RATE OF APPROXIMATION OF BOUNDED VARIATION FUNCTIONS
BY THE BÉZIER VARIANT OF CHLODOWSKY OPERATORS

BO-YONG LIAN

1. Introduction

For a function \(f \) defined on the interval \([0, b_n] \), the Chlodowsky operators \(C_n(f, x) \) are defined by

\[C_n(f, x) = \sum_{k=0}^{n} f \left(\frac{kb_n}{n} \right) p_{nk} \left(\frac{x}{b_n} \right), \]

where \(p_{nk}(x/b_n) = \binom{n}{k} (x/b_n)^k (1-x/b_n)^{n-k} \) and \((b_n) \) is a sequence of increasing positive numbers, with the properties \(\lim_{n \to \infty} b_n = \infty \) and \(\lim_{n \to \infty} b_n/n = 0 \). When \(b_n \equiv 1 \), the operators \(C_n(f, x) \) become the well-known Bernstein operators

\[B_n(f, x) = \sum_{k=0}^{n} f \left(\frac{k}{n} \right) p_{nk}(x). \]

In [1], the authors introduced the Bézier variant of Chlodowsky operators \(C_{n,\alpha} \) as follows:

\[C_{n,\alpha}(f, x) = \sum_{k=0}^{n} f \left(\frac{kb_n}{n} \right) Q_{nk}^{(\alpha)} \left(\frac{x}{b_n} \right), \]

Keywords and phrases: Chlodowsky operators, Rate of convergence, Approximation, Bounded variation functions, Lebesuge-Stieltjes integral.

This work is supported by the National Natural Science Foundation of China (Grant No. 61170324), the Natural Science Foundation of Fujian Province of China (Grant No. 2010J01012) and the Scientific Research Fundation of the Education Department of Fujian Province of China (Grant No. JA12360).
where \(\alpha > 0 \) and

\[
Q_{nk}^{(\alpha)}(x/b_n) = J_{n,k}^{\alpha}(x/b_n) - J_{n,k+1}^{\alpha}(x/b_n), \quad J_{n,k}(x/b_n) = \sum_{j=k}^{n} p_{nj}(x/b_n).
\]

Obviously for \(\alpha = 1 \), the operators \(C_{n,\alpha} \) reduce to the operators \(C_n \).

Let

\[
K_{n,\alpha}(x/b_n, t/b_n) = \begin{cases}
\sum_{k=b_n}^{n} Q_{nk}^{(\alpha)}(x/b_n), & 0 < t \leq b_n; \\
0, & t = 0.
\end{cases}
\]

By Lebesgue-Stieltjes integral representation, we have

\[
C_{n,\alpha}(f, x) = \int_{0}^{b_n} f(t) dt K_{n,\alpha}(x/b_n, t/b_n).
\]

In [1], H. Karsli and E. Ibikli studied the convergence rate of \(C_{n,\alpha} \) to bounded variation functions for the case \(\alpha \geq 1 \). Unfortunately, in the proof of the results, the authors made some mistakes as follows:

1. [1, Lemma 2] For all \(x \in (0, \infty) \) and \(0 \leq t < x \), we have

\[
\lambda_{n,\alpha}(x/b_n, t/b_n) = \int_{0}^{t} K_{n,\alpha}(x/b_n, u/b_n) du \leq \frac{\alpha}{(x-t)^2} \frac{x(b_n-x)}{n}.
\]

In fact, the result should be

\[
K_{n,\alpha}(x/b_n, t/b_n) \leq \frac{\alpha}{(x-t)^2} \frac{x(b_n-x)}{n}.
\]

2. In [1, p. 439], the authors mistook \(I_{1,\alpha}(n,x) = \int_{0}^{x-x/\sqrt{n}} g_n(t) dt (\lambda_{n,\alpha}(x/b_n, t/b_n)) \), but in fact \(I_{1,\alpha}(n,x) = \int_{0}^{x-x/\sqrt{n}} g_n(t) dt (K_{n,\alpha}(x/b_n, t/b_n)) \). The representations of \(I_{2,\alpha}(n,x) \) and \(I_{3,\alpha}(n,x) \) were also wrong.

These two mistakes resulted in a lot of errors in the following proof of [1, Theorem].

In this paper, we re-discuss the pointwise approximation of \(C_{n,\alpha} \) to bounded variation functions for the case \(\alpha > 0 \) which includes \(\alpha \geq 1 \). We also mention some of the important papers on this subject by Gupta [7] and Pych-Taberska [8].

The main theorems of this paper are as follows.

Theorem 1. Let \(\alpha \geq 1 \), \(f \) be a function of bounded variation on every finite subinterval of \([0, \infty)\) and \(\lim_{x \to \infty} f(x) \) exists, i.e. \(f \in BV[0, \infty) \). Then for every \(x \in (0, b_n) \), we have

\[
\left| C_{n,\alpha}(f, x) - \frac{1}{2\alpha} f(x+) - \left(1 - \frac{1}{2\alpha} \right) f(x-) \right| \leq \frac{3\alpha b_n^2}{nx(b_n-x)} \sum_{k=1}^{n} \sqrt{x+(b_n-x)/\sqrt{k}} (g_x)
\]

\[
+ \frac{\alpha b_n}{\sqrt{nx(b_n-x)}} (|f(x+)-f(x-)| + e_n(x/b_n)|f(x)-f(x-)|).
\]
Theorem 2. Let $0 < \alpha \leq 1$, f be a function of bounded variation on every finite subinterval of $[0, \infty)$ and $\lim_{t \to \infty} f(x)$ exists, i.e. $f \in BV[0, \infty)$. Then for every $x \in (0, b_n)$ and $n > \frac{256 b_n^2}{255 (b_n-x)}$, we have

$$\left| C_{n, \alpha}(f, x) - \frac{1}{2\alpha} f(x^+) - \left(1 - \frac{1}{2\alpha}\right) f(x^-) \right| \leq \frac{A_{\alpha} b_n^2}{nx(b_n-x)} \sum_{k=1}^{n} \sqrt{x+\frac{(2-x)/\sqrt{k}}{x-x/\sqrt{k}}} (g_x) \tag{1}$$

$$+ \frac{b_n}{\sqrt{nx(b_n-x)}} \left| f(x^+) - f(x^-) \right| + \varepsilon_n(x/b_n) \left| f(x) - f(x^-) \right|,$$

where A_{α} is a positive constant depending only on α,

$$g_x(t) = \begin{cases} f(t) - f(x^+), & x < t \leq b_n; \\ 0, & t = x; \\ f(t) - f(x^-), & 0 \leq t < x. \end{cases} \tag{2}$$

$$\varepsilon_n(x/b_n) = \begin{cases} 1, & \text{if } x = \frac{k'}{b_n}, \text{ for some } k' \in \mathbb{N}; \\ 0, & \text{if } x \neq \frac{k'}{b_n}, \text{ for all } k \in \mathbb{N}. \end{cases} \tag{3}$$

When $b_n \equiv 1$, the operators $C_{n, \alpha}(f, x)$ are just the Bernstein-Bézier operators $B_{n, \alpha}(f, x) = \sum_{k=0}^{n} f(k/n) Q_{nk}^{(\alpha)}(x)$, which were studied by Zeng [2,3]. Therefore, our theorems extend the results of Zeng. Moreover, in the case $0 < \alpha \leq 1$, Zeng [2] gave a rate of convergence of $B_{n, \alpha}$ for bounded variation functions as follows:

Let $0 < \alpha \leq 1$, f be a function of bounded variation on $[0, 1]$ ($f \in BV[0, 1]$). Then for every $x \in (0, 1)$ and $n > \frac{256}{255} (1-x)^{-1}$ we have

$$\left| B_{n, \alpha}(f, x) - \frac{1}{2\alpha} f(x^+) - \left(1 - \frac{1}{2\alpha}\right) f(x^-) \right| \leq \frac{A_{\alpha}}{n(1-x)^{2-\alpha}} \sum_{k=1}^{n} \sqrt{x+\frac{(1-x)/\sqrt{k}}{x-x/\sqrt{k}}} (g_x) \tag{4}$$

$$+ \frac{1}{\sqrt{nx(1-x)}} \left| f(x^+) - f(x^-) \right| + \varepsilon_n(x) \left| f(x) - f(x^-) \right|.$$

Obviously, for $b_n \equiv 1$, our Theorem 2 extends and improves the result of (3).

2. Lemmas

The proof of our results are based on the following lemmas.

Lemma 1. For every $x \in (0, b_n)$ and $0 \leq k \leq n$, we have

$$p_{nk}(x/b_n) \leq \frac{b_n}{\sqrt{2enx(b_n-x)}}. \tag{5}$$

Proof. By [4, Theorem 1], we have $p_{nk}(t) < \frac{1}{\sqrt{2en(1-t)}}$ for $0 < t < 1$.

Replacing t for x/b_n, we can get (4) easily. \qed

The following Lemma is the well-known Berry-Esseen bound for the central limit theorem of probability theory. Its proof can be found in Shiryayev [5, p. 432].
LEMMA 2. Let \(\{\xi_k\}_{k=1}^{+\infty} \) be a sequence of independent and identically distributed random variables with finite variance such that the expectation \(E(\xi_1) = a_1 \in \mathbb{R} \), the variance \(\text{Var}(\xi_1) = E(\xi_1 - a_1)^2 = b_1^2 > 0 \) and \(E|\xi_1 - E(\xi_1)|^3 < +\infty \). Then there exists a constant \(C, 1/\sqrt{2\pi} \leq C < 0.8 \), such that for all \(n \) and \(t \),

\[
\left| P\left(\frac{1}{b_1\sqrt{n}} \sum_{k=1}^{n} (\xi_k - a_1) \leq t \right) - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-u^2/2} du \right| < C \frac{E|\xi_1 - E(\xi_1)|^3}{b_1^3\sqrt{n}} \tag{5}
\]

LEMMA 3. For \(x \in (0,b_n) \), we have

\[
\left| \sum_{nx/b_n < k \leq n} p_{nk}(x/b_n) - \frac{1}{2} \right| < \frac{0.8b_n}{\sqrt{nx(b_n-x)}}. \tag{6}
\]

Proof. Let \(\xi_1 \) be the random variable with two-point distribution \(P(\xi_1 = i) = (\frac{\alpha}{b_n})(1 - \frac{\alpha}{b_n})^{1-i} \) \((i = 0, 1, x \in (0,b_n) \) is a parameter). Hence \(a_1 = E(\xi_1) = x/b_n \), \(b_1^2 = E(\xi_1 - a_1)^2 = \frac{x}{b_n}(1 - \frac{x}{b_n}) \), and \(E|\xi_1 - E(\xi_1)|^3 = \frac{x}{b_n}(1 - \frac{x}{b_n})^2(\frac{x}{b_n})^2 + (1 - \frac{x}{b_n})^2 \).

Let \(\{\xi_k\}_{k=1}^{+\infty} \) be a sequence of independent random variables identically distributed with \(\xi_1 \), \(\eta_n = \sum_{j=1}^{n} \xi_j \). Then the probability distribution of the random variable \(\eta_n \) is

\[
P(\eta_n = k) = \binom{n}{k}(\frac{x}{b_n})^k(1 - \frac{x}{b_n})^{n-k} = p_{nk}(x/b_n).
\]

So

\[
\sum_{nx/b_n < k \leq n} p_{nk}(x/b_n) = P(nx/b_n < \eta_n \leq n) = 1 - P(\eta_n < nx/b_n).
\]

By (5), we get

\[
\left| \sum_{nx/b_n < k \leq n} p_{nk}(x/b_n) - \frac{1}{2} \right| = \left| P\left(\frac{\eta_n - nx/b_n}{\sqrt{n}\sqrt{x/b_n(1 - \frac{x}{b_n})}} \leq 0 \right) - \frac{1}{2} \right|
\]

\[
< C \frac{E|\xi_1 - E(\xi_1)|^3}{\sqrt{n}b_1^3} < \frac{0.8\alpha}{\sqrt{nx(b_n-x)}} < \frac{0.8b_n}{\sqrt{nx(b_n-x)}}.
\]

This completes the proof of (6). \(\square \)

LEMMA 4. For \(\alpha \geq 1 \) and \(x \in (0,b_n), k' = nx/b_n \), we have

\[
(i) \quad \left| \left(\sum_{nx/b_n < k \leq n} p_{nk}(x/b_n) \right)^{\alpha} - \frac{1}{2^\alpha} \right| \leq \frac{0.8\alpha b_n}{\sqrt{nx(b_n-x)}}, \tag{7}
\]
Hence

\[
\xi_n \quad \text{where}
\]

we get (7) from (6) easily.

(ii) Using the same method of (i), we obtain

\[
Q_{nk'}^{(\alpha)}(x/b_n) < \alpha p_{nk'}(x/b_n).
\]

(8) now follows from (4) immediately. \(\square\)

Lemma 5. For \(0 < \alpha \leq 1\) and \(x \in (0, b_n)\), as \(n > \frac{256b_n^2}{25x(b_n-x)}\) and \(k' = nx/b_n\), we have

(i) \[
\left| \left(\sum_{nx/b_n < k \leq n} p_{nk}(x/b_n) \right)^\alpha - \frac{1}{2^\alpha} \right| < \frac{b_n}{\sqrt{nx(b_n-x)}} \tag{9}
\]

(ii) \[
Q_{nk}^{(\alpha)}(x/b_n) < \frac{b_n}{\sqrt{nx(b_n-x)}}. \tag{10}
\]

Proof. (i) By mean value theorem, we have

\[
\left| \left(\sum_{nx/b_n < k \leq n} p_{nk}(x/b_n) \right)^\alpha - \frac{1}{2^\alpha} \right| = \alpha \left(\xi_{nk}(x/b_n) \right)^{\alpha-1} \left| \left(\sum_{nx/b_n < k \leq n} p_{nk}(x/b_n) \right)^{\alpha} - \frac{1}{2} \right|,
\]

where \(\xi_{nk}(x/b_n)\) lies between \(\frac{1}{2}\) and \(\sum_{nx/b_n < k \leq n} p_{nk}(x/b_n)\).

In view of (6) and all \(n > \frac{256b_n^2}{25x(b_n-x)}\), we have

\[
\sum_{nx/b_n < k \leq n} p_{nk}(x/b_n) > \frac{1}{4} \tag{12}
\]

Hence \(\xi_{nk}(x/b_n) > \frac{1}{4}\) holds for \(n > \frac{256b_n^2}{25x(b_n-x)}\).

From (11), (6) and noting \(3.2\alpha < 4\alpha\), we get (9) immediately.

(ii) Using the mean value theorem, we get

\[
Q_{nk'}^{(\alpha)}(x/b_n) = \alpha \left(\eta_{nk'}(x/b_n) \right)^{\alpha-1} \left[J_{n,k'}(x/b_n) - J_{n,k'+1}(x/b_n) \right]
\]

\[
= \alpha \left(\frac{1}{\eta_{nk'}(x/b_n)} \right)^{1-\alpha} p_{nk'}(x/b_n), \tag{13}
\]

where \(J_{n,k'+1}(x/b_n) < \eta_{nk'}(x/b_n) < J_{n,k'}(x/b_n)\).

But in view of (12), we know

\[
\eta_{nk'}(x/b_n) > J_{n,k'+1}(x/b_n) = \sum_{j>nx/b_n} p_{nj}(x/b_n) > \frac{1}{4}.
\]

From (13), (4) and noting \(2\alpha < 4\alpha\), we deduce that

\[
Q_{nk'}^{(\alpha)}(x/b_n) < \frac{\alpha 4^{1-\alpha} b_n}{\sqrt{2enx(b_n-x)}} < \frac{b_n}{\sqrt{nx(b_n-x)}}. \quad \square
\]
Lemma 6. (i) For $\alpha \geq 1$ and $0 \leq t < x$, there holds

$$K_{n,\alpha} \left(\frac{x}{b_n}, \frac{t}{b_n} \right) \leq \frac{\alpha x(b_n - x)}{n(x-t)^2}. \tag{14}$$

(ii) For $\alpha \geq 1$ and $0 \leq x < t$, there holds

$$1 - K_{n,\alpha} \left(\frac{x}{b_n}, \frac{t}{b_n} \right) \leq \frac{\alpha x(b_n - x)}{n(x-t)^2}. \tag{15}$$

Proof. (i) By a simple calculation, we get

$$C_n(1, x) = 1,$$

$$C_n(t, x) = x,$$

$$C_n(t^2, x) = x^2 + \frac{x(b_n - x)}{n}.$$

Thus

$$C_n((t - x)^2, x) = \frac{x(b_n - x)}{n}. \tag{16}$$

Now from the fact that $|x^\alpha - y^\alpha| \leq \alpha |x - y|$ with $0 \leq x, y \leq 1$ and $\alpha \geq 1$, we get

$$K_{n,\alpha} \left(\frac{x}{b_n}, \frac{t}{b_n} \right) = \sum_{kbn \leq nt} Q_{nk}^{(\alpha)} \left(\frac{x}{b_n} \right) \leq \alpha \sum_{kbn \leq nt} p_{nk} \left(\frac{x}{b_n} \right) \leq \alpha C_n((t - x)^2, x) \frac{(t - x)^2}{n}.$$

(14) now follows from (16).

(ii) Using a similar method we can get (15) easily. \square

Lemma 7. (i) For $0 < \alpha \leq 1$ and $0 \leq t < x$, there holds

$$K_{n,\alpha} \left(\frac{x}{b_n}, \frac{t}{b_n} \right) \leq K_{n,1} \left(\frac{x}{b_n}, \frac{t}{b_n} \right) \leq \frac{x(b_n - x)}{n(x-t)^2}. \tag{17}$$

(ii) For $0 < \alpha \leq 1$ and $0 \leq x < t$, there holds

$$1 - K_{n,\alpha} \left(\frac{x}{b_n}, \frac{t}{b_n} \right) \leq A_\alpha x(b_n - x) \frac{A_\alpha x(b_n - x)}{n(x-t)^2}, \tag{18}$$

where A_α is a positive constant depending only on α.

Proof. (i) Along the same lines of the proof of [2, Lemma 4] and the inequality of (14), we can get (17) easily.
(ii) Since $0 \leq x < t$, so $|kb_n/n - x|/|t - x| \geq 1$ for all $k \geq nt/b_n$. Thus we have

$$1 - K_{n,\alpha}(x/b_n, t/b_n) = 1 - \sum_{k \leq nt/b_n} Q_{nk}^{(\alpha)}(x/b_n) \leq \sum_{k \geq nt/b_n} Q_{nk}^{(\alpha)}(x/b_n)$$

$$= \sum_{k \geq nt/b_n} (J_{nk}^{\alpha}(x/b_n) - J_{nk+1}^{\alpha}(x/b_n)) = \left(\sum_{k \geq nt/b_n} p_{nk}(x/b_n) \right)^{\alpha}$$

$$\leq \left(\sum_{k \geq nt/b_n} \frac{kb_n/t - x}{|t - x|^2/\alpha} p_{nk}(x/b_n) \right)^{\alpha}$$

$$\leq \frac{b_n^2}{(t - x)^2} \left(\sum_{k = 0}^{\alpha} \frac{|k}{n} - x}{b_n} \frac{2/\alpha}{\alpha} p_{nk}(x/b_n) \right)^{\alpha/p}.$$

Then, by Hölder’s inequality with $p, q > 1$ and $1/p + 1/q = 1$, we have

$$\left(\sum_{k = 0}^{\alpha} \frac{|k}{n} - x}{b_n} \frac{2/\alpha}{\alpha} p_{nk}(x/b_n) \right)^{\alpha/p} = \left(\sum_{k = 0}^{\alpha} \frac{|k}{n} - x}{b_n} \frac{2/\alpha}{\alpha} (p_{nk}(x/b_n))^{1/p} (p_{nk}(x/b_n))^{1/q} \right)^{\alpha/p}$$

Choosing $p = \alpha[1/\alpha + 1]$, then $2p/\alpha = 2[1/\alpha + 1]$ is an even positive integer. From [6, Theorem 1.5.1], we have

$$\left(\sum_{k = 0}^{\alpha} \frac{|k}{n} - x}{b_n} \frac{2/\alpha}{\alpha} p_{nk}(x/b_n) \right)^{\alpha/p} \leq A_{\alpha} \frac{x}{b_n} \left(1 - \frac{x}{b_n} \right)^{n-1},$$

where A_{α} is a positive constant depending only on α. This completes the proof of (18). □

Lemma 8. (i) For $\alpha \geq 1$, $f \in BV[0, \infty)$ and $x \in (0, b_n)$, we have

$$|C_{n,\alpha}(g_s, x)| \leq \frac{3\alpha b_n^2}{nx(b_n - x)} \sum_{k = 1}^{n} \frac{x + (b_n - x)/\sqrt{k}}{x - x/\sqrt{k}} (g_s).$$

(ii) For $0 < \alpha \leq 1$, $f \in BV[0, \infty)$ and $x \in (0, b_n)$, when $n > \frac{256b_n^2}{25x(b_n - x)}$, we have

$$|C_{n,\alpha}(g_s, x)| \leq \frac{A_{\alpha} b_n^2}{nx(b_n - x)} \sum_{k = 1}^{n} \frac{x + (b_n - x)/\sqrt{k}}{x - x/\sqrt{k}} (g_s).$$

Proof. (i) We recall the Lebesgue-Stieltjes integral representations

$$C_{n,\alpha}(g_s, x) = \int_{0}^{b_n} g_s(t) d_{n,\alpha}(x/b_n, t/b_n).$$

(21)
Decompose the integral of (21) into three parts as follows

\[
C_{n, \alpha}(g_x, x) = \int_0^{b_n} g_x(t) d_t K_{n, \alpha} \left(\frac{x}{b_n}, \frac{t}{b_n}\right) = \Sigma_1 + \Sigma_2 + \Sigma_3,
\]

(22)

where

\[
\Sigma_1 = \int_0^{x - \frac{x}{\sqrt{n}}} g_x(t) d_t K_{n, \alpha} \left(\frac{x}{b_n}, \frac{t}{b_n}\right), \quad \Sigma_2 = \int_0^{x + \frac{bn - x}{\sqrt{n}}} g_x(t) d_t K_{n, \alpha} \left(\frac{x}{b_n}, \frac{t}{b_n}\right),
\]

\[
\Sigma_3 = \int_{x - \frac{bx - x}{\sqrt{n}}}^{b_n} g_x(t) d_t K_{n, \alpha} \left(\frac{x}{b_n}, \frac{t}{b_n}\right).
\]

Observing that \(g_x(x) = 0\), we first have

\[
|\Sigma_2| = \int_0^{x + \frac{bn - x}{\sqrt{n}}} |g_x(t) - g_x(x)| d_t K_{n, \alpha} \left(\frac{x}{b_n}, \frac{t}{b_n}\right) \leq \sqrt{\frac{(g_x)}{x - x/\sqrt{n}}} \leq \frac{1}{n - 1} \sum_{k=2}^n \sqrt{\frac{(g_x)}{x - x/\sqrt{k}}}. \tag{23}
\]

To estimate \(\Sigma_1\), let \(y = x - x/\sqrt{n}\). Using Lebesgue-Stieltjes integration by parts and (14), we have

\[
|\Sigma_1| = \left|\int_0^y g_x(t) d_t K_{n, \alpha} \left(\frac{x}{b_n}, \frac{t}{b_n}\right)\right| = \left|g_x(y+) K_{n, \alpha} \left(\frac{x}{b_n}, \frac{y}{b_n}\right) - \int_0^y K_{n, \alpha} \left(\frac{x}{b_n}, \frac{t}{b_n}\right) d_t g_x(t)\right| \leq \frac{\sqrt{(g_x)}}{y+} K_{n, \alpha} \left(\frac{x}{b_n}, \frac{y}{b_n}\right) + \int_0^y K_{n, \alpha} \left(\frac{x}{b_n}, \frac{t}{b_n}\right) d_t (-\sqrt{(g_x)}) \leq \frac{\alpha x (b_n - x)}{n(x - y)^2} + \frac{\alpha x (b_n - x)}{n} \int_0^y \frac{1}{(x-t)^2} d_t (-\sqrt{(g_x)}).
\]

Since

\[
\int_0^y \frac{1}{(x-t)^2} d_t (-\sqrt{(g_x)}) = -\sqrt{\frac{y^+}{(x-t)^2}} \bigg|_0^y + \int_0^y \frac{2\sqrt{y^+ (g_x)}}{(x-t)^3} d_t,
\]

we have

\[
|\Sigma_1| \leq \frac{\alpha x (b_n - x)}{nx^2} \sqrt{(g_x)} + \frac{\alpha x (b_n - x)}{n} \int_0^y \frac{2\sqrt{y^+ (g_x)}}{(x-t)^3} d_t.
\]

Putting \(t = x - x/\sqrt{u}\) for the last integral, we get

\[
|\Sigma_1| \leq \frac{\alpha x (b_n - x)}{nx^2} \sqrt{(g_x)} + \frac{\alpha x (b_n - x)}{nx^2} \sqrt{(g_x)} d_u \leq \frac{\alpha x (b_n - x)}{nx^2} \left[\sqrt{(g_x)} + \sum_{k=1}^n \sqrt{(g_x)} \right]. \tag{24}
\]
Using the similar method and (15) to estimate $|\Sigma_3|$, we obtain

$$|\Sigma_3| \leq \frac{\alpha x(b_n - x)}{n(b_n - x)^2} \left[b_n \sqrt{g_x} + \sum_{k=1}^{n} \sqrt{x - x/k} (g_x) \right]. \tag{25}$$

Combining the estimates of (22), (23), (24) and (25), also noting the properties of $\hat{\text{sign}}(t - x)$ and $1/(n - 1) \leq \alpha b_n^2/[nx(b_n - x)]$ for $x \in (0, b_n)$, we get

$$|C_{n, \alpha}(g_x, x)| \leq \frac{\alpha[(b_n - x)^2 + x^2]}{nx(b_n - x)} \left[b_n \sqrt{g_x} + \sum_{k=1}^{n} \sqrt{x - x/k} (g_x) \right]$$

$$+ \frac{1}{n - 1} \sum_{k=2}^{n} \sqrt{x - x/k} (g_x)$$

$$\leq \frac{2\alpha b_n^2}{nx(b_n - x)} \sum_{k=1}^{n} \sqrt{x - x/k} (g_x) + \frac{1}{n - 1} \sum_{k=2}^{n} \sqrt{x - x/k} (g_x)$$

$$\leq \frac{3\alpha b_n^2}{nx(b_n - x)} \sum_{k=1}^{n} \sqrt{x - x/k} (g_x).$$

This completes the proof of (19).

(ii) Using the same method and (17), (18), we can also get (20) easily. □

3. Proof of Theorem 1 and Theorem 2

Let f satisfy the conditions of Theorem 1 and Theorem 2. We can decompose $f(t)$ into four parts as

$$f(t) = \frac{1}{2\alpha} f(x+) + (1 - \frac{1}{2\alpha}) f(x-) + g_\alpha(t) + \frac{f(x+) - f(x-)}{2\alpha} \hat{\text{sign}}(t - x)$$

$$+ \delta_x(t) \left[f(x) - \frac{1}{2\alpha} f(x+) - \left(1 - \frac{1}{2\alpha}\right) f(x-) \right],$$

where

$$\hat{\text{sign}}(t - x) = \begin{cases} 2\alpha - 1, & t > x; \\ 0, & t = x; \\ -1, & t < x. \end{cases}$$

$$\delta_x(t) = \begin{cases} 1, & t = x; \\ 0, & t \neq x. \end{cases}$$
\(g_x(t)\) is defined in (1). Therefore,

\[
\begin{align*}
|C_{n, \alpha}(f, x) - \frac{1}{2\alpha} f(x+) - \left(1 - \frac{1}{2\alpha}\right) f(x-) - \left(1 - \frac{1}{2\alpha}\right) f(x-) | & \\
\leq |C_{n, \alpha}(g_x, x)| + \left| \frac{f(x+) - f(x-)}{2\alpha} C_{n, \alpha}(\text{sign}(t-x), x) \right| + \left[f(x) - \frac{1}{2\alpha} f(x+) - \left(1 - \frac{1}{2\alpha}\right) f(x-) \right] C_{n, \alpha}(\delta_x, x) \right|.
\end{align*}
\]

(26)

By direct calculation, we get

\[
C_{n, \alpha}(\delta_x, x) = \epsilon_n(x/b_n) Q_{nk}^{\alpha}(x/b_n)
\]

and

\[
C_{n, \alpha}(\text{sign}(t-x), x) = \sum_{k > nx/b_n} (2\alpha - 1) Q_{nk}^{\alpha}(x/b_n) + \sum_{k < nx/b_n} (-1) Q_{nk}^{\alpha}(x/b_n)
\]

\[
= 2\alpha \sum_{k > nx/b_n} Q_{nk}^{\alpha}(x/b_n) - 1 + \epsilon_n(x/b_n) Q_{nk'}^{\alpha}(x/b_n)
\]

\[
= 2\alpha \left(\sum_{k > nx/b_n} p_{nk}(x/b_n) \right)^{\alpha} - 1 + \epsilon_n(x/b_n) Q_{nk'}^{\alpha}(x/b_n),
\]

where \(\epsilon_n(x/b_n)\) is defined in (2).

Therefore, we have

\[
\frac{f(x+) - f(x-)}{2\alpha} C_{n, \alpha}(\text{sign}(t-x), x) + \left[f(x) - \frac{1}{2\alpha} f(x+) - \left(1 - \frac{1}{2\alpha}\right) f(x-) \right] C_{n, \alpha}(\delta_x, x)
\]

\[
= \left[f(x+) - f(x-) \right] \left(\sum_{\frac{nx}{b_n} < k} p_{nk}(x/b_n) \right)^{\alpha} - \frac{1}{2\alpha} \left[f(x) - f(x-) \right] \epsilon_n(x/b_n) Q_{nk'}^{\alpha}(x/b_n) \right).
\]

(27)

By combining the estimates given by (26), (19), (27), (7) and (8), we obtain Theorem 1; and by combining the estimates given by (26), (20), (27), (9) and (10), we obtain Theorem 2.

Acknowledgement. The author is thankful to the referees for their valuable comments and suggestions that helped improve this article.

REFERENCES

(Received November 7, 2012) Bo-Yong Lian

Department of Mathematics, Yang-en University

Quanzhou 362014, Fujian, China

e-mail: lianboyong@163.com