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POPOVICIU TYPE CHARACTERIZATION OF POSITIVITY OF SUMS
AND INTEGRALS FOR CONVEX FUNCTIONS OF HIGHER ORDER

ASIF R. KHAN, JOSIP PECARIC AND SANJA VAROSANEC

(Communicated by S. Abramovich)

Abstract. Some very general identities of Abel and Popoviciu type for sums Y p;f(x;),
> ¥ pijf(xi,y;) and integral [ [ P(x,y)f(x,y)dxdy are deduced. Using obtained identities, pos-
itivity of these expressions are characterized for convex functions of higher order. An application
in terms of exponential convexity is given.

1. Introduction

Let f be a real-valued function defined on I = [a,b] C R. The n-th order divided
difference of f at distinct points x;,X;+1,...,Xi+, in [ is defined recursively by:

xjisfl=f(x;), i<j<i+n

(Xit 1y Xigns 1= [Xis oo Xign—13 f]

Xit+n — Xj

[xia"' 7xi+n;f] =

It is easy to see that

i an (Xi1k) '
=0 H (xi+k_x,i)

j=i itk

[x,-, . ,x,urn;f} =

In this paper [x;,...,Xi1n; f] is denoted by A" f(x;).

We say that f: I — R is a convex function of order m (or m-convex function)
if for all choices of (n+ 1) distinct points x;,...,x.+, inequality A”f(x;) > 0 holds.
The function f is said to be V-convex of order m if for all choices of (n+ 1) distinct
points x;,...,xi1, inequality V" f(x;) = (—1)"A™f(x;) > 0 holds.

It is well-known that if £ exists, then f is n-convex if and only if f () > 0.
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Let f be a real-valued function defined on I x J, I = [a,b], J = [¢,d]. Then the
(n,m) divided difference of the function f atdistinct points xi,...,Xj4n €1, ¥}, ..., Y j4m €
J is defined by

A;;f(xnyj) = [xh~"7xi+n;[yj7~”7yj+ln;fn'

A function f: I xJ — R is said to be convex of order (n,m) or (n,m)-convex if
inequality
A;;f(xnyj) > 0

holds for all distinct points x;,...,Xjyn €1, ¥j,...,¥jrm € J.

It is known that if the partial derivative % exists, then f is (n,m)-convex iff
an+n1f
dx" dy™m
[8].

Let us describe the structure of the paper. After brief introduction, we consider
identities for sum YV, p; f(x;) which involve divided differences A" f and V" f. These
identities are basic tools for getting necessary and sufficient conditions that inequality
SN pif(xi) = 0 holds for every n-convex function or V-convex function of higher
order. In the third section we obtain an identity for sum Y% | 22’[:1 pijf(xi,y;) and in-
vestigate the inequality YV 21}’1:1 pijf(xi,y;) = 0 for (n,m)-convex function of two
variables. The fourth section is devoted to the integral case. We consider an identity for
double integral A(f) = [ [ P(x,y)f(x,y)dxdy and related inequality. Finally, we con-
sider a functional A(f), apply it on the family of certain exponentially convex functions
(p(l’) and give some properties of it.

> 0. For some other results about convex functions of higher order see the book

2. Discrete case for function of one variable

In papers [3] and [4] the following results for a real sequence (a,) were proved:

n m—1 1 n '
Spa="S Lata $ G-,
=1 k=0 ™ i=k+1
1 n n
+ (m—1)! 2 (Z(i_“‘m - 1)("1_1)171')Amak7m 2.1)
k=m+1 i=k

and

n m—1 1 . n—k .
Y piai =Y, EV ani > (n—1)®p;
i=1 k=0 "* i=1

_
T
3 .

M=

(m—1)! (X (k—it+m—1)""Vp)V"a (2.2)
S |

where a¥) = a(a—1)...(a—k+1), a® =1, Aq; = k!A*a(i) and V¥a; = k'V¥a(i),
where « is a function a : i +— a;, and p;, (i=1,2,...,n) are real numbers.
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Similar result for the real function was proved by Popoviciu [9] and it is a gener-
alization of (2.1). Namely, he proved that if f is a real function defined on 7, x,...,x,
distinct numbers from [ and p;, (i =1,2,...,n) are real numbers, then

ipif(xi) = Z Z pilxi —x1) W) AR £ (x) (2.3)
i=1

=0 i=k+1

S (3 it )™ VAT F () (5t — )

k=m+1 i=k

where (x; — xg) ") = (x; — x) (X — Xp1 ) (X; — Xpean) for >0 and (x; —x)(0) = 1.

Now, let us prove an identity which is a generalization of formula (2.2). In fact, it
is a formula which is similar to Popoviciu’s result (2.3), but involving the operator V.

LEMMA 2.1. Let m,n be integers m < n and p;, ( 1,2,...,n) are real num-
bers. Let a function [ be defined on I andlet x;, (i=1,2,...,n), be mutually different
elements from 1. Then the following identity holds:

ipff(xi)z 2 Ep, n— ) VA £, 0) 2.4)
i=1

n—m k

! kz (le,- (o1 =)V £ (o) (otem — )
=1 j=

where (x,—x;) 51 = (v, —x;) (- 1—x;) .. (Xx—2;) for k=0 and (x,—x;)1% = 1.
Proof. For m =1 we have
n n n—1 k
2 Eplf Xn) 2 2 S (xet1))
i=1 i=1 k=1 j=1

what is true.
Suppose that (2.4) is valid. Then

m n—k
2 (Z p;(n —x,->{"}> VA (i)

=0 \j=1
n—m—1 k
+ 2 z Dj (Xktm _xj){m} Vm+lf(xk)(xk+m+1 —Xp)
k=1 j=1
=A+ Z Pj(xn —xj){’"}V’"f(x,,_m)
j=1
n—m—1

+ Z B(=1)" N ([t oos Xt 1) — [ oo X3 f)
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=A+ Z pj(xn _xj){m}vmf(xn—m)
j=1
n—m—1
+ Y P =) (= 1) [y 3 f]
j=1
n—m—2 n—m—1

I )
+ Z B(—1)" " a1 oo Xy 15 Z B(— ks s X ]

)"

—p1 (Xt —x1) (1 X5y X1 f]

n—m

=A+ Z Pj(Xn—1 —Xj){m_l}vmf(xn_m)(xn — Xm)
/:1

n—m-—
2 "Xy e Xk f Z (X — x)
—1

=~

k
= piGem—t = %)) 4 pr (g —x) IV f ()
j=

1
+ pj(xn—l _xj){mil}vmf(xnfm)(xn _xm)
J=1

=

n—

3

k
Z o1 —x) V)V )

HM

01 (o — x) IV £ (x)) (g1 — x1) = Zpl Xi)-

m—1 n— k
where A = ( ij —x) "V f(x, 1) and B = > pj(xkm —x;){"™. Thus,
k=0 j= j=1

identity (2.4) is proved. (]

From identity (2.4) we can obtain the following result about necessary and suffi-
cient conditions that inequality Y./ | p;f(x;) > 0 holds for every V-convex function of
order m.

THEOREM 2.2. Let assumptions of Lemma 2.1 are valid and x1 < x, < ... < X.
Inequality

Y pif(xi) =0
i=1
holds for every V -convex function f of order m iff

Zp, Xy —x) =0 k=0,...,m—1, (2.5)

i (Xkgm—1 — X ){m71}>0 k=1,...,n—m. (2.6)

HM»
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Proof. 1f inequalities (2.5) and (2.6) are satisfied, then the first sum in identity
n

(2.4) is equal to O, the second sum is nonnegative and the inequality Z pif(xi) =0
i=1
holds.
n

If for all V-convex functions of order m inequality Z pif(xi) = 0 holds, then we

i=1
consider the functions f(x) =x" and f>(x) = —x", r < m— 1. Functions f; and f>
are V-convex functions of order m and for r <m — 1 we have

n
Y pixj =0.
i=1

From this equality we obtain (2.5). For every k € {1,...,n—m}, m > 1, the function

filx) = { (g1 — ). -O(Xk+m71 —x), : < N
) = Ak+1

is V-convex of order m and using these facts we obtain (2.6). [

The next theorem is a generalization of the result from [6, pp. 121-122].

THEOREM 2.3. Let the assumptions of Lemma 2.1 be valid and x| < x3 < ... <
Xp.
a) Inequality

n

. pif(xi) =0

i=1

holds for every convex function f of order j,j+1,...,m, (j=0,1,2,....m) iff

n
z pi(xi_xl)(k)zoa kZO,...,j—l, (27)
i=kt1
Y pii—x)P =0, k=j..m-1, (2.8)
i=kt1
n
> pili—xpemi) ™V 20, k=m+1,...n. (2.9)
i—k

If j=0 (or j=m), condition (2.7) (or (2.8)) can be omitted.
b) Inequality

Y pif(xi) =0
i=1

holds for every V -convex function f of order j,j+1,....m, (j=0,1,...,m) iff

n—k
S pil—x) =0, k=0,...,j-1, (2.10)
=1
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n—k
> pit—x) =0, k=j...m—1, (2.11)
i=1

k

N pilimot —x)" >0, k=1,...n—m. (2.12)

i=1
For j =0 (or j =m), condition (2.10) (or (2.11)) can be omitted.

The proof is similar to the proof of Theorem 2.2 and we omit it. The result for the
special case f(x;) = a; can be found in [7], see also [8, p. 257].

3. Discrete case for function of two variables

Let us now consider a function of two variables defined on I x J. Firstly, we obtain
an identity for Z 1 M =1 Pijf (xi,y;) which involves divided differences and then, in the
next theorem, we consider necessary and sufficient conditions that inequality

2 Zpl/f xl:)’/

i=1j=

holds for every convex function of order (n,m).

THEOREM 3.1. Let xy,...,xy be mutually distinct numbers from I = [a,b] and
Yis---,ym be mutually distinct numbers from J = [c,d] and let f be a real-valued
functionson I x J. Let p;j, (i=1,...,N), (j=1,...,M), be real numbers.

Then the following identity holds:

ZZpuf Xi,¥;) 3.1)

i=1j=

m—1n—1

Z > Z Z Por(xs —x1) O (3 —y1) O AL f (x1,31)

=0 =0 s=t+1 r=k+1
m—1 N N M

+2 2 2 2 psr(xs_xt—n+1)(n71)(Yr_YI)(k)AZf(xt—n’}H)(xt—xz—n)

k=0 t=n+15=t r=k+1

n—1
+ 2 Z 2 Zpsr Xs y _kaerl)(m VA, oS X1 Yi—m) V% — Yk—m)

+1t=0s=t+1r=k

TN S S35 3 N SN (| R

k=m+1t=n+1 s=t r=k
XAD (X, Yieem) (% — Xt—n) Yk — Yk—m)-

Proof. We have

M=
Mz

N M
pl/f xla}’j 2 ZQjGi(Yj) >
i—1 \j=1

I
iR

~.

I
iR
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where p;; =¢q; and G; :y+— f(x;,y). Using (2.3) on the inner sum we have

N M M
+2 2 | Xaili- Ykm+1)(m_l)> A"Gi(Yi—m) Yk = Yi—m)
m—1 N M
= (2 > CIj()’J'_Y1)(k)> AkGi()’l))
k=0 \i=1 \j=kt!
M N M
+ (Z S iy = Viems1) ™ )(Yk_}’km)>AmGi(Ykm)>

k=m+1 \i=1 \J=k
m—1 N
= 2 <2wiF(xl 2 (2\4 xl>
k=0 \i=1 k=m+1

where w; = 31, g (v —y)® =30 pii(yi—y0)W, Fxi) = A*Gi(y),

vi= 3" qi (Vi = Yieme )"V (v — Yim) and H(x;) = A"G (Vi) -
Applying again (2.3) on the inner sums we obtain

2 szjf xnyj

i=1j=
= Z Z ( Y, wilxi—xp) )AF(xl)
k=0 r=0 \i=r+1
m—1 N N
+ 2 2 <Zwi(xi _xr—n+1)(nl)> A"F (Xr—n) (X —Xr—n)
k=0 r=n+1 \i=

+ Z Z Zvl xi—x1) DA H(x;)

k=m+11=0 i=t+1

+ Z 2 th Xi — Xt— n+1 (n 1)Anl'l(xt—n)(-’ct_)Ct—n)

k=m+1t=n+1i=t

5SS ( S psty—)t >) ()AL o)

k=0 r=0i=r+1 \ j=k+1
+ 2 2 2 ( 2 Pij y/ )’1)(k)> (xi_xr—n+l)(nil)AZf(xrfna)’l)(xr_xr7n>
k=0 r=n+1i=r \ j=k+1

+ Z 2 2 Zptj Vi—YVk— m+1)(m l)(yk —Vi— m)(xt xl) )Ainf(xhyk—m)

k=m+11t=0i=t+1 j=k
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N N M

+ Z Z ZZPU yk—m+l)( )(yk_yk m) (Xi — X1 n+1)( n=1)

k=m+1t=n+1i=t j=
XAmf(xt—nayk—m)(xt _xt—n)~

If we substitute in the first and in the second sums r — 7, and in all sums change
i—s, j— r,we get the identity (3.1). [

THEOREM 3.2. Let p;j, (i=1,...,N), (j=1,...,M), be real numbers and f
be a real function defined on I x J. Let x1 <xp < ...<xn, x; €1, y1 <y2 < ...Yum,
yi€J.

Inequality

M
z l/f xl7y/ =0

”MZ

holds for every convex function f of order (n,m) iff

k=0,.... m—1
Z Z psr s_xl )(yr_yl)(k)zo (=0 n

s=1+1r=k+1 =0,...,n—1
N M

- (n—1) o (k) _ k:07...,m—l
;r%lp.vr(x.\' xt—n+1) ()’r }’1) 0 t=n+1,...,N
B (m—1) _ k=m+1,....M

s%‘th” ; 0r=Yiems) O 0. -1
y (n—1) (m—1) k=m+1,....M
EEPsr(xs—Xzan) (Vr = Yk-m+1) =0 t=n+1,... N.

s=t r=k
Proof. The proof is similar to the proof of Theorem 2.2. [
REMARK 3.3. The case when f(x;,y;) = a;j and m =n =1 was considered in

[5]. The case when f(x;,y;) = a;b;, where (a;) is an n-convex sequence and (b;) is
an m-convex sequence was researched in [7].

4. Integral case for a function of two variables

In this section we consider a function of two variables defined on I X J = [a,b] x
[c,d]. Also, throughout this section n,m,N,M € NU{0} and the notation for a partial

n+m
derivative gx,,—ayf, iS f(nm)- In [5] the following theorem is given:

THEOREM 4.1. Let P,f : [a,b] x [a,b] — R be integrable functions, if f has the
continuous partial derivatives f(, o), fio.1) and f(1 1yon [a,b] X [a,b] then

b rb b
| [ Pesiseyasdy = faapiaa + [ Pna) o nads

b b b
+ [ Pianfon(amdy+ [ [Py sy
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where

b b
Py = [ [ Plsayanas,
x Jy

af of E
f(lo ,f01 8_yadf“ axay m

Now we give the generalization of the previous theorem using higher derivatives.

THEOREM 4.2. Let P,f : I xJ — R be integrable functions and f has the con-
tinuous partial derivatives f; j on I xJ for i=0,1,...N+1 and j=0,1,...M+1,
then we have

/ab /ch (x,9).f (x,y)dydx

N M b rd s—ai e .
= '2(’)26/ / P(S,t)f(i,j)(a,C)( - S i )jdtds
i=0 j=0”/a Jc

i! Jj!

///Pst N+1/(x C)( N),C)N(t;!c)jdtdsdx
+;()///P” zM+1(ay)( )(M) dtdsdy
+/a /c /x /y P(S7l)f(N+1,M+1)(x7y)(s]_v)!c) %dtdsdydx. (4.1

Proof. Let G(y) = f(x,y), i.e. we consider a function f(x,y) as a function of
variable y. Then a function G can be represented as

M —e) —1)M
flxy) =6l = X 6V (e) . I L / G gy

M _ o) y M
y—c¢ y—1

= 3 fop 0 U [ oaren () 2

Jj=

where we use the facts that GU)(c) = fg ;) (x,c) and GM TV (1) = fig py 1) (x,1).
Multiply the above formula with P(x,y) and integrate it over [c,d] by variable y.
Then we have

d M d Y
/ P(x,y)f(x,y)dy =Y fo)(xc) / P(x,y) v j,c),dy (4.2)
c j:O c .

+/Cd (/Cyp(x’y)f(O,MH)(x:f) b ;/It!)Mdt> dy.
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Let us represent the functions x — fio j(x,¢) and x — fig p41)(x,7) using Taylor ex-
pansions:

(x—s)"

Vi [ s s,

a)t X x—s§ N
)+/[; f(N+17M+1)(S,l)( N') ds.

fo,j)(x,c) = Zf(z i (a, C)

(x—

fomsny(6,1) =X, famrn(a,r)

i=0

Putting these two formulae in (4.2) we get

/ ’ P(x,y)f(x,y)dy

-3 (Shue

[ ( [ Py (%f@-,MH)(an)@

=

X x—s)V —1)M
+/ f(N+1,M+1)(57t)( N!) dS> (yM!) dt)dy

_ g (g f(i’j)(a,c)(x%!a)i> Cdp(x,y) (v _-!C)jdy
JO</fN+1J 5,¢) )/P dy

o [ (,zom ) ot

+/C /L (/u P, y) fv+1.m41) (5:1) (x;f)Nds> (y;/lt!)Mdtdy.

Now, we integrate over [a,b] by variable x and get:

[ [Py stsyavas
-2 [ (qu %f”)/ﬁ(x,y)(y%’jdy]dx
+ MK/fmusc )/p,y
of [ IR (l_zzof<f7M+l><a7r><";“’i) @;;)Mdtdy] i

b [ rd ry X AN M
+ B /C /C (/a P(x,)’)f(NH,MH)(S,t)(XN;S) ds) (yMt!) dtdy} dx.

+/fN+1] 5,¢)

) [’

dy] dx
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In the first summand we change the order of summation, use the linearity of the
integral and get

Ly—c)J
//ny (i) )( .a) Mdydx.
1010 i! J!

The second summand is rewriten as

/a l (/ Jive1,)(s5¢) N' )/P dy]dx
~Ja L 0</ / Pl f(N+17;)(SaC)(x;f)Ndyds)]dx
—Z/a /u /L P(X,Y)f(Nﬂh,')(S,C)(x;f)N (y;!c)jdydsdx

_,zf)///ny N+1;)(sc)(xN,s)N(y] )ddds

where in the last equation we use the Fubini theorem for the variables s and x. Let
us point out, that firstly, the variable x is changed from a to b while the variable s is
changed from a to x. After changing the order of integration we have that variable s
is changed from a to b while the variable x is changed from s to b.

Similarly, the third summand is rewriten as:

b d ry N Y—a i M
/ l/ / P(x,y) <2f(i,M+1)(a,f)( 0 ) ) (yM? dtdy] dx
a c Je =0 ! !
N b pd gy r—a) (v—tM
= ;)/a /C /C P(an)f(i,MH)(a,f)( I ) (yMt') dtdydx

N b pd pd  Nify M
2/ / / P(x,y)f(,-7M+1)(a7t)(xi7'a)%dyd;dx
i=0 ’ . !

lo///ny ,M+1(at)( )(y;/l) dydxdt,

where we use the Fubini theorem twice, firstly for changing ¢ and y, and then for ¢ and
X.

The fourth summand is rewriten as:

/h {/d/y (/XP(X,}’)f(NH,MH)(s:t) (x;f)Nds) (y;/lt!)Mdtdy] -

_/ ///ny Joveim1) (s, t)( N') (yM')Md dtdydx
:/a / / /, P(x’y)f(N+l7M+1)(571)%%@&“#61&
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where we use the Fubini theorem several times. Firstly, we change ¢ and y, then y and
s, then s and 7, then s and x, then ¢ and x.
Using all these results we get

/ab /dP(x7y)f(x»y)dydx
:ﬁézz()/ / Pley)fii )(x -_a) (y%!cydydx

+, O///ny N+1,)(sc)(xN,s)N(y] )ddds

+i§(4)/c /a /t P(x7y)f(i,M+1)(a,l)(x;a) (y;/lt) dydxdt
-

b pd b rd (x—s)V M
+/u /C [ /, P, y) fv+1.m41) (5:1) N a dydxdtds.

It is, in fact, the statement of Theorem 4.2 when we change the names of variables
on the right side: x < s, y—1¢. U

Using results of the previous theorem we obtain necessary and sufficient condi-
tions that inequality A(f) > 0 holds for every (n,m)-convex two-variables function.

THEOREM 4.3. The inequality

= /b /dP(x,y)f(w)dydx >0 (4.3)

holds for every function whose continuous partial derivative fiyy1p1) 20 on I xJ

iff

i
//Pst ) ‘)dtds: =0, N: =0 M (44)
J!

//P(s,t) =) (; )dtds:O, =0, M Vxelab] (4.5

/ / P(s Lol ;;) dtds =0, i =0,..,N; Vy€[c,d] (4.6)
WM
/ / P(s ' M M):) dtds > 0, Vx € [a,b]; Vy € [c,d]. 4.7

Proof. 1f (4.4), (4.5) and (4.6) hold then the first three sums are zero in (4.1) and
the required inequality (4.3) holds by using (4.7).
Conversely, if we consider in (4.3) the following functions

(s—a)" (t—c)"

n! m!

1) =
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(s—a)" (t—=c)"

n! m!

f(Z)(S7t) = -

forO<n<Nand O<m<M suchthathHMH)( 1) >0, k=1,2; then we get the
required equality (4.4) i.e.

//P =) ft=)" ~ " dtds=0, 0<n<N; 0<m<M.
m
In the same way if we consider in (4.3) the following functions for 0 <m < M, Vx €
[a,b] and 1 € [c,d|
s—x)NV (t—c)m
f(3)(s7t) _ { (: N!) (tm!) LX<

0,x>s
SXN c)m
f(4)(s,t):{ <N|) %,x<s

0,x=>s

such that fN+1 M+1)( 1) >0, k=3,4,then we get the required equality (4.5) i.e.

//P (’:nc) dids =0, 0<m<M;V x€[ab].

Similarly, if we consider in (4.3) the following functions for 0 <n <N, Vy € [c,d]
and s € [a,b]

s—a) (t— M
f(6)(s t)= - n!) (tzt;!) Yy <t
’ 0,y>1t

such that fN+1 M+1)( s,) 20, k=35, 6, then we get the required equality (4.6) i.e.
(s—a)" (t—y :
P v ——dtds=0, 0<n<N;Vyé€][ed]|.

The last inequality (4.7) is followed by considering the following function in (4.3) for
X € [a,b], y € [c,d]

_ AN (M
fony = { TG x<s y< g
O,x>s or y>t.

THEOREM 4.4. Let f € CtLmt0(1 % J) and P :1xJ — R be an integrable
Sunction. Let A :C(IxJ)— R be a linear functional defined in (4.3) and let the
conditions (4.4), (4.5), (4.6), and (4.7) of Theorem 4.3 for function P be satisfied. Then
there exists (£,m) € I x J such that

A(f) = finsr1.me1)(E,M)A(Go) (4.8)
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xn+1 ym+1
(n+ D! (m+ 1)1

where Go(x,y) =

Proof. Let L= min x,y), U= max X,y).
f. (W)elxjf(nﬂ,mﬂ)( y) (x,y)elxjf("H’mH)( y)

Then the function

anrl merl

G(x,y) = UWW — f(x,y) =UGo(x,y) — f(x,y)

gives us
G(n+1,m+1)(x7y) =U _f(nJrl,erl)(xvy) 20

ie. Gis (n+ 1,m+ 1)-convex function. Hence A(G) > 0 by Theorem 4.3 and we
conclude that
A(f) < UA(G).

Similarly
LA(Go) < A(f)

Combining the two inequalities we get
LA(Go) < A(f) < UA(Go)

which gives us (4.8). [0

THEOREM 4.5. Let f,g € C* 1m0 (15 J) and let A : C(I xJ) — R be alinear
functional as defined in (4.3) and let the conditions (4.4), (4.5), (4.6), and (4.7) of
Theorem 4.3 for function P be satisfied. Then there exists (£,m) € I x J such that

A(f) f(n+1,m+1)(§7n)
A(g) g(n+1,1n+1)(§7n)

assuming that both the denominators are non-zero.

Proof. Let h € Cl"*1mt1) (1 J) be defined as
h=A(g)f—A(f)s
Using Theorem 4.4 there exists (£,1) such that

0= A(h) = h(nJrl,erl)(gan)A(GO)

or
[A(g)f(n-&-l,m-&-l)(gan) _A(f)g(n+l,m+l)(§an)]A(GO) =0

which gives us required result. [J

REMARK 4.6. The case when n =m = 1 was considered in the paper [5].
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COROLLARY 4.7. Let A:C(I xJ) — R be a linear functional as defined in (4.3)
and let the conditions (4.4), (4.5), (4.6), and (4.7) of Theorem 4.3 for function P be
satisfied with M = N = n. Then there exists (&,1m) € I x J such that

_ g+ 1)g...(g—n+1PA((xy)"*)
[(p+1)p...(p—n+ 1PA((xy)et1)

for —o < p#qg<+eand p,q¢{—1,0,1,2,...n—1}.

(Em)Pa

)p+l )q+1

(xy (xy
P 0 = g
then we get the required result. [

Proof. If we put f(x,y) = in Theorem 4.5

5. Exponential convexity

Here J stands for an open interval of R.

DEFINITION 5.1. [2] A function y : J — R is exponentially convex on J if it is
continuous and

D &y +x;) =0
ij=1
Vn € N and all choices &;,§; € R;i,j=1,...,n suchthat x;+x; €J; 1 <i,j <n.

EXAMPLE 5.2. For constant ¢ >0 and k € R; x — cek*

nentially convex function.

, is an example of expo-

The following proposition is given in [1]:

PROPOSITION 5.3. Let v :J — R, the following propositions are equivalent:
(i) Wy is exponentially convex on J.

(ii) y is continuous and

S aqv (") =0

i,j=1

V&, & € R and every xi,x; €J; 1 <i,j<n.

COROLLARY 5.4. If y is exponentially convex function on J, then the matrix

(3]

ij=1
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is a positive semi-definite matrix. Particularly

el (5] o
ij=1

vneN, x,x;€J;i,j=1,...,n.

COROLLARY 5.5. If y:J — (0,00) is exponentially convex function, then V¥ is a
log-convex function i.e. for every x,y € J and every A € [0,1], we have

y(Ax+(1=2)y) <y )y ().

Let
D={p") R, xR, -R:peR}

be a family of functions defined as:

(xy)?

1 (o= p £{0,1,2,...,n};
o) = (xyg”[l(fg(xy;}}z
W7 p€{0,1,2,...,n}.

Clearly (p((:}rl pn)(5:Y) = (xy)P~=1 = elp=n=Dlogw) for (x,y) € Ry x Ry s0
(p)

@) is (n+41,n4 1)-convex function and p . 1)()@y) is exponentially convex
function on R. From Corollary 5.5 we know that every exponentially convex function
is log convex. So, now we are in the position to state our next theorem.

THEOREM 5.6. Let A: C(Ry xR;) — R be a linear functional as defined in
(4.3) and let the conditions (4.4), (4.5), (4.6), and (4.7) of Theorem 4.3 for function P
be satisfied and (p(l’) be a function defined above. Then the following statements hold:

(i) pr— A(@'P) is continuous on R.
(ii) p+— A(@P)) is exponentially convex function on R.

(iii) If p— A(@'P)) is positive function on R, then p— A(@P)) is log-convex func-
tion on R.

pitpj
(iv) Forevery k€ N and py,...,pr € R, the matrix [A((p( p j))] is a positive
i,j=1
semi-definite. Particularly

Pitpj
det[A(qo( 2 >)} > 0.
ij=1
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) If p— A((p( ) is differentiable on R. Then for every s,t,u,v € R, such that
s<uandt<v, we have

M (x,y) < My (x,5) (5.1)

where .

A<<p<f>>>
. , SFEL,
ms,t(x7y) = (A((P())

exp LA@M) s=t
AlpW) )

for @) " € D.

Proof. (i) For fixed n € NU {0}, using L’Hopital rule twice and applying limit,
we get

im Py — lim fabfabP(x,y)(xy)pdydx _ fah f:P(x7y)[log(xy)]2dydx - (0)
117—>0A((P )= 117—>0 [p(p—1)...(p—n)]? o 2[11!}2 =Ao™).

In the same way we can get

h%AwWU:Aww)k:Lme.
[)4}

(i1) Let us define the function

p,+pj)
2 alajqo 7 (x,y),
i,j=1

piERwER, i=12,. k.

Since the function p — (p(( ?)

ntLnt1) is exponentially convex, we have

Pi +pj

)
Ont1,n+1) = 2 0i0; P n+1 n+l) = >0,
i,j=1

which implies that @ is (n+ 1,n+ 1)-convex function on R4 x R, and therefore we
have A(®) > 0. Hence

k pitpj
D oA (9" 7)) >0
i,j=1

We conclude that the function p — A(@(P)) is an exponentially convex function on R.
(iii) It is direct consequence of (ii).
(iv) This is consequence of Corollary 5.4.
(v) From the definition of convex function ¢, we have the following inequality [8,

p. 2]
0(s) —0() _ 90w —0() (5.2)

X )
s —1 u—v
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Vs,t,u,v €J CR suchthat s <wu, t <v, s#t, u#v.
Since by (iii), A(@(?)) is log-convex, so set ¢ (x) = logA(¢@™) in (5.2) we have

logA(¢"") —logA(¢") _ logA(¢") —logA(e")
s—1 = u—v

(5.3)

for s <u,t <v,s#t,u+#v, which is equivalent to (5.1). The cases for s =7, and / or
u =v are easily followed from (5.3) by taking respective limits. [l
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