b+c)^2(b-c)2(m_b + m_2)(m_c + m_2)}{32m_b m_c (m_b + m_2)(m_c + m_2)}
\]
\[
= -\frac{(b-c)^2}{16m_b m_2 (m_b + m_2)} - \frac{(b-c)^2}{16m_c m_2 (m_c + m_2)} + \frac{9(b+c)^2(b-c)2(m_b + m_2)(m_c + m_2)}{32m_b m_c (m_b + m_2)(m_c + m_2)}
\]
\[
= -\frac{(b-c)^2}{16m_b m_2 (m_b + m_2)} - \frac{(b-c)^2}{16m_c m_2 (m_c + m_2)} + \frac{9(b+c)^2(b-c)2(m_b + m_2)(m_c + m_2)}{32m_b m_c (m_b + m_2)(m_c + m_2)}
\]
\[
= -\frac{(b-c)^2}{16m_b m_2 (m_b + m_2)} - \frac{(b-c)^2}{16m_c m_2 (m_c + m_2)} + \frac{9(b+c)^2(b-c)2(m_b + m_2)(m_c + m_2)}{32m_b m_c (m_b + m_2)(m_c + m_2)}
\]
From inequalities (2.4) and (2.8), we obtain

\[
\frac{1}{ma} + \frac{1}{mb} + \frac{1}{mc} - \frac{1}{m1} - \frac{2}{m2} \leq \frac{9(b + c)^2(b - c)^2}{32mbmc(m_b + m_2)(m_c + m_2)}. \tag{2.9}
\]

With inequalities \(m_b \geq \sqrt{s(s-b)}, \ m_c \geq \sqrt{s(s-c)}, \ m_2 \geq \sqrt{\frac{1}{2}as},\) inequality (2.9), together with Lemma 2.1, we immediately obtain inequality (2.3).

Lemma 2.4. In \(\triangle ABC,\)

\[
\frac{1}{r_0} - \frac{1}{r} = -\frac{\sqrt{s(b - c)^2}}{a\sqrt{(s-a)(s-b)(s-c)[a + 2\sqrt{(s-b)(s-c)}]}}, \tag{2.10}
\]

if \(a \geq b \geq c,\) then

\[
\frac{1}{R_0} - \frac{1}{R} \leq \frac{2\sqrt{s(s-a)(b^2 + c^2 - a^2)}(b - c)^2}{bc(b + c)^2 \sqrt{(s-b)(s-c)[a + 2\sqrt{(s-b)(s-c)}]}}. \tag{2.11}
\]

Proof. Identity (2.10) just follows from the well-known formula

\[
r = \frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}.
\]

Now we prove inequality (2.11). From the well-known formula

\[
R = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}},
\]

and

\[
2\sqrt{(s-b)(s-c)} \leq (s-b) + (s-c) = a,
\]
we obtain
\[
\frac{1}{R_0} - \frac{1}{R} = 4\sqrt{s(s-a)} \left[\frac{2}{(b+c)^2} - \frac{\sqrt{(s-b)(s-c)}}{abc} \right]
= 4\sqrt{s(s-a)} \left[\frac{a - 2\sqrt{(s-b)(s-c)} - (b+c)^2 - 4bc}{2abc} \right]
= 2\sqrt{s(s-a)} \left[\frac{(b-c)^2}{abc[a + 2\sqrt{(s-b)(s-c)}]} - \frac{(b-c)^2}{bc(b+c)^2} \right]
= \frac{2\sqrt{s(s-a)}((b+c)^2 - a[a + 2\sqrt{(s-b)(s-c)}])}{abc(b+c)^2[a + 2\sqrt{(s-b)(s-c)}](s-b)(s-c)]} \cdot (b-c)^2
\leq \frac{2\sqrt{s(s-a)}[[((b+c)^2 - a^2)\cdot \frac{9}{4} - \frac{a}{2} \cdot [a^2 - (b-c)^2]]}{abc(b+c)^2[a + 2\sqrt{(s-b)(s-c)}](s-b)(s-c)]} \cdot (b-c)^2
\leq \frac{2\sqrt{s(s-a)}(b^2 + c^2 - a^2)}{bc(b+c)^2[a + 2\sqrt{(s-b)(s-c)}](s-b)(s-c)]} \cdot (b-c)^2.
\]

Lemma 2.5. In \(\triangle ABC\), let
\[
f(a,b,c) = \frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c} - \frac{1}{r} + k \left(\frac{1}{r} - \frac{2}{R} \right).
\]
Then
\[
f \left(a, \frac{b+c}{2}, \frac{b+c}{2} \right) = \frac{1}{m_1} + \frac{2}{m_2} - \frac{1}{r_0} + k \left(\frac{1}{r_0} - \frac{2}{R_0} \right).
\]
If \(a \geq b \geq c\) and \(0 < k \leq \frac{4}{9}\), then
\[
f(a,b,c) \leq f \left(a, \frac{b+c}{2}, \frac{b+c}{2} \right). \tag{2.12}
\]

Proof. If \(a \geq b \geq c\), then
\[
bc - 2a(s-a) = (a-b)(a-c) \geq 0,
\]
thus
\[
a^2 \geq \left(\frac{b+c}{2} \right)^2 \geq bc \geq 2a(s-a),
\]
and for \(0 < k \leq \frac{4}{9}\), hence,
\[
9(b+c)^2 \sqrt{2a(s-a)} - 16(2 - 3k)s^3
\leq 9(b+c)^2 \cdot \frac{b+c}{2} - 16 \left(2 - 3 \cdot \frac{4}{9} \right) \cdot \frac{1}{8} \left(\frac{b+c}{2} + b + c \right)^3 = 0 \tag{2.13}
\]
and

\[8a(s - a)(b^2 + c^2 - a^2) - bc(b + c)^2 \]
\[\leq 8a(s - a)(b^2 + c^2 - a^2) - 2a(s - a)(b + c)^2 \]
\[= 2a(s - a)(3b^2 + 3c^2 - 4a^2 - 2bc) \]
\[= 2a(s - a)[3(b^2 - a^2) + (c^2 - a^2) + 2c(c - b)] \leq 0. \] \tag{2.14}

From Lemmas 2.3–2.4, inequalities (2.13)–(2.14), we obtain that

\[
\begin{align*}
& f(a, b, c) - f\left(\frac{b + c}{2}, \frac{b + c}{2}\right) \\
& = \frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c} - \frac{1}{m_1} - \frac{2}{m_2} + (1 - k) \left(\frac{1}{r_0} - \frac{1}{r}\right) + 2k \left(\frac{1}{R_0} - \frac{1}{R}\right) \\
& \leq \frac{\frac{1}{2}as(s - b)(s - c) \cdot s^2[a + 2\sqrt{(s - b)(s - c)}] - \frac{1}{a\sqrt{(s - a)(s - b)(s - c)[a + 2\sqrt{(s - b)(s - c)}]} + 4k\sqrt{s(s - a)(b^2 + c^2 - a^2)(b - c)^2}}{bc(b + c)^2\sqrt{(s - b)(s - c)[a + 2\sqrt{(s - b)(s - c)}]} - \frac{\sqrt{s}[9(b + c)^2\sqrt{2a(s - a)} - 16(2 - 3k)s^3](b - c)^2}{32as^3\sqrt{(s - a)(s - b)(s - c)[a + 2\sqrt{(s - b)(s - c)}]} + \frac{k\sqrt{s}[8a(s - a)(b^2 + c^2 - a^2) - bc(b + c)^2](b - c)^2}{2abc(b + c)^2\sqrt{(s - a)(s - b)(s - c)[a + 2\sqrt{(s - b)(s - c)}]} \leq 0.}
\end{align*}
\]

Therefore, inequality (2.12) holds.

Lemma 2.6. (see [6, 11, 12]) Let

\[F(x) = a_0x^n + a_1x^{n-1} + \cdots + a_n, \]

and

\[G(x) = b_0x^m + b_1x^{m-1} + \cdots + b_m. \]

If \(a_0 \neq 0 \) or \(b_0 \neq 0 \), then the polynomials \(F(x) \) and \(G(x) \) have a common root if and only if

\[
R(F, G) := \begin{vmatrix}
 a_0 & a_1 & \cdots & a_n \\
 a_0 & a_1 & \cdots & a_n \\
 \vdots & \vdots & \ddots & \vdots \\
 a_0 & a_1 & \cdots & a_n \\
 b_0 & b_1 & \cdots & b_m \\
 b_0 & b_1 & \cdots & b_m \\
 \vdots & \vdots & \ddots & \vdots \\
 b_0 & b_1 & \cdots & b_m \\
\end{vmatrix} = 0
\]
where \(R(F,G)((m+n) \times (m+n) \) determinant) is Sylvester’s Resultant of \(F(x) \) and \(G(x) \).

Lemma 2.7. (see [10, 12]) Given a polynomial \(f(x) \) with real coefficients
\[
f(x) = a_0x^n + a_1x^{n-1} + \cdots + a_n,
\]
if the number of the sign changes of the revised sign list of its discriminant sequence
\[
\{D_1(f), D_2(f), \ldots, D_n(f)\}
\]
is \(v \), then the number of the pairs of distinct conjugate imaginary roots of \(f(x) \) equals \(v \). Furthermore, if the number of non-vanishing members of the revised sign list is \(l \), then the number of the distinct real roots of \(f(x) \) equals \(l - 2v \).

3. The proof of Theorem 1.1

Proof. If \(k \leq 0 \), then by inequality (1.2), we can easily find that inequality (1.4) holds. Hence, we only need consider the case \(k > 0 \), and by Lemma 2.2, we only need consider the case \(0 < k \leq \frac{4}{9} \).

Now we determine the best constant \(k \) such that \(f(a,b,c) \leq 0 \). Since the inequality (1.4) is symmetrical with respect to the side-lengths \(a, b \) and \(c \), there is no harm in supposing \(a \geq b \geq c \). Thus, by Lemma 2.5, we only need to determine the best constant \(k \) such that
\[
f\left(a, \frac{b+c}{2}, \frac{b+c}{2} \right) \leq 0.
\]
or, equivalently, that
\[
\frac{2}{\sqrt{(b+c)^2 - a^2}} + \frac{4}{\sqrt{2a^2 + (\frac{b+c}{2})^2}} - \frac{2s}{a \sqrt{s(s-a)}} + k\left(\frac{2s}{a \sqrt{s(s-a)}} \frac{16 \sqrt{s(s-a)}}{(b+c)^2} \right) \leq 0.
\]
Without loss of generality, we can assume that
\[
a = x \quad \text{and} \quad \frac{b+c}{2} = 1 \quad (1 \leq x < 2),
\]
because the inequality (3.1) is homogeneous with respect to \(a \) and \(\frac{b+c}{2} \). Thus, clearly, the inequality (3.1) is equivalent to the following inequality:
\[
\frac{2}{\sqrt{4 - x^2}} + \frac{4}{\sqrt{2x^2 + 1}} - \frac{2(x+2)}{x \sqrt{4 - x^2}} + k\left[\frac{2(x+2)}{x \sqrt{4 - x^2}} - 2 \sqrt{4 - x^2} \right] \leq 0.
\]

We consider the following two cases separately.

Case 1. When \(x = 1 \), the inequality (3.2) holds true for any \(k \in \mathbb{R} := (-\infty, +\infty) \).

Case 2. When \(1 < x < 2 \), the inequality (3.2) is equivalent to the following inequality:
\[
k \leq \frac{2(x+1)^2}{(x+2) \sqrt{2x^2 + 1}(\sqrt{2x^2 + 1} + x \sqrt{4 - x^2})}.
\]
Define the function

\[g(x) := \frac{2(x+1)^2}{(x+2)\sqrt{2x^2+1} + (\sqrt{2x^2+1} + x\sqrt{4-x^2})}, \quad x \in (1, 2). \]

Calculating the derivative of \(g(x) \), we get

\[g'(x) = \frac{2(x+1)[4x^6+12x^5+5x^4-21x^3-28x^2-8-(2x^3+6x^2+7x-3)\sqrt{2x^2+1}\sqrt{4-x^2}]}{(x+2)^2(2x^2+1)^{3/2} \left(\sqrt{2x^2+1} + x\sqrt{4-x^2} \right)^2 \sqrt{4-x^2}}. \]

By setting \(g'(x) = 0 \), we obtain

\[4x^6 + 12x^5 + 5x^4 - 21x^3 - 28x^2 - 8 - (2x^3 + 6x^2 + 7x - 3) \sqrt{2x^2 + 1} \sqrt{4 - x^2} = 0. \quad (3.4) \]

It is easy to see that the roots of the equation (3.4) are also solutions of the following equation:

\[(4x^6 + 12x^5 + 5x^4 - 21x^3 - 28x^2 - 8)^2 - (2x^3 + 6x^2 + 7x - 3)^2(2x^2 + 1)(4 - x^2) = 0, \]

that is

\[(x-1)(x+2)(x+1)^4 \phi(x) = 0, \quad (3.5) \]

where

\[\phi(x) = 16x^6 + 16x^5 - 16x^4 - 80x^3 + 5x^2 - 35x - 14. \]

It is obvious that the following equation:

\[(x-1)(x+2)(x+1)^4 = 0 \quad (3.6) \]

has no real root on the interval \((1, 2)\).

The revised sign list of the discriminant sequence of \(\phi(x) \) is given by

\[[1, 1, -1, -1, 1, 1]. \quad (3.7) \]

So the number of the sign changes of the revised sign list of (3.7) is 2. Thus, by applying Lemma 2.7, we find that the equation:

\[\phi(x) = 0 \quad (3.8) \]

has 2 distinct real roots. Moreover, it is not difficult to check that

\[\phi(-1) = 90 > 0, \]
\[\phi(0) = -14 < 0, \]
\[\phi(1) = -108 < 0 \]

and

\[\phi(2) = 576 > 0. \]
We can conclude that the equation (3.8) has 2 distinct real roots in the following intervals:

\((-1, 0)\) and \((1, 2)\).

So that the equation (3.4) has only one real root \(x_0\) given by \(x_0 = 1.67073609778 \cdots\) in the interval \((1, 2)\), and

\[g(x)_{\min} = g(x_0) \approx 0.3440653 \in \left(\frac{1}{3}, \frac{2}{5}\right). \]

(3.9)

Now we prove that \(g(x_0)\) is the root of the equation (1.5). For this purpose, we consider the following system of nonlinear algebraic equations:

\[
\begin{cases}
\phi(x_0) = 0, \\
2x_0^2 + 1 - u_0^2 = 0, \\
4 - x_0^2 - v_0^2 = 0, \\
2(x + 1)^2 - (x + 2) (u_0 + x v_0) k = 0.
\end{cases}
\]

(3.10)

It is easy to see that \(g(x_0)\) is also the solution of the nonlinear algebraic equation system (3.10). If we eliminate the \(v_0, u_0\) and \(x_0\) ordinal by resultant (by using Lemma 2.6), then we get

\[348285173760000 \cdot \phi_1^2(k) \cdot \phi_2^2(k) = 0. \]

(3.11)

where

\[\phi_1(k) = 472392 k^6 - 2182626 k^5 + 4000527 k^4 \\
- 4119168 k^3 + 2375744 k^2 - 690176 k + 76800 \]

and

\[\phi_2(k) = 354294 k^6 - 509571 k^5 + 1927260 k^4 \\
- 2145600 k^3 + 133376 k^2 + 99328 k + 12288. \]

The revised sign list of the discriminant sequence of \(\phi_1(k)\) is given by

\([1, 1, -1, -1, -1, 1].\)

(3.12)

The revised sign list of the discriminant sequence of \(\phi_2(k)\) is given by

\([1, -1, -1, -1, -1, 1].\)

(3.13)

So the number of the sign changes of the revised sign list of (3.12) and (3.13) are both 2, Thus, by applying Lemma 2.6, we find that each of the equations:

\[\phi_1(k) = 0 \]

(3.14)

and

\[\phi_2(k) = 0 \]

(3.15)
has 2 distinct real roots. In addition, it is easy to check that
\[
\phi_1 \left(\frac{1}{5} \right) = \frac{102716437}{15625} > 0; \quad \phi_2 \left(\frac{1}{5} \right) = \frac{26393}{9} > 0,
\]
\[
\phi_1 \left(\frac{1}{3} \right) = -\frac{2381}{3} < 0; \quad \phi_2 \left(\frac{2}{5} \right) = -\frac{287312544}{15625} < 0,
\]
\[
\phi_1 (2) = -356432 < 0; \quad \phi_2 (1) = -128625 < 0
\]
and
\[
\phi_1 (3) = 46208769 > 0; \quad \phi_2 (2) = 20784352 > 0.
\]
We can thus find that the equation (3.14) has 2 distinct real roots in the following intervals:
\[
\left(\frac{1}{5}, \frac{1}{3} \right) \quad \text{and} \quad (2, 3).
\]
And the equation (3.15) has 2 distinct real roots in the following intervals:
\[
\left(\frac{1}{3}, \frac{2}{5} \right) \quad \text{and} \quad (1, 2).
\]
Hence, by (3.9), we can conclude that \(g(x_0) \) is the root of the equation (1.5). The proof of Theorem 1.1 is thus completed.

Acknowledgement. The authors would like to thank the anonymous referees for their very careful reading and making some valuable comments which have essentially improved the presentation of this paper.

REFERENCES

(Received February 24, 2012)

Shi-Chang Shi
Zhejiang Teaching and Research Institute
Department of Education
Hangzhou, Zhejiang 310012
People’s Republic of China

Yu-Dong Wu
Department of Mathematics
Zhejiang Xinchang High School
Shaoxing, Zhejiang 312500
People’s Republic of China
e-mail: yudong.wu@hotmail.com

(Received February 24, 2012)