JORDAN TYPE INEQUALITIES USING MONOTONY OF FUNCTIONS

CĂtălin Barbu and Laurian-Ioan Pişcoran

(Communicated by N. Elezović)

Abstract

In this paper we will consider Jordan type inequalities involving hyperbolic trigonometric functions.

1. Introduction

In this section we give a brief overview of known results which pertain to the main results of this paper.

The following inequalities

$$
\frac{2}{\pi} \leqslant \frac{\sin x}{x} \leqslant 1, \quad\left(0<|x|<\frac{\pi}{2}\right)
$$

are due to Jordan ([7], p. 33). Its have attracted the attention of several mathematicians (See, e.g., [1-6], [8-14]).

Lazarević [5] gives us the following inequality:

$$
\begin{equation*}
\left(\frac{\sinh x}{x}\right)^{q}<\cosh x, \quad(x \neq 0, q \geqslant 3) \tag{1}
\end{equation*}
$$

The following inequalities

$$
\begin{align*}
& \sinh x<x+\frac{x^{3}}{5}, \quad(0<x<1) \tag{2}\\
& \frac{\sinh k x}{k x} \leqslant \frac{\sinh x}{x}, \quad(x>0) \tag{3}\\
& \frac{1}{\cosh x}<1-\frac{x^{2}}{3}, \quad(0<x<1) \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{\cosh x}<\frac{\sin x}{x}<\frac{x}{\sinh x}, \quad\left(0<x<\frac{\pi}{2}\right) \tag{5}
\end{equation*}
$$

have established by R. Klén, M. Visuri, and M. Vuorinen [4].
The inequality

$$
\begin{equation*}
\left(\frac{x}{\sinh x}\right)^{\alpha}<(1-\eta)+\eta\left(\frac{1}{\cosh x}\right)^{\alpha} \tag{6}
\end{equation*}
$$

where $x>0, \alpha>0$, and $\eta \leqslant 1 / 3$ was studied recently by Zhu in [13].
In Section 2 we give upper and lower bounds for $(\sin x) / x$. Some Jordan's type inequalities with hyperbolic trigonometric functions are presented in Section 3.

[^0]
2. Jordan's inequality

In this section we will find upper and lower bounds for $(\sin x) / x$ by using hyperbolic functions.

Theorem 1. For $x \in(0, \infty)$,

$$
\frac{\sin x}{x}<\sqrt{\cosh x}
$$

Proof. The inequality holds true if the function $f(x)=x \sqrt{\cosh x}-\sin x$ is positive on $(0, \infty)$. Since

$$
f^{\prime \prime}(x)=\frac{1}{\sqrt{\cosh x}}\left[\sin (x \sqrt{\cosh x})(2 \cosh x+x \sinh x)+3 \sqrt{\cosh x} \sinh x+x \cosh ^{\frac{3}{2}} x\right]
$$

we have $f^{\prime \prime}(x)>0$ for $x \in(0, \infty)$ and $f^{\prime}(x)$ is increasing on $(0, \infty)$. Therefore

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{\cosh x}}(2 \cosh x+x \sinh x-2 \cos x \sqrt{\cosh x})>f^{\prime}(0)=0
$$

and the function $f(x)$ is increasing on $(0, \infty)$. Now $f(x)>f(0)=0$ for $x \in(0, \infty)$.
Corollary 2. For $x \in \mathbb{R} \backslash\{0\}$,

$$
\frac{\sin x}{x}<\cosh x
$$

Proof. Because $f(x)=\frac{\sinh x}{x}-\cosh x$ is even function we proof the inequality on $(0, \infty)$. Using Theorem 1 and the fact that $\sqrt{\cosh x}<\cosh x$ the assertion follows. In Figure 1 we present the graphics of functions $\frac{\sin x}{x}$ and $\cosh x$.

Figure 1.

In the above picture, with red is plotted the graph of the function $\frac{\sin x}{x}$ and with black is plotted the graph of the function $\cosh x$.

Remark 3. Klén, Visuri, and Vuorinen have shown in [4] that the inequalities

$$
\begin{equation*}
\frac{1}{\cosh x}<\frac{\sin x}{x}<\frac{x}{\sinh x} \tag{7}
\end{equation*}
$$

are true for $x \in(0, \pi / 2)$. By Corollary 2 and (7) we have

$$
\frac{1}{\cosh x}<\frac{\sin x}{x}<\cosh x
$$

for $x \in(0, \pi / 2)$.

Theorem 4. For $x, k \in(0, \infty)$,

$$
\frac{\sin x}{x}<\frac{\sinh k x}{k x}
$$

Proof. The inequality holds true if the function $f(x)=\sinh k x-k \sin x$ is positive on $(0, \infty)$. Since

$$
f^{\prime}(x)=k(\cosh k x-\cos x)
$$

we have $f^{\prime}(x)>0$ for $x \in(0, \infty)$. Therefore that the function $f(x)$ is increasing on $(0, \infty)$. Now $f(x)>f(0)=0$ for $x \in(0, \infty)$.

Corollary 5. For $x \in(0, \infty)$ and $k \in[1, \infty)$ the following inequality

$$
\frac{\sin x}{x}<\frac{\sinh k x}{x}
$$

holds.

REMARK 6. Similar inequalities to Theorem 4 have been considered by R. Klén, M. Visuri, and M. Vuorinen in [4, Theorem 4.3].

3. Hyperbolic Jordan's inequality

In this section we gave some hyperbolic Jordan's type inequalities with hyperbolic trigonometric functions.

THEOREM 7. Let $x \in(0,1), k \in(0, \infty)$ and $q \geqslant 3, q$ is natural number. Then the double inequality

$$
\sqrt[q]{\frac{3}{3-k^{2} x^{2}}}<\frac{\sinh x}{x}<1+\frac{x^{2}}{5}
$$

holds.

Proof. From (1) result that

$$
\begin{equation*}
\sqrt[q]{\cosh x}<\frac{\sinh x}{x} \tag{8}
\end{equation*}
$$

By (3) and (8) we obtain

$$
\begin{equation*}
\sqrt[q]{\cosh k x}<\frac{\sinh k x}{k x} \leqslant \frac{\sinh x}{x} \tag{9}
\end{equation*}
$$

The inequality (4) is equivalent with

$$
\frac{3}{3-x^{2}}<\cosh x
$$

therefore

$$
\begin{equation*}
\sqrt[q]{\frac{3}{3-k^{2} x^{2}}}<\sqrt[q]{\cosh k x} \tag{10}
\end{equation*}
$$

By (2), (9) and (10) we obtain the conclusion.
THEOREM 8. Let $x \in(0,1), \alpha>0$ and $\eta \leqslant 1 / 3$, then the following inequality

$$
\left(\frac{x}{\sinh x}\right)^{\alpha}<(1-\eta)+\eta\left(1-\frac{x^{2}}{3}\right)^{\alpha}
$$

holds.

Proof. By (4) and (6) the assertion follows.
When letting $\alpha=1$ in Theorem 8, one can obtain the following result.
Corollary 9. Let $x \in(0,1)$, and $\eta \leqslant 1 / 3$, then the following inequality

$$
\frac{x}{\sinh x}<1-\eta \frac{x^{2}}{3}
$$

holds.
THEOREM 10. For $x \in(0,1)$ the following inequalities

$$
1-\frac{x^{2}}{2} \leqslant \frac{1}{\cosh x} \leqslant 1-\frac{x^{2}}{3}
$$

hold.
Proof. By the series expansion of $\frac{1}{\cosh x}$ we have

$$
\begin{equation*}
1-\frac{x^{2}}{2} \leqslant \frac{1}{\cosh x} \leqslant 1-\frac{x^{2}}{2}+5 \cdot \frac{x^{4}}{24} \tag{11}
\end{equation*}
$$

By (4) and (11) we obtain the conclusion.

THEOREM 11. Let $x>0$. Then the function

$$
f(t)=\frac{1}{\cosh ^{t} \frac{x}{t}}
$$

is decreasing on $(0, \infty)$.
Proof. Let us consider instead of $f(x)$ the function

$$
f_{1}(y)=-\frac{x}{y} \log \cosh y
$$

for $y \in(0, \infty)$. Note that $f(t)=\exp \left(f_{1}\left(\frac{x}{t}\right)\right)$ and therefore the claim is equivalent to the function $f_{1}(y)$ being decreasing on $(0, \infty)$. We have

$$
f_{1}^{\prime}(y)=\frac{x}{y^{2}}(\log \cosh y-y \tanh y)
$$

and

$$
\frac{d(\log \cosh y-y \tanh y)}{d y}=-\frac{y}{\cosh ^{2} y}<0
$$

and $\log \cosh y-y \tanh y \leqslant 0$. Therefore the function $f_{1}(y)$ is decreasing on $(0, \infty)$, and $f(t)$ is increasing on $(0, \infty)$.

Corollary 12. Let $x \in(0, \infty)$. Then the following inequality

$$
\cosh \frac{x}{3}<\frac{2}{3}+\frac{1}{3} \cosh x
$$

holds.

Proof. By Theorem 11 we obtain that

$$
\begin{equation*}
\frac{1}{\cosh ^{2} \frac{x}{2}}>\frac{1}{\cosh ^{3} \frac{x}{3}} \tag{12}
\end{equation*}
$$

By using the identities

$$
\cosh ^{2} \frac{x}{2}=\frac{1+\cosh x}{2}
$$

and

$$
\cosh ^{3} \frac{x}{3}=\frac{3}{4} \cosh \frac{x}{3}+\frac{1}{4} \cosh x
$$

in relation (12) we obtain the conclusion.
THEOREM 13. Let $x \in \mathbb{R} \backslash\{0\}$. Then the following inequality

$$
\frac{\sinh x}{x}>\frac{1}{\cosh \frac{x}{3}}
$$

holds.

Proof. Because

$$
f(x)=\frac{\sinh x}{x}-\frac{1}{\cosh \frac{x}{3}}
$$

is even function we proof the inequality on $(0, \infty)$. The inequality holds true if the function

$$
g(x)=\sinh x \cosh \frac{x}{3}-x
$$

is positive on $(0, \infty)$. Since

$$
g^{\prime}(x)=\frac{1}{3} \cosh \frac{2}{3} x+\frac{2}{3} \cosh \frac{4}{3} x-1,
$$

we have $g^{\prime}(x)>0$ for $x \in(0, \infty)$. Therefore that the function $g(x)$ is increasing on $(0, \infty)$. Now $g(x)>g(0)=0$ for $x \in(0, \infty)$.

Figure 2.

In Figure 2 we present the graphics of functions $\frac{\sinh x}{x}$ and $\frac{1}{\cosh \frac{1}{3}}$.
In the above picture, with red is plotted the graph of the function $\frac{\sinh x}{x}$ and with black is plotted the graph of the function $\frac{1}{\cosh \frac{x}{3}}$.

Corollary 14. Let $x \in(0, \infty)$. Then the following inequality

$$
\frac{x}{\sinh x}<\frac{2}{3}+\frac{1}{3} \cosh x
$$

holds.

Proof. By Corollary 12 and Theorem 13 we obtain the conclusion.

Acknowledgements.

The authors are grateful to the referees for their useful suggestions which improved the quality and the scientific results of this paper.

REFERENCES

[1] R. P. Agarwal, Y.-H. Kim, S. K. Sen, A new refined Jordan's inequality and its application, Mathematical Inequalities \& Applications, vol. 12, no. 2, pp. 255-264, 2009.
[2] L. Debnath, C.-J. Zhao, New strengthened Jordan's inequality and its applications, Applied Mathematics Letters, vol. 16, no. 4, pp. 557-560, 2003.
[3] W. D. JiAng, H. Y Un, Sharpening of Jordan's inequality and its applications, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 3, article 102, pp. 1-4, 2006.
[4] R. Klén, M. Visuri, M. Vuorinen, On Jordan Type Inequalities for Hyperbolic Functions, Journal of Inequalities and Applications, Volume 2010, Article ID 362548.
[5] I. LAZAREVIĆ, Neke nejednakosti sa hiperbolickim funkcijama, Univerzitet u Beogradu, Publikacije Elektrotehničkog Fakulteta, Serija Matematika i Fizika, vol. 170, pp. 41-48, 1966.
[6] J.-L. LI, Y.-L. Li, On the strengthened Jordan's inequality, Journal of Inequalities and Applications, vol. 2007, Article ID 74328, 8 pages, 2007.
[7] D. S. Mitrinović, P. M. VASIĆ, Analytic Inequalities, Die Grundlehren der mathematischen Wissenschaften, vol. 16, Springer, New York, NY, USA, p 31, 1970.
[8] A. Z. ÖZBAN, A new refined form of Jordan's inequality and its applications, Applied Mathematics Letters, vol. 19, no. 2, pp. 155-160, 2006.
[9] F. QI, D.-W. Niu, B.-N. GUO, Rafinements, generalizations, and applications of Jordan's inequality and related problems, Journal of Inequalities and Applications, vol. 2009, Article ID 271923, 52 pages, 2009.
[10] J. SÁNDOR, On the concavity of $\sin x / x$, Octogon Mathematical Magazine, vol. 13, no. 1, pp. 406-407, 2005.
[11] S.-H. Wu, H. M. Srivastava, A further refinement of a Jordan type inequality and its application, Applied Mathematics and Computation, vol. 197, no. 2, pp. 914-923, 2008.
[12] X. Zhang, G. WANG, Y. Chu, Extensions and sharpenings of Jordan's and Kober's inequalities, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, pp. 1-3, 2006.
[13] L. Zhu, Inequalities for Hyperbolic Functions and Their Applications, Journal of Inequalities and Applications, Volume 2010, Article ID 130821.
[14] L. ZHU, Sharpening of Jordan's inequalities and its applications, Mathematical Inequalities \& Applications, vol. 9, no. 1, pp. 103-106, 2006.

Laurian-Ioan Pişcoran
Technical University of Cluj Napoca
North University Center of Baia Mare

[^1]
[^0]: Mathematics subject classification (2010): 26D05, 33B10.
 Keywords and phrases: Inequalities, hyperbolic functions, Jordan's inequality, increasing function.

[^1]: Journal of Mathematical Inequalities
 www.ele-math.com
 jmi@ele-math.com

