JORDAN TYPE INEQUALITIES USING MONOTONY OF FUNCTIONS

Cătălin Barbu and Laurian-Ioan Pișcoran

(Communicated by N. Elezović)

Abstract. In this paper we will consider Jordan type inequalities involving hyperbolic trigonometric functions.

1. Introduction

In this section we give a brief overview of known results which pertain to the main results of this paper.

The following inequalities

$$\frac{2}{\pi} \leqslant \frac{\sin x}{x} \leqslant 1, \ (0 < |x| < \frac{\pi}{2}),$$

are due to Jordan ([7], p. 33). Its have attracted the attention of several mathematicians (See, e.g., [1–6], [8–14]).

Lazarević [5] gives us the following inequality:

$$\left(\frac{\sinh x}{x}\right)^q < \cosh x, \ (x \neq 0, \ q \ge 3).$$
(1)

The following inequalities

$$\sinh x < x + \frac{x^3}{5}, \ (0 < x < 1),$$
 (2)

$$\frac{\sinh kx}{kx} \leqslant \frac{\sinh x}{x}, \ (x > 0), \tag{3}$$

$$\frac{1}{\cosh x} < 1 - \frac{x^2}{3}, \ (0 < x < 1), \tag{4}$$

and

$$\frac{1}{\cosh x} < \frac{\sin x}{x} < \frac{x}{\sinh x}, \quad (0 < x < \frac{\pi}{2}), \tag{5}$$

have established by R. Klén, M. Visuri, and M. Vuorinen [4].

The inequality

$$\left(\frac{x}{\sinh x}\right)^{\alpha} < (1-\eta) + \eta \left(\frac{1}{\cosh x}\right)^{\alpha},\tag{6}$$

where x > 0, $\alpha > 0$, and $\eta \le 1/3$ was studied recently by Zhu in [13].

In Section 2 we give upper and lower bounds for $(\sin x)/x$. Some Jordan's type inequalities with hyperbolic trigonometric functions are presented in Section 3.

© EEM, Zagreb	
Paper JMI-08-04	

Mathematics subject classification (2010): 26D05, 33B10.

Keywords and phrases: Inequalities, hyperbolic functions, Jordan's inequality, increasing function.

2. Jordan's inequality

In this section we will find upper and lower bounds for $(\sin x)/x$ by using hyperbolic functions.

THEOREM 1. For $x \in (0, \infty)$,

$$\frac{\sin x}{x} < \sqrt{\cosh x}.$$

Proof. The inequality holds true if the function $f(x) = x\sqrt{\cosh x} - \sin x$ is positive on $(0,\infty)$. Since

$$f''(x) = \frac{1}{\sqrt{\cosh x}} \left[\sin\left(x\sqrt{\cosh x}\right) (2\cosh x + x\sinh x) + 3\sqrt{\cosh x}\sinh x + x\cosh^{\frac{3}{2}}x \right],$$

we have f''(x) > 0 for $x \in (0, \infty)$ and f'(x) is increasing on $(0, \infty)$. Therefore

$$f'(x) = \frac{1}{2\sqrt{\cosh x}} \left(2\cosh x + x\sinh x - 2\cos x\sqrt{\cosh x} \right) > f'(0) = 0,$$

and the function f(x) is increasing on $(0,\infty)$. Now f(x) > f(0) = 0 for $x \in (0,\infty)$. \Box

COROLLARY 2. *For* $x \in \mathbb{R} \setminus \{0\}$,

$$\frac{\sin x}{x} < \cosh x.$$

Proof. Because $f(x) = \frac{\sinh x}{x} - \cosh x$ is even function we proof the inequality on $(0,\infty)$. Using Theorem 1 and the fact that $\sqrt{\cosh x} < \cosh x$ the assertion follows. In Figure 1 we present the graphics of functions $\frac{\sin x}{x}$ and $\cosh x$. \Box

In the above picture, with red is plotted the graph of the function $\frac{\sin x}{x}$ and with black is plotted the graph of the function $\cosh x$.

REMARK 3. Klén, Visuri, and Vuorinen have shown in [4] that the inequalities

$$\frac{1}{\cosh x} < \frac{\sin x}{x} < \frac{x}{\sinh x} \tag{7}$$

are true for $x \in (0, \pi/2)$. By Corollary 2 and (7) we have

$$\frac{1}{\cosh x} < \frac{\sin x}{x} < \cosh x,$$

for $x \in (0, \pi/2)$.

THEOREM 4. For $x, k \in (0, \infty)$,

$$\frac{\sin x}{x} < \frac{\sinh kx}{kx}$$

Proof. The inequality holds true if the function $f(x) = \sinh kx - k \sin x$ is positive on $(0,\infty)$. Since

$$f'(x) = k(\cosh kx - \cos x),$$

we have f'(x) > 0 for $x \in (0,\infty)$. Therefore that the function f(x) is increasing on $(0,\infty)$. Now f(x) > f(0) = 0 for $x \in (0,\infty)$. \Box

COROLLARY 5. For $x \in (0,\infty)$ and $k \in [1,\infty)$ the following inequality

$$\frac{\sin x}{x} < \frac{\sinh kx}{x}$$

holds.

REMARK 6. Similar inequalities to Theorem 4 have been considered by R. Klén, M. Visuri, and M. Vuorinen in [4, Theorem 4.3].

3. Hyperbolic Jordan's inequality

In this section we gave some hyperbolic Jordan's type inequalities with hyperbolic trigonometric functions.

THEOREM 7. Let $x \in (0,1)$, $k \in (0,\infty)$ and $q \ge 3$, q is natural number. Then the double inequality

$$\sqrt[q]{\frac{3}{3-k^2x^2}} < \frac{\sinh x}{x} < 1 + \frac{x^2}{5}$$

holds.

Proof. From (1) result that

$$\sqrt[q]{\cosh x} < \frac{\sinh x}{x}.$$
(8)

By (3) and (8) we obtain

$$\sqrt[q]{\cosh kx} < \frac{\sinh kx}{kx} \leqslant \frac{\sinh x}{x} \tag{9}$$

The inequality (4) is equivalent with

$$\frac{3}{3-x^2} < \cosh x,$$

therefore

$$\sqrt[q]{\frac{3}{3-k^2x^2}} < \sqrt[q]{\cosh kx} \tag{10}$$

By (2), (9) and (10) we obtain the conclusion. \Box

THEOREM 8. Let $x \in (0,1)$, $\alpha > 0$ and $\eta \leq 1/3$, then the following inequality

$$\left(\frac{x}{\sinh x}\right)^{\alpha} < (1-\eta) + \eta \left(1 - \frac{x^2}{3}\right)^{\alpha}$$

holds.

Proof. By (4) and (6) the assertion follows. \Box

When letting $\alpha = 1$ in Theorem 8, one can obtain the following result.

COROLLARY 9. Let $x \in (0,1)$, and $\eta \leq 1/3$, then the following inequality

$$\frac{x}{\sinh x} < 1 - \eta \frac{x^2}{3}$$

holds.

THEOREM 10. For $x \in (0, 1)$ the following inequalities

$$1 - \frac{x^2}{2} \leqslant \frac{1}{\cosh x} \leqslant 1 - \frac{x^2}{3}$$

hold.

Proof. By the series expansion of $\frac{1}{\cosh x}$ we have

$$1 - \frac{x^2}{2} \leqslant \frac{1}{\cosh x} \leqslant 1 - \frac{x^2}{2} + 5 \cdot \frac{x^4}{24}.$$
 (11)

By (4) and (11) we obtain the conclusion. \Box

THEOREM 11. Let x > 0. Then the function

$$f(t) = \frac{1}{\cosh^t \frac{x}{t}}$$

is decreasing on $(0,\infty)$.

Proof. Let us consider instead of f(x) the function

$$f_1(y) = -\frac{x}{y}\log\cosh y$$

for $y \in (0,\infty)$. Note that $f(t) = \exp(f_1(\frac{x}{t}))$ and therefore the claim is equivalent to the function $f_1(y)$ being decreasing on $(0,\infty)$. We have

$$f_1'(y) = \frac{x}{y^2}(\log\cosh y - y \tanh y),$$

and

$$\frac{d(\log\cosh y - y \tanh y)}{dy} = -\frac{y}{\cosh^2 y} < 0$$

and $\log \cosh y - y \tanh y \leq 0$. Therefore the function $f_1(y)$ is decreasing on $(0,\infty)$, and f(t) is increasing on $(0,\infty)$. \Box

COROLLARY 12. Let $x \in (0, \infty)$. Then the following inequality

$$\cosh\frac{x}{3} < \frac{2}{3} + \frac{1}{3}\cosh x$$

holds.

Proof. By Theorem 11 we obtain that

$$\frac{1}{\cosh^2 \frac{x}{2}} > \frac{1}{\cosh^3 \frac{x}{3}}.$$
(12)

By using the identities

$$\cosh^2 \frac{x}{2} = \frac{1 + \cosh x}{2},$$

and

$$\cosh^3 \frac{x}{3} = \frac{3}{4} \cosh \frac{x}{3} + \frac{1}{4} \cosh x$$

in relation (12) we obtain the conclusion. \Box

THEOREM 13. Let $x \in \mathbb{R} \setminus \{0\}$. Then the following inequality

$$\frac{\sinh x}{x} > \frac{1}{\cosh \frac{x}{3}}$$

holds.

Proof. Because

$$f(x) = \frac{\sinh x}{x} - \frac{1}{\cosh \frac{x}{3}}$$

is even function we proof the inequality on $(0,\infty)$. The inequality holds true if the function

$$g(x) = \sinh x \cosh \frac{x}{3} - x$$

is positive on $(0,\infty)$. Since

$$g'(x) = \frac{1}{3}\cosh\frac{2}{3}x + \frac{2}{3}\cosh\frac{4}{3}x - 1,$$

we have g'(x) > 0 for $x \in (0, \infty)$. Therefore that the function g(x) is increasing on $(0,\infty)$. Now g(x) > g(0) = 0 for $x \in (0,\infty)$.

Figure 2.

In Figure 2 we present the graphics of functions $\frac{\sinh x}{x}$ and $\frac{1}{\cosh \frac{x}{3}}$.

In the above picture, with red is plotted the graph of the function $\frac{\sinh x}{x}$ and with black is plotted the graph of the function $\frac{1}{\cosh \frac{1}{x}}$.

COROLLARY 14. Let $x \in (0, \infty)$. Then the following inequality

$$\frac{x}{\sinh x} < \frac{2}{3} + \frac{1}{3}\cosh x$$

holds.

Proof. By Corollary 12 and Theorem 13 we obtain the conclusion. \Box

Acknowledgements.

The authors are grateful to the referees for their useful suggestions which improved the quality and the scientific results of this paper.

REFERENCES

- R. P. AGARWAL, Y.-H. KIM, S. K. SEN, A new refined Jordan's inequality and its application, Mathematical Inequalities & Applications, vol. 12, no. 2, pp. 255–264, 2009.
- [2] L. DEBNATH, C.-J. ZHAO, New strengthened Jordan's inequality and its applications, Applied Mathematics Letters, vol. 16, no. 4, pp. 557–560, 2003.
- [3] W. D. JIANG, H. YUN, Sharpening of Jordan's inequality and its applications, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 3, article 102, pp. 1–4, 2006.
- [4] R. KLÉN, M. VISURI, M. VUORINEN, On Jordan Type Inequalities for Hyperbolic Functions, Journal of Inequalities and Applications, Volume 2010, Article ID 362548.
- [5] I. LAZAREVIĆ, Neke nejednakosti sa hiperbolickim funkcijama, Univerzitet u Beogradu, Publikacije Elektrotehničkog Fakulteta, Serija Matematika i Fizika, vol. 170, pp. 41–48, 1966.
- [6] J.-L. LI, Y.-L. LI, On the strengthened Jordan's inequality, Journal of Inequalities and Applications, vol. 2007, Article ID 74328, 8 pages, 2007.
- [7] D. S. MITRINOVIĆ, P. M. VASIĆ, Analytic Inequalities, Die Grundlehren der mathematischen Wissenschaften, vol. 16, Springer, New York, NY, USA, p 31, 1970.
- [8] A. Z. ÖZBAN, A new refined form of Jordan's inequality and its applications, Applied Mathematics Letters, vol. 19, no. 2, pp. 155–160, 2006.
- [9] F. QI, D.-W. NIU, B.-N. GUO, *Rafinements, generalizations, and applications of Jordan's inequality* and related problems, Journal of Inequalities and Applications, vol. 2009, Article ID 271923, 52 pages, 2009.
- [10] J. SÁNDOR, On the concavity of sin x/x, Octogon Mathematical Magazine, vol. 13, no. 1, pp. 406–407, 2005.
- [11] S.-H. WU, H. M. SRIVASTAVA, A further refinement of a Jordan type inequality and its application, Applied Mathematics and Computation, vol. 197, no. 2, pp. 914–923, 2008.
- [12] X. ZHANG, G. WANG, Y. CHU, Extensions and sharpenings of Jordan's and Kober's inequalities, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, pp. 1–3, 2006.
- [13] L. ZHU, Inequalities for Hyperbolic Functions and Their Applications, Journal of Inequalities and Applications, Volume 2010, Article ID 130821.
- [14] L. ZHU, Sharpening of Jordan's inequalities and its applications, Mathematical Inequalities & Applications, vol. 9, no. 1, pp. 103–106, 2006.

(Received July 30, 2012)

Cătălin Barbu "Vasile Alecsandri" National College Department of Mathematics and Computer Science Vasile Alecsandri 37, 600011 Bacău, Romania e-mail: kafka_mate@yahoo.com

Laurian-Ioan Pişcoran Technical University of Cluj Napoca North University Center of Baia Mare Department of Mathematics and Computer Science Victoriei 76, 430122 Baia Mare, Romania e-mail: plaurian@yahoo.com

Journal of Mathematical Inequalities www.ele-math.com jmi@ele-math.com