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Abstract. In this paper we will consider Jordan type inequalities involving hyperbolic trigono-
metric functions.

1. Introduction

In this section we give a brief overview of known results which pertain to the main
results of this paper.

The following inequalities

2
π

� sinx
x

� 1, (0 < |x| < π
2

),

are due to Jordan ([7], p. 33). Its have attracted the attention of several mathematicians
(See, e.g., [1–6], [8–14]).

Lazarević [5] gives us the following inequality:(
sinhx

x

)q

< coshx, (x �= 0, q � 3). (1)

The following inequalities

sinhx < x+
x3

5
, (0 < x < 1), (2)

sinhkx
kx

� sinhx
x

, (x > 0), (3)

1
coshx

< 1− x2

3
, (0 < x < 1), (4)

and
1

coshx
<

sinx
x

<
x

sinhx
, (0 < x <

π
2

), (5)

have established by R. Klén, M. Visuri, and M. Vuorinen [4].
The inequality

( x
sinhx

)α
< (1−η)+ η

(
1

coshx

)α
, (6)

where x > 0, α > 0, and η � 1/3 was studied recently by Zhu in [13].
In Section 2 we give upper and lower bounds for (sinx)/x . Some Jordan’s type

inequalities with hyperbolic trigonometric functions are presented in Section 3.
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2. Jordan’s inequality

In this section we will find upper and lower bounds for (sinx)/x by using hyper-
bolic functions.

THEOREM 1. For x ∈ (0,∞) ,

sinx
x

<
√

coshx.

Proof. The inequality holds true if the function f (x) = x
√

coshx−sinx is positive
on (0,∞) . Since

f ′′(x) =
1√

coshx

[
sin

(
x
√

coshx
)

(2coshx+ xsinhx)+3
√

coshxsinhx+ xcosh
3
2 x

]
,

we have f ′′(x) > 0 for x ∈ (0,∞) and f ′(x) is increasing on (0,∞) . Therefore

f ′(x) =
1

2
√

coshx

(
2coshx+ xsinhx−2cosx

√
coshx

)
> f ′(0) = 0,

and the function f (x) is increasing on (0,∞) . Now f (x)> f (0)= 0 for x∈ (0,∞) . �

COROLLARY 2. For x ∈ R\{0} ,

sinx
x

< coshx.

Proof. Because f (x) = sinhx
x − coshx is even function we proof the inequality on

(0,∞) . Using Theorem 1 and the fact that
√

coshx < coshx the assertion follows. In
Figure 1 we present the graphics of functions sinx

x and coshx . �

Figure 1.

In the above picture, with red is plotted the graph of the function sinx
x and with

black is plotted the graph of the function coshx .



JORDAN TYPE INEQUALITIES USING MONOTONY OF FUNCTIONS 85

REMARK 3. Klén, Visuri, and Vuorinen have shown in [4] that the inequalities

1
coshx

<
sinx
x

<
x

sinhx
(7)

are true for x ∈ (0,π/2) . By Corollary 2 and (7) we have

1
coshx

<
sinx
x

< coshx,

for x ∈ (0,π/2) .

THEOREM 4. For x,k ∈ (0,∞) ,

sinx
x

<
sinhkx

kx
.

Proof. The inequality holds true if the function f (x) = sinhkx− k sinx is positive
on (0,∞) . Since

f ′(x) = k(coshkx− cosx),

we have f ′(x) > 0 for x ∈ (0,∞) . Therefore that the function f (x) is increasing on
(0,∞) . Now f (x) > f (0) = 0 for x ∈ (0,∞) . �

COROLLARY 5. For x ∈ (0,∞) and k ∈ [1,∞) the following inequality

sinx
x

<
sinhkx

x

holds.

REMARK 6. Similar inequalities to Theorem 4 have been considered by R. Klén,
M. Visuri, and M. Vuorinen in [4, Theorem 4.3] .

3. Hyperbolic Jordan’s inequality

In this section we gave some hyperbolic Jordan’s type inequalities with hyperbolic
trigonometric functions.

THEOREM 7. Let x ∈ (0,1) , k ∈ (0,∞) and q � 3 , q is natural number. Then the
double inequality

q

√
3

3− k2x2 <
sinhx

x
< 1+

x2

5

holds.



86 C. BARBU AND L.-I. PIŞCORAN

Proof. From (1) result that

q
√

coshx <
sinhx

x
. (8)

By (3) and (8) we obtain

q
√

coshkx <
sinhkx

kx
� sinhx

x
(9)

The inequality (4) is equivalent with

3
3− x2 < coshx,

therefore
q

√
3

3− k2x2 <
q
√

coshkx (10)

By (2), (9) and (10) we obtain the conclusion. �

THEOREM 8. Let x ∈ (0,1) , α > 0 and η � 1/3 , then the following inequality

( x
sinhx

)α
< (1−η)+ η

(
1− x2

3

)α

holds.

Proof. By (4) and (6) the assertion follows. �
When letting α = 1 in Theorem 8, one can obtain the following result.

COROLLARY 9. Let x ∈ (0,1) , and η � 1/3 , then the following inequality

x
sinhx

< 1−η
x2

3

holds.

THEOREM 10. For x ∈ (0,1) the following inequalities

1− x2

2
� 1

coshx
� 1− x2

3

hold.

Proof. By the series expansion of 1
coshx we have

1− x2

2
� 1

coshx
� 1− x2

2
+5 · x4

24
. (11)

By (4) and (11) we obtain the conclusion. �
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THEOREM 11. Let x > 0 . Then the function

f (t) =
1

cosht x
t

is decreasing on (0,∞) .

Proof. Let us consider instead of f (x) the function

f1(y) = −x
y

logcoshy

for y ∈ (0,∞) . Note that f (t) = exp( f1( x
t )) and therefore the claim is equivalent to the

function f1(y) being decreasing on (0,∞) . We have

f ′1(y) =
x
y2 (logcoshy− y tanhy),

and
d(logcoshy− y tanhy)

dy
= − y

cosh2 y
< 0.

and logcoshy−y tanhy � 0. Therefore the function f1(y) is decreasing on (0,∞) , and
f (t) is increasing on (0,∞) . �

COROLLARY 12. Let x ∈ (0,∞) . Then the following inequality

cosh
x
3

<
2
3

+
1
3

coshx

holds.

Proof. By Theorem 11 we obtain that

1

cosh2 x
2

>
1

cosh3 x
3

. (12)

By using the identities

cosh2 x
2

=
1+ coshx

2
,

and

cosh3 x
3

=
3
4

cosh
x
3

+
1
4

coshx

in relation (12) we obtain the conclusion. �

THEOREM 13. Let x ∈ R\{0} . Then the following inequality

sinhx
x

>
1

cosh x
3

holds.
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Proof. Because

f (x) =
sinhx

x
− 1

cosh x
3

is even function we proof the inequality on (0,∞) . The inequality holds true if the
function

g(x) = sinhxcosh
x
3
− x

is positive on (0,∞) . Since

g′(x) =
1
3

cosh
2
3
x+

2
3

cosh
4
3
x−1,

we have g′(x) > 0 for x ∈ (0,∞) . Therefore that the function g(x) is increasing on
(0,∞) . Now g(x) > g(0) = 0 for x ∈ (0,∞) .

Figure 2.

In Figure 2 we present the graphics of functions sinhx
x and 1

cosh x
3
. �

In the above picture, with red is plotted the graph of the function sinhx
x and with

black is plotted the graph of the function 1
cosh x

3
.

COROLLARY 14. Let x ∈ (0,∞) . Then the following inequality

x
sinhx

<
2
3

+
1
3

coshx

holds.

Proof. By Corollary 12 and Theorem 13 we obtain the conclusion. �
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e-mail: kafka mate@yahoo.com

Laurian-Ioan Pişcoran
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