OPTIMAL BOUNDS FOR TOADER MEAN IN TERMS OF ARITHMETIC AND CONTRAHARMONIC MEANS

YING-QING SONG, WEI-DONG JIANG, YU-MING CHU AND DAN-DAN YAN

(Communicated by E. Neuman)

Abstract. We find the greatest value α_1 and α_2, and the least values β_1 and β_2, such that the double inequalities

$$C(a,b) + (1 - \alpha_1)A(a,b) < T(a,b) < \beta_1 C(a,b) + (1 - \beta_1)A(a,b)$$
$$\alpha_2 /A(a,b) + (1 - \alpha_2)/C(a,b) < 1 /T(a,b) < \beta_2 /A(a,b) + (1 - \beta_2)/C(a,b)$$

hold for all $a, b > 0$ with $a \neq b$. As applications, we get new bounds for the complete elliptic integral of the second kind. Here, $C(a,b) = (a^2 + b^2)/(a + b)$, $A(a,b) = (a + b)/2$, and

$$T(a,b) = \frac{2}{\pi} \int_{0}^{\pi/2} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} d\theta$$

denote the contraharmonic, arithmetic, and Toader means of two positive numbers a and b, respectively.

1. Introduction

For $p \in \mathbb{R}$ and $a, b > 0$, the contraharmonic mean $C(a,b)$, Toader mean $T(a,b)$ [1] and pth power mean $M_p(a,b)$ are defined by

$$C(a,b) = \frac{a^2 + b^2}{a + b},$$
$$T(a,b) = \frac{2}{\pi} \int_{0}^{\pi/2} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} d\theta$$

$$= \begin{cases}
2a \mathcal{E} \left(\sqrt{1 - (b/a)^2} \right) / \pi, & a > b, \\
2b \mathcal{E} \left(\sqrt{1 - (a/b)^2} \right) / \pi, & a < b, \\
a, & a = b
\end{cases}$$

and

$$M_p(a,b) = \begin{cases}
(a^p + b^p)^{1/p}, & p \neq 0, \\
\sqrt{ab}, & p = 0,
\end{cases}$$

Keywords and phrases: Contraharmonic mean, arithmetic mean, Toader mean, complete elliptic integrals.
respectively. Here, $\mathcal{E}(r) = \int_0^{\pi/2} (1-r^2 \sin^2 t)^{1/2} \, dt$ ($r \in [0,1]$) is the complete elliptic integral of the second kind.

The Toader mean $T(a,b)$ is well known in mathematical literature for many years, it satisfies

$$T(a,b) = R_E(a^2,b^2)$$

and

$$T(1,r) = \frac{2}{\pi} \mathcal{E}(\sqrt{1-r^2})$$

for all $a, b > 0$ and $0 < r < 1$, where

$$R_E(a,b) = \frac{1}{\pi} \int_0^\infty \frac{[a(t+b)+b(t+a)]t}{(t+a)^{3/2}(t+b)^{3/2}} \, dt$$

stands for the symmetric complete elliptic integral of the second kind (see [2–4]), therefore it can’t be expressed in terms of the elementary transcendental functions.

It is well known that the power mean $M_p(a,b)$ is continuous and strictly increasing with respect to $p \in \mathbb{R}$ for fixed $a, b > 0$ with $a \neq b$. Many means are special case of $M_p(a,b)$, for example, $M_{-1}(a,b) = H(a,b) = 2ab/(a+b)$, $M_0(a,b) = G(a,b) = \sqrt{ab}$, $M_1(a,b) = A(a,b) = (a+b)/2$ and $M_2(a,b) = Q(a,b) = \sqrt{(a^2+b^2)/2}$ are known in the literature as harmonic, geometric, arithmetic and quadratic means, respectively. Recently, the Toader mean has been the subject of intensive research. In particular, many remarkable inequalities for $T(a,b)$ can be found in the literature [5–9].

Vuorinen [10] conjectured that

$$M_{3/2}(a,b) < T(a,b)$$

(1.1)

for all $a, b > 0$ with $a \neq b$. This conjecture was proved by Qiu and Shen [11], and Barnard, Pearce and Richards [12], respectively.

In [13], Alzer and Qiu presented a best possible upper power mean bound for the Toader mean as follows:

$$T(a,b) < M_{\log 2/\log(\pi/2)}(a,b)$$

(1.2)

for all $a, b > 0$ with $a \neq b$.

Neuman [2, Corollary 4.3] proved that the double inequality

$$\frac{(a+b)\sqrt{ab} - ab}{AGM(a,b)} < T(a,b) < \frac{4(a+b)\sqrt{ab} + (a-b)^2}{8AGM(a,b)}$$

holds for all $a, b > 0$, where $AGM(a,b)$ is the classical arithmetic-geometric mean of a and b, which is defined as the common limit of sequences $\{a_n\}$ and $\{b_n\}$ given by

$$a_0 = a, \quad b_0 = b,$$

$$a_{n+1} = (a_n + b_n)/2 = A(a_n, b_n), \quad b_{n+1} = \sqrt{a_nb_n} = G(a_n, b_n).$$
In [3, Theorem 4.3], Kazi and Neuman found that the inequality
\[
T(a, b) < \sqrt{\frac{\sqrt{2} - 1}{8\sqrt{2}}} a^2 + \frac{\sqrt{2} + 1}{8\sqrt{2}} b^2 + \sqrt{\frac{\sqrt{2} + 1}{8\sqrt{2}}} a^2 + \frac{\sqrt{2} - 1}{8\sqrt{2}} b^2
\]
holds for all \(a, b > 0\) with \(a \neq b\).

In [7], the authors proved that the double inequalities
\[
\alpha_1 Q(a, b) + (1 - \alpha_1)A(a, b) < T(a, b) < \beta_1 Q(a, b) + (1 - \beta_1)A(a, b),
\]
\[
Q^{\alpha_2} (a, b) A^{1 - \alpha_2} (a, b) < T(a, b) < Q^{\beta_2} (a, b) A^{1 - \beta_2} (a, b)
\]
hold for all \(a, b > 0\) if and only if \(\alpha_1 \leq 1/2\), \(\beta_1 \geq (4 - \pi)/[(\sqrt{2} - 1)\pi] = 0.659\ldots\), \(\alpha_2 \leq 1/2\) and \(\beta_2 \geq 4 - 2\log \pi/\log 2 = 0.697\ldots\).

It is not difficult to verify that
\[
C(a, b) > M_2 (a, b) = \sqrt{\frac{a^2 + b^2}{2}}
\]
for all \(a, b > 0\) with \(a \neq b\).

From (1.1)–(1.3) we clearly see that
\[
A(a, b) < T(a, b) < C(a, b)
\]
for all \(a, b > 0\) with \(a \neq b\).

The main purpose of the paper is to find the greatest value \(\alpha_1\) and \(\alpha_2\), and the least values \(\beta_1\) and \(\beta_2\), such that the double inequalities \(\alpha_1 C(a, b) + (1 - \alpha_1)A(a, b) < T(a, b) < \beta_1 C(a, b) + (1 - \beta_1)A(a, b)\) and \(\alpha_2/A(a, b) + (1 - \alpha_2)/C(a, b) < 1/T(a, b) < \beta_2/A(a, b) + (1 - \beta_2)/C(a, b)\) hold for all \(a, b > 0\) with \(a \neq b\). As applications, we present new bounds for the complete elliptic integral of the second kind.

2. Basic knowledge and Lemmas

In order to establish our main results we need some basic knowledge and lemmas, which we present in this section.

For \(r \in (0, 1)\) and \(r' = \sqrt{1 - r^2}\), the well-known complete elliptic integrals of the first and second kinds are defined by
\[
\mathcal{K} = \mathcal{K} (r) = \int_0^{\pi/2} (1 - r^2 \sin^2 \theta)^{-1/2} d\theta,
\]
\[
\mathcal{K}' = \mathcal{K}' (r) = \mathcal{K} (r'),
\]
\[
\mathcal{K} (0) = \pi/2, \quad \mathcal{K} (1) = +\infty
\]
and
\[
\mathcal{E} = \mathcal{E} (r) = \int_0^{\pi/2} (1 - r^2 \sin^2 \theta)^{1/2} d\theta,
\]
\[
\mathcal{E}' = \mathcal{E}' (r) = \mathcal{E} (r'),
\]
\[
\mathcal{E} (0) = \pi/2, \quad \mathcal{E} (1) = 1.
\]
respectively, and the following formulas were presented in [14, Appendix E, pp. 474–475]:

\[
\frac{d\mathcal{E}}{dr} = \frac{\mathcal{E} - r^2 \mathcal{K}}{rr^2}, \quad \frac{d\mathcal{E}}{dr} = \frac{\mathcal{E} - \mathcal{K}}{r}, \quad \frac{d(\mathcal{E} - r^2 \mathcal{K})}{dr} = r \mathcal{K}, \quad \frac{d(\mathcal{K} - \mathcal{E})}{dr} = \frac{r \mathcal{E}}{r^2}, \quad \mathcal{E} \left(\frac{2\sqrt{r}}{1+r} \right) = \frac{2 \mathcal{E} - r^2 \mathcal{K}}{1+r}.
\]

Lemma 2.1. (see [14, Theorem 3.21(1)]) \((\mathcal{E}(r) - r^2 \mathcal{K}(r))/r^2\) is strictly increasing from \((0, 1)\) onto \((\pi/4, 1)\).

Lemma 2.2. \(5\mathcal{E}(r) - 3r^2 \mathcal{K}(r)\) is positive and strictly increasing on \((0, 1)\).

Proof. Let \(f(r) = 5\mathcal{E}(r) - 3r^2 \mathcal{K}(r)\) and \(g(r) = 2\mathcal{E}(r) - 2 \mathcal{K}(r) + 3r^2 \mathcal{K}(r)\). Then simple computations lead to

\[
\begin{align*}
f(0) &= \pi, \\
g(0) &= 0, \\
f'(r) &= \frac{g(r)}{r}, \\
g'(r) &= \frac{r(\mathcal{E}(r) + 3r^2 \mathcal{K}(r))}{r^2} > 0
\end{align*}
\]

for all \(r \in (0, 1)\).

Therefore, Lemma 2.2 follows easily from (2.1)–(2.4). \(\square\)

Lemma 2.3. (see [14, Theorem 1.25]) For \(-\infty < a < b < \infty\), let \(f, g : [a, b] \to \mathbb{R}\) be continuous on \([a, b]\) and differentiable on \((a, b)\), and \(g'(x) \neq 0\) on \((a, b)\). If \(f'(x)/g'(x)\) is increasing (decreasing) on \((a, b)\), then so are

\[
\frac{f(x) - f(a)}{g(x) - g(a)} \quad \text{and} \quad \frac{f(x) - f(b)}{g(x) - g(b)}.
\]

If \(f'(x)/g'(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.

3. Main results

Theorem 3.1. The double inequality

\[
\alpha_1 C(a, b) + (1 - \alpha_1)A(a, b) < T(a, b) < \beta_1 C(a, b) + (1 - \beta_1)A(a, b)
\]

holds for all \(a, b > 0\) with \(a \neq b\) if and only if \(\alpha_1 \leq 1/4\) and \(\beta_1 \geq 4/\pi - 1 = 0.2732 \cdots\).

Proof. Since \(A(a, b), T(a, b)\) and \(C(a, b)\) are symmetric and homogeneous of degree one. Without loss of generality, we assume that \(a > b\). Let \(t = b/a \in (0, 1)\) and \(r = (1-t)/(1+t) \in (0, 1)\). Then simple computations leads to

\[
\frac{T(a, b) - A(a, b)}{C(a, b) - A(a, b)} = \frac{\frac{2}{\pi} \mathcal{E}'(t) - \frac{1+t}{2}}{\frac{1+t^2}{1+t} - \frac{1+t}{2}} = \frac{\frac{2}{\pi} \mathcal{E}'(\frac{2\sqrt{r}}{1+r}) - \frac{1}{1+r}}{\frac{r^2}{1+r}} = \frac{\frac{2}{\pi} (2\mathcal{E}(r) - r^2 \mathcal{K}(r)) - 1}{r^2}.
\]

(3.2)
Let $f_1(r) = \frac{2}{\pi}(2E(r) - r^2\mathcal{K}(r)) - 1$, $f_2(r) = r^2$ and

$$f(r) = \frac{f_1(r)}{f_2(r)} = \frac{2}{\pi} \frac{(2E(r) - r^2\mathcal{K}(r)) - 1}{r^2}.$$ \hspace{1cm} (3.3)

Then simple computations lead to

$$f_1(0) = f_2(0) = 0,$$ \hspace{1cm} (3.4)

$$f_1'(r) = \frac{2}{\pi} \frac{E(r) - r^2\mathcal{K}(r)}{r},$$

$$f_2'(r) = 2r,$$

$$f_1'(r) f_2'(r) = \frac{1}{\pi} \frac{E(r) - r^2\mathcal{K}(r)}{r^2}.$$ \hspace{1cm} (3.5)

It follows from Lemmas 2.1 and 2.3 together with (3.3)–(3.5) that $f(r)$ is strictly increasing on $(0, 1)$. Moreover,

$$\lim_{r \to 0^+} f(r) = \frac{1}{4}$$ \hspace{1cm} (3.6)

and

$$\lim_{r \to 1^-} f(r) = \frac{4}{\pi} - 1.$$ \hspace{1cm} (3.7)

Therefore, inequality (3.1) follows from (3.2), (3.3), (3.6) and (3.7) together with the monotonicity of $f(r)$. \hspace{1cm} \square

Theorem 3.2. The double inequality

$$\frac{\alpha_2}{A(a, b)} + \frac{1 - \alpha_2}{C(a, b)} < \frac{1}{T(a, b)} < \frac{\beta_2}{A(a, b)} + \frac{1 - \beta_2}{C(a, b)}$$ \hspace{1cm} (3.8)

holds for all $a, b > 0$ with $a \neq b$ if and only if $\alpha_2 \leq \pi/2 - 1 = 0.5707\cdots$ and $\beta_2 \geq 3/4$.

Proof. Without loss of generality, we assume that $a > b$. Let $r = (a - b)/(a + b) \in (0, 1)$. Then

$$\frac{1}{A(a, b)} - \frac{1}{C(a, b)} = \frac{1 + r^2 - \frac{2}{\pi} (2E(r) - r^2\mathcal{K}(r))}{\frac{2}{\pi} r^2 (2E(r) - r^2\mathcal{K}(r))}.$$ \hspace{1cm} (3.9)

Let $g_1(r) = 1 + r^2 - \frac{2}{\pi} (2E(r) - r^2\mathcal{K}(r))$, $g_2(r) = \frac{2}{\pi} r^2 (2E(r) - r^2\mathcal{K}(r))$ and

$$g(r) = g_1(r) = \frac{1 + r^2 - \frac{2}{\pi} (2E(r) - r^2\mathcal{K}(r))}{\frac{2}{\pi} r^2 (2E(r) - r^2\mathcal{K}(r))}.$$ \hspace{1cm} (3.10)

Then simple computations lead to

$$g_1(0) = g_2(0) = 0,$$ \hspace{1cm} (3.11)
\[g_1'(r) = 2r - \frac{2}{\pi} \mathcal{E}(r) - r^2 \mathcal{K}(r), \]
\[g_2'(r) = \frac{2r}{\pi} (5\mathcal{E}(r) - 3r^2 \mathcal{K}(r)), \]
\[g_1'(r) = \frac{1 - \frac{1}{\pi} (\mathcal{E}(r) - r^2 \mathcal{K}(r))}{\frac{1}{\pi} (5\mathcal{E}(r) - 3r^2 \mathcal{K}(r))}. \quad (3.12) \]

It follows from Lemmas 2.1 and 2.2 together with (3.12) that \(g_1'(r)/g_2'(r) \) is strictly decreasing on \((0, 1)\). Then (3.10) and (3.11) lead to the conclusion that \(g(r) \) is strictly decreasing on \((0, 1)\). Moreover,

\[\lim_{r \to 0^+} g(r) = \frac{3}{4} \quad (3.13) \]

and

\[\lim_{r \to 1^-} g(r) = \frac{\pi}{2} - 1. \quad (3.14) \]

Therefore, inequality (3.8) follows from (3.9), (3.10), (3.13) and (3.14) together with the monotonicity of \(g(r) \). \(\square \)

Acknowledgements.

The authors would like to thank the anonymous referee for making some valuable comments and suggestions. This research is supported by the Natural Science Foundation of China under grants 11071069 and 11171307, and the Project of Shandong Province Higher Educational Science and Technology Program under grant J11LA57.

REFERENCES

Ying-Qing Song
School of Mathematics and Computation Sciences
Hunan City University
Yiyang 413000, China

Wei-Dong Jiang
Department of Information Engineering
Weihai Vocational College
Weihai 264210, China

Dan-Dan Yan
College of Mathematics and Econometrics
Hunan University
Changsha 410082, China

Yu-Ming Chu
School of Mathematics and Computation Sciences
Hunan City University
Yiyang 413000, China
e-mail: chuyuming@hutc.zj.cn