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OPTIMAL INEQUALITIES BETWEEN NEUMAN–SÁNDOR,

CENTROIDAL AND HARMONIC MEANS

WEIFENG XIA AND YUMING CHU

(Communicated by E. Neuman)

Abstract. In this paper, we answer the question: what are the greatest values α1 , α2 and the
least values β1,β2 , such that the inequalities

α1T (a,b)+(1−α1)H(a,b) < R(a,b) < β1T (a,b)+(1−β1)H(a,b)

and
Tα2 (a,b)H1−α2 (a,b) < R(a,b) < T β2 (a,b)H1−β2 (a,b)

hold for all a,b > 0 with a �= b? Here, R(a,b) , T (a,b) and H(a,b) denote the Neuman-
Sándor, centroidal and harmonic means of two positive numbers a and b , respectively.

1. Introduction

For a,b > 0 with a �= b , the Neuman-Sándor mean R(a,b) is introduced by Neu-
man and Sándor in [1, 2] as follows:

R(a,b) =
a−b

2arcsinh( a−b
a+b)

. (1.1)

The main properties and inequalities for the Neuman-Sándor mean R(a,b) can be
found in [1, 2].

Recently, the inequalities for means have been the subject of intensive research. In
particular, many remarkable inequalities can be found in [3–32].

Let T (a,b)= 2
3

a2+ab+b2

a+b , A(a,b)= a+b
2 , I(a,b)= 1

e (
aa

bb )
1

a−b , P(a,b)= a−b
2arcsin( a−b

a+b )
,

L(a,b) = a−b
loga−logb , G(a,b) =

√
ab and H(a,b) = 2ab

a+b be the centroidal, arithmetic,
identic, seiffert, logarithmic, geometric and harmonic means of two positive numbers a
and b with a �= b , respectively. Then

H(a,b) < G(a,b) < L(a,b) < P(a,b) < I(a,b) < A(a,b) < R(a,b) < T (a,b). (1.2)
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It’s natural to ask: what are the greatest values α1,α2 and the least values β1,β2 ,
such that

α1T (a,b)+ (1−α1)H(a,b) < R(a,b) < β1T (a,b)+ (1−β1)H(a,b)

and
T α2(a,b)H1−α2(a,b) < R(a,b) < Tβ2(a,b)H1−β2(a,b)

hold for all a,b > 0 with a �= b? The main purpose of this article is to answer this
question.

2. Lemmas

In order to establish our results we need one lemma, which we present in this
section.

LEMMA 1. Let p ∈ { 3
4 log(1+

√
2)

, 7
8} and g(t) = 3(−2p2 + 9p− 6)t6 + (20p2 −

30p+9)t5+(−26p2+21p)t4+6(4p2−6p+3)t3+(−26p2+21p)t2+(20p2−30p+
9)t−6p2 +27p−18 , the following statements hold:

(1) If p = 3
4 log(1+

√
2)

= 0.8509 . . ., then there exists λ > 1 , such that g(t) < 0 for

t ∈ (1,λ ) and g(t) > 0 for t ∈ (λ ,+∞);
(2) If p = 7

8 , then g(t) > 0 for t ∈ (1,+∞) .

Proof. Let p ∈ { 3
4 log(1+

√
2)

, 7
8} , then by elementary computations we have

g(1) = 0, (2.1)

g′(t) =18(−2p2 +9p−6)t5 +5(20p2−30p+9)t4+4(−26p2 +21p)t3

+18(4p2−6p+3)t2 +2(−26p2 +21p)t +20p2−30p+9, (2.2)

g′(1) = 0, (2.3)

g′′(t) =90(−2p2 +9p−6)t4 +20(20p2−30p+9)t3+12(−26p2 +21p)t2

+36(4p2−6p+3)t−52p2 +42p, (2.4)

g′′(1) = 288

(
p− 7

8

)
, (2.5)

g′′′(t) =360(−2p2 +9p−6)t3+60(20p2−30p+9)t2+24(−26p2 +21p)t

+36(4p2−6p+3), (2.6)

g′′′(1) = 1728

(
p− 7

8

)
, (2.7)



NEUMAN-SÁNDOR, CENTROIDAL AND HARMONIC MEANS 595

g(4)(t) = 1080(−2p2 +9p−6)t2 +120(20p2−30p+9)t+24(−26p2 +21p), (2.8)

g(4)(1) = −384p2 +6624p−5400, (2.9)

g(5)(t) = 2160(−2p2 +9p−6)t +120(20p2−30p+9) (2.10)

and
g(5)(1) = −1920p2 +15840p−11880> 0. (2.11)

(1) If p = 3
4 log(1+

√
2)

= 0.8509 . . . , then −2p2+9p−6> 0, and (2.2), (2.4)–(2.10)

together with the expression of g(t) lead to

lim
t→+∞

g(t) = +∞, (2.12)

lim
t→+∞

g′(t) = +∞, (2.13)

g′′(1) < 0, lim
t→+∞

g′′(t) = +∞, (2.14)

g′′′(1) < 0, lim
t→+∞

g′′′(t) = +∞, (2.15)

g(4)(1) < 0, lim
t→+∞

g(4)(t) = +∞ (2.16)

and g(5)(t) is strictly increasing in [1,+∞) .
The monotonicity of g(5)(t) and (2.11) imply that g(4)(t) is strictly increasing in

[1,+∞) .
It follows from the monotonicity of g(4)(t) and (2.16) that there exists λ1 > 1,

such that g′′′(t) is strictly decreasing in [1,λ1] and strictly increasing in [λ1,+∞) .
From the piecewise monotonicity of g′′′(t) and (2.15) we clearly see that there ex-

ists λ2 > λ1 > 1, such that g′′(t) is strictly decreasing in [1,λ2] and strictly increasing
in [λ2,+∞) .

It follows from (2.14) and the piecewise monotonicity of g′′(t) that there exists
λ3 > λ2 > 1, such that g′(t) is strictly decreasing in [1,λ3] and strictly increasing in
[λ3,+∞) .

From the piecewise monotonicity of g′(t) and (2.3) together with (2.13) we con-
clusion that there exists λ4 > λ3 > 1, such that g(t) is strictly decreasing in [1,λ4] and
strictly increasing in [λ4,+∞) .

Therefore, Lemma 2.1 (1) follows from the piecewise monotonicity of g(t) and
(2.1) together with (2.12).

(2) If p = 7
8 , then −2p2 +9p−6 > 0, and (2.5), (2.7), (2.9) and (2.10) lead to

g′′(1) = 0, (2.17)

g′′′(1) = 0, (2.18)

g(4)(1) > 0 (2.19)

and g(5)(t) is strictly increasing in [1,+∞) .
It follows from the monotonicity of g(5)(t) and (2.11) that g(4)(t) is strictly in-

creasing in [1,+∞) .
Hence, g(t) > 0 follows from the monotonicity of g(4)(t) and (2.17)–(2.19), (2.3)

together with (2.1).
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3. Main Results

THEOREM 3.1. The double inequality

α1T (a,b)+ (1−α1)H(a,b) < R(a,b) < β1T (a,b)+ (1−β1)H(a,b) (3.1)

holds for all a,b > 0 with a �= b if and only if α1 � 3
4 log(1+

√
2)

= 0.8509 . . . and β1 � 7
8 .

Proof. Firstly, we prove that

R(a,b) > α1T (a,b)+ (1−α1)H(a,b) (3.2)

and

R(a,b) <
7
8
T (a,b)+

1
8
H(a,b) (3.3)

hold for all a,b > 0 with a �= b . Here α1 = 3
4 log(1+

√
2)

= 0.8509 . . .

Without loss of generality, we assume that t = a
b > 1 and p ∈ { 3

4 log(1+
√

2)
, 7

8} ,

then (1.1) leads to

pT (a,b)+ (1− p)H(a,b)−R(a,b)

=
2p
3

a2 +ab+b2

a+b
+(1− p)

2ab
a+b

− a−b

2arcsinh( a−b
a+b )

= b

[
2pt2 +(6−4p)t +2p

3(t +1)
− t −1

2arcsinh( t−1
t+1 )

]
. (3.4)

Let

f (t) = log

[
2pt2 +(6−4p)t +2p

3(t +1)

]
− log

[
t−1

2arcsinh( t−1
t+1 )

]
. (3.5)

Then simple computations yield

lim
t→1+

f (t) = 0 (3.6)

and

f ′(t) =
[(3−2p)t2 +4pt +3−2p] f1(t)

[pt2 +(3−2p)t + p](t2−1)arcsinh( t−1
t+1 )

, (3.7)

where

f1(t) =
2(t−1)[pt2 +(3−2p)t + p]

[(3−2p)t2 +4pt +3−2p]
√

2t2 +2
− arcsinh

(
t−1
t +1

)
, (3.8)

f1(1) = 0 (3.9)

and

f ′1(t) =
4g(t)

[(3−2p)t2 +4pt +3−2p]2(2t2 +2)3/2(t +1)
. (3.10)
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Here, g(t) is defined as in Lemma 2.1.
(1) If p = 3

4 log(1+
√

2)
= 0.8509 . . . , then (3.5) and (3.8) yield

lim
t→+∞

f (t) = 0 (3.11)

and
lim

t→+∞
f1(t) > 0. (3.12)

From Lemma 2.1(1) and (3.10) we know that there exists λ > 1, such that f1(t)
is strictly decreasing in [1,λ ] and strictly increasing in [λ ,+∞) .

It follows from the piecewise monotonicity of f1(t) and (3.9) together with (3.12)
that there exists ξ > λ > 1, such that f (t) is strictly decreasing in [1,ξ ] and strictly
increasing in [ξ ,+∞) .

Therefore, inequality (3.2) follows from (3.6), (3.11) and the piecewise mono-
tonicity of f (t) together with (3.4)–(3.5).

(2) If p = 7
8 , then Lemma 2.1(2) and (3.10) lead to f1(t) is strictly increasing in

[1,+∞) .
Hence, inequality (3.3) follows from (3.6), (3.7), (3.9) and the monotonicity of

f1(t) together with (3.4)–(3.5).
Secondly, we prove that the parameters α1 = 3

4 log(1+
√

2)
= 0.8509 . . . and β1 = 7

8

are the best possible parameters such that inequality (3.1) holds for all a,b > 0 with
a �= b .

For any ε > 0, α1 = 3
4 log(1+

√
2)

= 0.8509 . . . and x > 0, (1.1) leads to

lim
x→+∞

(α1 + ε)T (x,1)+ (1−α1− ε)H(x,1)
R(x,1)

=
4
3
(α1 + ε) log(1+

√
2) > 1. (3.13)

Inequality (3.13) implies that for any ε > 0 there exists X1 = X1(ε) > 1, such that
(α1 + ε)T (x,1)+ (1−α1− ε)H(x,1) > R(x,1) for x ∈ (X1,+∞) .

For any ε > 0 and x > 0(x → 0) , making use of Taylor expression one has

R(1+ x,1)−
[(

7
8
− ε

)
T (1+ x,1)+

(
1
8

+ ε
)

H(1+ x,1)
]

=
x

2arcsinh( x
x+2 )

−
[(

7
8
− ε

)
1+ x+ x2/3

1+ x/2
+

(
1
8

+ ε
)

1+ x
1+ x/2

]

=
[
1+

1
2
x+

1
24

x2 +o(x2)
]
−

[(
7
8
− ε

)(
1+

1
2
x+

1
12

x2 +o(x2)
)

+
(

1
8

+ ε
)(

1+
1
2
x− 1

4
x2 +o(x2)

)]

=
ε
3
x2 +o(x2). (3.14)

Equation (3.14) implies that for any ε > 0 there exists δ1 = δ1(ε) > 0, such that
R(1+ x,1) > ( 7

8 − ε)T (1+ x,1)+ ( 1
8 + ε)H(1+ x,1) for x ∈ (0,δ1) .
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THEOREM 3.2. The double inequality

T α2(a,b)H1−α2(a,b) < R(a,b) < Tβ2(a,b)H1−β2(a,b) (3.15)

holds for all a,b > 0 with a �= b if and only if α2 � 7
8 and β2 � 1 .

Proof. Firstly, we prove that

R(a,b) > T 7/8(a,b)H1/8(a,b) (3.16)

and
R(a,b) < T (a,b) (3.17)

hold for all a,b > 0 with a �= b .
From (1.2) we clearly see that (3.17) is true. So, we only need to prove inequality

(3.16). Without loss of generality, we assume that t = a
b > 1, then (1.1) leads to

R(a,b)−T7/8(a,b)H1/8(a,b)

= b

[
t−1

2arcsinh( t−1
t+1 )

−
(

2
3

t2 + t +1
t +1

)7/8

·
(

2t
t +1

)1/8
]

. (3.18)

Let

h(t) = log

[
t−1

2arcsinh( t−1
t+1 )

]
− log

[(
2
3

t2 + t +1
t +1

)7/8

·
(

2t
t +1

)1/8
]

, (3.19)

then by simple computations we get

lim
t→1+

h(t) = 0 (3.20)

and

h′(t) =
(t4 +8t3 +30t2 +8t +1)h1(t)
8t(t +1)(t3−1)arcsinh( t−1

t+1 )
, (3.21)

where

h1(t) = arcsinh

(
t−1
t +1

)
− 16t(t3−1)

(t4 +8t3 +30t2 +8t +1)
√

2t2 +2
, (3.22)

h1(1) = 0 (3.23)

and

h′1(t) =
J(t)

(t4 +8t3 +30t2 +8t +1)2(t +1)(2t2 +2)3/2
. (3.24)

Here,

J(x) =8(t−1)(t2 +1)(17t9 +113t8 +302t7 +646t6 +880t5

+184t4 +114t3 +90t2−33t−9) > 0 (3.25)
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for t > 1.
Therefore, h(t) > 0 follows from (3.25), (3.24), (3.23), (3.21) and (3.20). Thus

inequality (3.16) follows from (3.18) and (3.19).
Secondly, we prove that the parameters α2 = 7/8 and β2 = 1 are the best possible

parameters such that inequality (3.15) holds for all a,b > 0 with a �= b .
For any ε > 0 and x > 0(x → 0) , from (1.1) and Taylor expression we have

T 7/8+ε(1+ x,1)H1/8−ε(1+ x,1)−R(1+ x,1)

=
(

2
3
· x

2 +3x+3
x+2

)7/8+ε

·
(

2x+2
x+2

)1/8−ε
− x

2arcsinh( x
x+2 )

=
(

1+
1
2
x+

1
12

x2 +o(x2)
)7/8+ε

·
(

1+
1
2
x− 1

4
x2 +o(x2)

)1/8−ε

−
(

1+
1
2
x+

1
24

x2 +o(x2)
)

=
ε
3
x2 +o(x2). (3.26)

Equation (3.26) implies that for any ε > 0 there exists δ2 = δ2(ε) > 0, such that

T
7
8 +ε(1+ x,1)H

1
8−ε(1+ x,1) > R(1+ x,1) for x ∈ (0,δ2) .

For any ε > 0 and x > 0, one has

lim
x→+∞

R(x,1)
T 1−ε(x,1)Hε (x,1)

= lim
x→+∞

xε

4
3 log(1+

√
2) ·3ε

> 1. (3.27)

Inequality (3.27) implies that for any ε > 0 there exists X2 = X2(ε) > 1, such that
R(x,1) > T 1−ε(x,1)Hε(x,1) for x ∈ (X2,+∞) .
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