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A GEOMETRIC INEQUALITY WITH ONE PARAMETER

FOR A POINT IN THE PLANE OF A TRIANGLE

JIAN LIU

(Communicated by G. Leng)

Abstract. With the help of mathematical software Maple for calculations, we establish a new
geometric inequality with one parameter on a given interval involving an arbitrary point in the
plane of a triangle. Two related interesting conjectures checked by the computer are put forward.

1. Introduction and main result

Let P be an arbitrary point in the plane of triangle ABC . Denote by R1 , R2 , R3

the distance of P from the vertices A,B,C , and r1 , r2 , r3 the distances of P from
the sidelines BC , CA , AB respectively. If P lies inside triangle ABC , then we have
the following famous Erdös-Mordell inequality (see [1–5], [8–10], [12], [17–20]) and
references therein):

R1 +R2 +R3 � 2(r1 + r2 + r3), (1.1)

with equality if and only if �ABC is equilateral and P is its center.
There are many methods to prove inequality (1.1) (see e.g. [1–3], [8–10], [16],

[18]). In a recent paper [12], the author gave a new proof, in which the following
inequality (1.2) holding for any point P in the plane was used:

R2 +R3 �
√

a2 +4r2
1, (1.2)

where a = BC . Equality in (1.2) holds only when R2 = R3 .
Starting from inequality (1.2), the author recently find a new geometric inequality

with one parameter. Let us introduce our original idea as follows:

Noting that R2 +R3 �
√

2(R2
2 +R2

3) , it follows from (1.2) that

R2
2 +R2

3−2r2
1 � 1

2
a2. (1.3)

Using (1.3) and its two analogues and adding them, we obtain the symmetric inequality:

R2
2 +R2

3−2r2
1

a2 +
R2

3 +R2
1−2r2

2

b2 +
R2

1 +R2
2−2r2

3

c2 � 3
2
, (1.4)
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where a,b,c are the lengths of the sides BC , CA , AB respectively. Equality in (1.4)
holds if and only if R1 = R2 = R3 , i.e. P is the circumcenter of ABC .

The inequality (1.4) first inspires the author to find the similar inequality:

R2
2 +R2

3 +2r2
1

a2 +
R2

3 +R2
1 +2r2

2

b2 +
R2

1 +R2
2 +2r2

3

c2 � 5
2
. (1.5)

It is interesting that the equality of this inequality also holds if and only if P is a special
point of triangle ABC . More exactly, the equality in (1.5) holds if and only if the
barycentric coordinates of P with respect to �ABC is (a2,b2,c2) , namely P coincide
with the Lhuilier-Lemoine point K of ABC (see [17, p. 278]).

We also find that

R2
2 +R2

3− r2
1

a2 +
R2

3 +R2
1− r2

2

b2 +
R2

1 +R2
2− r2

3

c2 � 7
4

(1.6)

and
R2

2 +R2
3 + r2

1

a2 +
R2

3 +R2
1 + r2

2

b2 +
R2

1 +R2
2 + r2

3

c2 � 9
4

(1.7)

hold and both of equality conditions are the same as in (1.1).
Considering the unified generalization of these inequalities, we find the following

conclusion:

THEOREM 1. Let ABC be a triangle with sides a,b,c. If −2 � λ � 2 be a real
number, then the inequality:

R2
2 +R2

3 + λ r2
1

a2 +
R2

3 +R2
1 + λ r2

2

b2 +
R2

1 +R2
2 + λ r2

3

c2 � λ +8
4

(1.8)

holds for any point P in the plane. When λ = −2 , the equality in (1.8) holds if and
only if P is the circumcenter of ABC. When λ = 2 , the equality in (1.8) holds if and
only if P is the Lhuilier-Lemoine point of ABC. When −2 < λ < 2 , the equality in
(1.8) holds if and only if �ABC is equilateral and P is its center.

In particular, when λ = 0, (1.8) becomes

R2
2 +R2

3

a2 +
R2

3 +R2
1

b2 +
R2

1 +R2
2

c2 � 2, (1.9)

which does not include the distances r1 , r2 and r3 . This inequality can also be deduced
by adding up (1.4) and (1.5) or (1.6) and (1.7). In [13], the author obtained the following
weighted generalization of (1.9):

R2
2 +R2

3

a2 x2 +
R2

3 +R2
1

b2 y2 +
R2

1 +R2
2

c2 z2 � 2
3
(yz+ zx+ xy), (1.10)

where x,y,z are arbitrary real numbers.
The main purpose of this paper is to prove Theorem 1. In addition, we also propose

two related conjectures in the last section.
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2. Several lemmas

In order to prove our theorem, we first give several lemmas.

LEMMA 1. For any real numbers x,y,z and triangle ABC withe sides a,b,c, we
have

a2x2 + y2b2 + z2c2 � yz(b2 + c2−a2)+ zx(c2 +a2−b2)+ xy(a2 +b2− c2), (2.1)

with equality holding if and only if x = y = z.

The inequality (2.1) was first given by J. Wolstenholme in [21] and it has several
equivalent forms. For example, the equivalent trigonometric form:

x2 + y2 + z2 � 2(yzcosA+ zxcosB+ xycosC) (2.2)

(A,B,C are the angles of triangle ABC ) which can be used to establish the weighted
Erdös-Mordell inequality (see [17]):

x2R1 + y2R2 + z2R3 � 2(yzr1 + zxr2 + xyr3), (2.3)

with equality holding if and only if x : y : z = sinA : sinB : sinC and P is the circum-
center of triangle ABC .

LEMMA 2. For any triangle ABC with sides a,b,c, we have

Q0 ≡ (b4 + c4)a8−2(b2 + c2)(2b4−b2c2 +2c4)a6 +(6b8−2b6c2 +6b4c4

−2b2c6 +6c8)a4 −2(b2 + c2)(2b4−b2c2 +2c4)(b2−bc− c2)(b2 +bc− c2)a2

+b12−6b10c2 +13b8c4−14b6c6 +13b4c8 −6b2c10 + c12 � 0, (2.4)

with equality holding if and only if a : b : c =
√

(3+
√

13)/2 : 1 : 1 .

Proof. Let b + c− a = 2u , c + a− b = 2v , a + b− c = 2w , then a = v + w ,
b = w+u , c = u+ v. Substituting them into the expression of Q0 and using important
mathematical software Maple (we used Maple 15), one obtains

Q0 = 2u12 +12(v+w)u11 +(34v2 +112vw+34w2)u10 +20(v+w)(3v2 +17vw

+3w2)u9 +(72v4 +804v3w+1622v2w2 +804vw3 +72w4)u8

+4(v+w)(15v4 +246v3w+620v2w2 +246vw3 +15w4)u7

+(34v6 +888v5w+5290v4w2 +5008v3w3 +5290v2w4 +888vw5 +34w6)u6

+4(v+w)(3v6 +111v5w+1397v4w2 −320v3w3 +1397v2w4 +111vw5

+3w6)u5 +(2v8 +116v7w+4370v6w2 +3780v5w3 −794v4w4 +3780v3w5

+4370v2w6 +116vw7 +2w8)u4 +4(v+w)(2v6 +420v5w+148v4w2

−461v3w3 +148v2w4 +420vw5 +2w6)u3vw+2(134v6 +260v5w−125v4w2

−480v3w3−125v2w4 +260vw5 +134w6)u2v2w2 +4(v+w)(2v4−11v3w

−15v2w2 −11vw3 +2w4)uv3w3 +2(v2 + vw+w2)2v4w4, (2.5)
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where u > 0, v > 0, w > 0. Since v,w are symmetric with respect to Q0 , we may
assume that v � w and let

v = w+m, (2.6)

where m � 0. Substituting (2.6) into (2.5) and making use of Maple, we get the fol-
lowing identity:

Q0 = 2(Q1 +wQ2)m3 +2Q3(u+w)2, (2.7)

where

Q1 = (u4 +4u3w+134u2w2 +4uw3 +w4)m5 +(6u5 +66u4w+876u3w2 +1332u2w3

+14uw4 +10w5)m4 +(17u4 +2619u2w2 +7156uw3 +5447w4)m3u2

+2(15u4 +273u3w+2255u2w2 +8137uw3 +12069w4)m2u3

+4u3(168u4w+9u5 +1280u3w2 +10982uw4 +10776w5 +5216u2w3)m
+2(u+w)(15u5 +258u4w+1802u3w2 +7130u2w3 +15720uw4 +16774w5)u3,

Q2 = 3(90u5−22uw4 +15w5)m3 +2(5867u2−259uw+59w2)m2w4

+4(3520u2−352uw+49w2)mw5 +2(u+w)(5654u2−1122uw+105w2)w5,

Q3 = (17u8 +256u7w+1704u6w2 +6696u5w3 +15626u4w4 +18160u3w5

+6448u2w6 −1944uw7 +141w8)m2 +2(u4 +4u3w+18u2w2 +28uw3

−3w4)(3u4 +24u3w+78u2w2 +64uw3−9w4)(u+w)m+(u4 +4u3w

+18u2w2 +28uw3−3w4)2(u+w)2.

Obviously, inequality Q1 > 0 holds strictly for u,v,w > 0 and m � 0. By using
the monotonicity property of the function, it is easy to prove that 90x5−22x+15 > 0
holds for x > 0. Taking x = u/w , it follows that 90u5 − 22uw4 + 15w5 > 0. Again,
note that 5867u2 − 259uw+ 59w2 > 0, 3520u2 − 352uw+ 49w2 > 0 and 5654u2 −
1122uw+105w2 > 0, hence we see that Q2 > 0 also holds strictly.

Next, we prove Q3 � 0. Q3 is a quadratic function for m and its constant term is
nonnegative, to show its quadratic term is positive it suffices to show that

18160u3w5 +6448u2w6 −1944uw7 +141w8 > 0, (2.8)

which can be proved by the method to prove 90u5− 22uw4 + 15w5 > 0 as above (we
omit the details here). So, it remains to prove that the discriminant Fm of Q3 is less
than or equal to zero. Through the calculations using Maple software, we easily get

Fm = −16(2u8 +28u7w+165u6w2 +642u5w3 +1631u4w4 +2152u3w5 +939u2w6

−198uw7 +15w8)(u4 +4u3w+18u2w2 +28uw3−3w4)2(u+w)2. (2.9)

Since 939u2w6 − 198uw7 + 15w8 = 3w6(313u2 − 66uw+ 5w2) > 0, Fm � 0 follows
and inequality Q3 � 0 is proved.

By Q1 > 0, Q2 > 0, Q3 � 0 and the identity (2.7), we know that Q0 � 0 holds
true. Also, the equality in Q0 � 0 occurs only when m = 0 and Q3 = 0. Since also the
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equality in Q3 � 0 holds if and only if Fm = 0 and

2(17u8 +256u7w+1704u6w2 +6696u5w3 +15626u4w4 +18160u3w5 +6448u2w6

−1944uw7 +141w8)m+2(u4 +4u3w+18u2w2 +28uw3−3w4)(3u4 +24u3w

+78u2w2 +64uw3−9w4)(u+w) = 0. (2.10)

So, the equality in Q0 � 0 holds if and only if m = 0, Fm = 0 and (2.10) holds. From
Fm = 0, we conclude that

u4 +4u3w+18u2w2 +28uw3−3w4 = 0, (2.11)

which is equivalent to

(b+ c−a)4+4(b+ c−a)3(a+b− c)+18(b+ c−a)2(a+b− c)2

+28(b+ c−a)(a+b− c)3−3(a+b− c)4 = 0. (2.12)

Note that m = 0 and (2.11) yields (2.10), while m = 0 means that v = w and then
b = c , hence the equality in Q0 � 0 holds if and only if b = c and (2.12) is valid.
Using b = c in (2.12) and simplifying, we obtain

a4−3a2b2−b4 = 0,

and then a2 = 3+
√

13
2 b2 . Therefore, equality in (2.4) holds if and only if a : b : c =√

(3+
√

13)/2 : 1 : 1 . This completes the proof of Lemma 2. �

LEMMA 3. Let 0 < t � 4 be a real number, then for any triangle ABC with the
sides a,b,c and the area S , we have

f0 ≡ a0t
2 +b0t + c0 � 0, (2.13)

where

a0 = 16(2b2c2 +2c2a2 +2a2b2−a4−2b4−2c4)S2,

b0 = −4a8 +20(b2 + c2)a6−12(3b4 +2b2c2 +3c4)a4 +4(b2 + c2)(7b4−12b2c2

+7c4)a2−8(b2 +bc− c2)(b2−bc− c2)(b4 −b2c2 + c4),
c0 = 64(4b2c2 +4c2a2 +4a2b2−a4−b4− c4)S2.

If a0 = 0 , then the equality in f0 � 0 holds if and only if t = 4 , A = π/2 and b2 +
c2 −√

6bc = 0 . If a0 �= 0 , then the equality in f0 � 0 holds if and only if t = 4 and
A = π/2 .

Proof. We consider three cases: a0 = 0, a0 > 0 and a0 < 0. Let

k0 = 2b2c2 +2c2a2 +2a2b2−a4−2b4−2c4, (2.14)
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then we obviously have k0 = 0, k0 > 0 and k0 < 0 under the above three cases, respec-
tively.

Case 1. a0 = 0.
In this case, it follows from the hypothesis that

a4−2(b2 + c2)a2 +2(b4−b2c2 + c4) = 0, (2.15)

and we have to prove
b0t + c0 � 0. (2.16)

From the known equivalent form of Heron’s formula:

16S2 = 2b2c2 +2a2b2 +2c2a2−a4−b4− c4, (2.17)

where S is the area of triangle ABC , we see that c0 > 0. Hence, if b0 > 0 then (2.16)
holds for all positive numbers t . If b0 � 0, then we obviously need to prove the case
t = 4, i.e.

4b0 + c0 � 0. (2.18)

Using the expressions of b0 and c0 , it is easy to verify the following identity:

4b0 + c0 = 4(m1k0 +n1), (2.19)

where

m1 = 3a4−8(b2 + c2)a2 +4(b2−bc− c2)(b2 +bc− c2),
n1 = (4b2c2 −b4− c4)(2b2c2 +2c2a2 +2a2b2−b4− c4).

By the hypothesis a0 = 0 we have k0 = 0. So, it follows from (2.19) that 4b0 + c0 =
4n1 . Thus, we need to prove n1 � 0. Since

2b2c2 +2c2a2 +2a2b2−b4− c4 > 0,

which is clear by (2.17). Hence, it remains to show that

4b2c2 −b4− c4 � 0. (2.20)

Noting that the quadratic equation (2.15) has real roots for a2 , the discriminant of it is
greater than or equal to zero, i.e.

4(b2 + c2)2−8(b4−b2c2 + c4) � 0,

which is equivalent with the required (2.20). Thus, inequality (2.16) is proved and its
equality occurs only when t = 4 and n1 = 0. Again, n1 = 0 yields

4b2c2 −b4− c4 = 0, (2.21)

which is equivalent to
b2 + c2−

√
6bc = 0. (2.22)
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Solving the quadratic equation (2.15) in a2 and using (2.21), we obtain a2 = b2 + c2

which means A = π/2. Therefore, the equality in (2.16) holds if and only if t = 4,
A = π/2 and (2.22) is valid. This completes the proof under the first case.

Case 2. a0 > 0.
In this case, the parabola f0 = a0t2 +b0t + c0 opens up. The discriminant of f0 is

F0 = b2
0−4a0c0. (2.23)

We will prove that
F0 � 0. (2.24)

Using the expressions each of a0 , b0 , c0 and making use of Maple, it is easy to obtain
the following identity:

F0 = 32m0Q0, (2.25)

where

m0 = a4 +b4 + c4−b2c2− c2a2−a2b2,

and Q0 is the same as in Lemma 2. By (2.25), the inequality Q0 � 0 of Lemma 2 and
the simple inequality m0 � 0, we conclude that (2.24) is true.

If F0 = 0, then f0 � 0 holds for any real number t under the hypothesis a0 > 0.
Also, it is not difficult to know that the equality in f0 � 0 holds only when two cases

occur, i.e. a : b : c = 1 : 1 : 1 and t = 6 or a : b : c =
√

(3+
√

13)/2 : 1 : 1 and

t = 8+2
√

3. Therefore, if a0 > 0, F0 = 0 and 0 < t � 4, then there is no equality in
f0 � 0, i.e. f0 > 0 holds strictly on the interval (0,4] .

If F0 > 0, then there exist two crossover points T1(t1,0) and T2(t2,0) between the
parabola f0 and t axis (see Figure 1). Assuming that t2 > t1 , then we have

t1 =
−b0−

√
F0

2a0
, (2.26)

t2 =
−b0 +

√
F0

2a0
. (2.27)

t

f0

Figure 1

T1 T2
O

We will prove that two points T1 and T2 lie on the positive t axis (see Figure 1). For
this, we have to prove t1 > 0, namely,

−b0 >
√

F0. (2.28)
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We first show that
−b0 > 0. (2.29)

In fact, −b0 can be written as follow:

−b0 = 4(m2k0 +n2), (2.30)

where

m2 = 3(b2 + c2)a2 +4b2c2 −a4−b4− c4,

n2 = (b2 + c2)(b− c)2(b+ c)2a2 +2b2c2(b4−b2c2 + c4).

By (2.17), we see that m2 > 0. Since also n2 > 0 and k0 > 0 from the hypothesis, hence
−b0 > 0 follows from (2.30) at once. We now prove inequality (2.28). By (2.29), we
need to prove b2

0−F0 > 0. It is easy to verify that

b2
0−F0 = 4096k0n0S

4, (2.31)

where

n0 = 4b2c2 +4c2a2 +4a2b2−a4−b4− c4.

Hence b2
0 −F0 > 0 holds since we have k0 > 0 and n0 > 0 by (2.17). The inequality

(2.28) is proved.
The double inequality t2 > t1 > 0 shows that f0 is greater than or equal to zero

when t lies in the interval (0,t1] (see Figure 1), namely f0 � 0 holds for 0 < t � t1 ,
and the equality holds if and only if t = t1 . Thus, to prove f0 � 0 for 0 < t � 4 we
have to prove that

t1 � 4. (2.32)

By (2.26) and the hypothesis, it is equivalent to

− (8a0 +b0) �
√

F0. (2.33)

But, we have the following identity:

− (8a0 +b0) = 4(k0m3 +n3), (2.34)

where

m3 = a4 +b4 + c4− (b2 + c2)a2,

n3 = a2(b2 + c2)(b+ c)2(b− c)2 +2b2c2(b4−b2c2 + c4).

Clearly, m3 > 0 and n3 > 0 are valid, hence −(8a0 + b0) > 0 holds and the proof of
(2.33) turns to

(8a0 +b0)2 −F0 � 0. (2.35)

Again, using Maple software we easily obtain that

(8a0 +b0)2−F0 = 256k0(a4 +b4 + c4)(b2 + c2−a2)2S2, (2.36)
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which shows that (2.35) holds if k0 > 0. So, inequality (2.33) is proved, and its equality
holds only when b2 + c2−a2 = 0, i.e. A = π/2. Further, it is easily seen that if a0 > 0
and F0 > 0 then the equality in f0 � 0 holds if and only if t = 4 and A = π/2.

Combining the above arguments under the two cases, F0 = 0 and F0 > 0. We
know that if a0 > 0 then f0 � 0 holds for 0 < t � 4 and the equality in f0 � 0 holds if
and only if t = 4 and A = π/2.

Case 3. a0 < 0.
In this case, the parabola f0 = a0t2 +b0t +c0 opens down. Also, it is easy to know

that inequality (2.24) holds strictly (we can show that the case F0 = 0 is incompatible
with a0 < 0). Therefore, there exist two crossover points T1(t1,0) and T2(t2,0) be-
tween the parabola f0 and t axis. We will show that the crossover points T1(t1,0) lies
on the positive t axis and T2(t2,0) lies on the non-negative t axis (see Figure 2). It is
sufficient to prove the double inequality:

t1 > 0 � t2. (2.37)

t

f0

Figure 2

T2T1
O

By (2.26) and the hypothesis, inequality t1 > 0 is equivalent with√
F0 > −b0. (2.38)

If b0 > 0, then (2.38) holds tritely. If b0 � 0, then we need to prove F0−b2
0 > 0. Under

the hypothesis we have k0 < 0, hence F0 − b2
0 > 0 follows from (2.31) and t1 > 0 is

proved. In the same way, we can prove the second inequality t2 � 0 in (2.37).
The double inequality (2.37) shows that f0 � 0 holds if t is on the interval (0, t2] .

Thus, to prove f0 � 0 for 0 < t � 4, we need to prove t2 � 4. By (2.27) and the
hypothesis, inequality t2 � 4 is equivalent to√

F0 � 8a0 +b0. (2.39)

Obviously, is suffices to prove for 8a0 + b0 > 0. So, the inequality to be proved is
equivalent with F0 − (8a0 +b0)2 � 0, which is obtained by identity (2.36) and k0 < 0
from the hypothesis a0 < 0. Hence (2.39) is proved and it is easily known that the
equality in f0 � 0 holds if and only if t = 4 and A = π/2 under the third case.

Combining the arguments of the three cases above, Lemma 3 is proved. �

LEMMA 4. Let p1 , p2 , p3 , q1 , q2 , q3 be real numbers such that p1 > 0 , p2 > 0 ,
p3 > 0 , 4p2p3−q2

1 > 0 , 4p3p1−q2
2 > 0 , 4p1p2−q2

3 > 0 and

D0 ≡ 4p1p2p3− (q1q2q3 + p1q
2
1 + p2q

2
2 + p3q

2
3) � 0. (2.40)
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Then the inequality

p1x
2 + p2y

2 + p3z
2 � yzq1 + zxq2 + xyq3 (2.41)

holds for all real numbers x,y,z. If x,y,z �= 0 , then the equality in (2.41) holds if and
only if D0 = 0 and

(2p1q1 +q2q3)x = (2p2q2 +q3q1)y = (2p3q3 +q1q2)z. (2.42)

Proof. Putting

E0 = p1x
2 + p2y

2 + p3z
2 − (yzq1 + zxq2 + xyq3),

it is easy to verify the following identity:

E0 =
(2p1x−q2y−q3z)2

4p1
+

4p1p2−q2
3

4p1

(
y− 2p1q1+q2q3

4p1p2−q2
3

z

)2

+
D0x2

4p2p3−q2
1

. (2.43)

Using (2.43) and its two analogues and adding them, we get

3E0 = E1 +E2 +E3, (2.44)

where

E1 =
(2p1x−q2z−q3y)2

4p1
+

(2p2y−q3x−q1z)2

4p2
+

(2p3z−q1y−q2x)2

4p3

E2 =
4p1p2 −q2

3

4p1

(
y− 2p1q1 +q2q3

4p1p2−q2
3

z

)2

+
4p2p3 −q2

1

4p2

(
z− 2p2q2 +q3q1

4p2p3−q2
1

x

)2

+
4p3p1−q2

2

4p3

(
x− 2p3q3 +q1q2

4p3p1−q2
2

y

)2

,

E3 = D0

(
x2

4p2p3−q2
1

+
y2

4p3p1−q2
2

+
z2

4p1p2−q2
3

)
.

By identity (2.44) and the given conditions, inequality E0 � 0 is proved.
We now discuss the equality conditions of (2.41). If x,y,z �= 0, from identity (2.44)

we see that the equality in (2.41) holds if and only if E1 = E2 = E3 = 0. By E3 = 0 we
conclude that D0 = 0. By E2 = 0 we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y− 2p1q1 +q2q3

4p1p2 −q2
3

z = 0,

z− 2p2q2 +q3q1

4p2p3−q2
1

x = 0,

x− 2p3q3 +q1q2

4p3p1−q2
2

y = 0.

(2.45)
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Using (2.45) and D0 = 0, we get

2p1x−q2z−q3y

= 2p1 · (2p3q3 +q1q2)y
4p3p1−q2

2

−q2 · (4p1p2−q2
3)y

2p1q1 +q2q3
−q3y

=
−4yp1q2(4p1p2p3−q1q2q3− p1q2

1− p2q2
2− p3q2

3)
(4p3p1−q2

22)(2p1q1 +q2q3)

= 0.

Similarly, we obtain 2p2y− q3x− q1z = 0 and 2p3z− q1y− q2x = 0. Thus, we have
E1 = 0 by (2.45) and D0 = 0. On the other hand, by D0 = 0 and (2.45) one has

(2p1q1 +q2q3)x− (2p2q2 +q3q1)y

= (2p1q1 +q2q3) · (2p3q3 +q1q2)y
4p3p1−q2

2

− (2p2q2 +q3q1)y

=
−2yq2(4p1p2p3−q1q2q3− p1q2

1− p2q2
2− p3q2

3)
(4p3p1−q2

2)

= 0.

whence (2p1q1 + q2q3)x = (2p2q2 + q3q1)y . Similarly, we get (2p2q2 + q3q1)y =
(2p3q3 +q1q2)z and then the continuous identity (2.42) is obtained.

Combing the above arguments, we know that if x,y,z �= 0 then the equality in
(2.41) holds if and only if D0 = 0 and (2.42) is valid. This completes the proof of
Lemma 4.

REMARK 1. Lemma 4 gives a sufficient condition of the quadratic inequality
(2.41) holding for all real numbers x,y,z . In fact, using other methods we can prove that
the necessary and sufficient condition of inequality (2.41) holding for all real numbers
x,y,z is p1 � 0, p2 � 0, p3 � 0, 4p2p3 − q2

1 � 0, 4p3p1 − q2
2 � 0, 4p1p2 − q2

3 � 0
and D0 � 0.

REMARK 2. As an application of Lemma 4, the previous Wolstenholme inequal-
ity (2.1) can be derived readily. Some other applications, see [14], [15], [22].

3. Proof of Theorem 1

For simplicity, we denote by ∑ cyclic sums in the next proof.

Proof. Clearly, the inequality (1.8) is equivalent to

∑R2
1

(
1
b2 +

1
c2

)
+ λ ∑ r2

1

a2 � (λ +8)
4

. (3.1)

For the distances R1 and r1 , we have the following known formulae (see, e.g. [6], [7],
[17]):

(x+ y+ z)2R2
1 = (x+ y+ z)(yc2 + zb2)− (yza2 + zxb2 + xyc2) (3.2)



102 JIAN LIU

and

r1 =
∣∣∣∣ 2xS
(x+ y+ z)a

∣∣∣∣ , (3.3)

where x,y,z are real numbers and related real triple (x,y,z) denotes the barycentric
coordinates of the point P with respect to �ABC . For R2,R3 and r1,r2 , we also have
similar formulae.

By (3.2) and (3.3), we know inequality (3.1) is equivalent to

∑
[
yc2 + zb2

x+ y+ z
− yza2 + zxb2 + xyc2

(x+ y+ z)2

](
1
b2 +

1
c2

)
+

4λS2

(x+ y+ z)2 ∑ x2

a4 � (λ +8)
4

,

namely,

1

∑x ∑(yc2 + zb2)
(

1
b2 +

1
c2

)
− 2∑yza2

(∑x)2 ∑ 1
a2 +

4λS2

(∑x)2 ∑ x2

a4 −
(λ +8)

4
� 0. (3.4)

If we make the substitutions: x → xa2 , y → yb2 , z → zc2 , then (3.4) becomes

∑(y+ z)(b2 + c2)
∑xa2 − 2∑yz∑b2c2

(∑xa2)2 +
4λS2 ∑x2

(∑xa2)2 − λ +8
4

� 0. (3.5)

Multiplying both sides by 4(∑xa2)2 and using area formula (2.17), that is

4∑xa2∑(y+ z)
(
b2 + c2)−8∑yz∑b2c2 + λ

(
2∑b2c2 −∑a4)∑x2

−(λ +8)
(
∑xa2)2 � 0. (3.6)

Expanding out, we obtain the following equivalent inequality required to prove:

e1x
2 + e2y

2 + e3z
2 − f1yz− f2zx− f3xy � 0, (3.7)

where

e1 = 4a2(b2 + c2)+ λ (2b2c2 +2c2a2 +2a2b2−b4− c4−2a4),
e2 = 4b2(c2 +a2)+ λ (2b2c2 +2c2a2 +2a2b2− c4−a4−2b4),
e3 = 4c2(a2 +b2)+ λ (2b2c2 +2c2a2 +2a2b2−a4−b4−2c4),
f1 = 4a2(b2 + c2)+2λb2c2−4(b+ c)2(b− c)2,

f2 = 4b2(c2 +a2)+2λc2a2−4(c+a)2(c−a)2,

f3 = 4c2(a2 +b2)+2λa2b2−4(a+b)2(a−b)2.

When λ =−2, inequality (1.8) becomes (1.4), which has been proved by a straight-
forward way in the first section. So, we now consider two cases λ = 2 and −2 < λ < 2
to finish the proof of inequality (3.7) and Theorem 1.

Case 1. λ = 2.
We will use Lemma 1 to prove this case.
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If we let λ = 2 in (3.7) and divide both sides by 2, then the inequality becomes

g1x
2 +g2y

2 +g3z
2 −h1yz−h2zx−h3xy � 0, (3.8)

where

g1 = −2a4 +4(b2 + c2)a2− (b+ c)2(b− c)2,

g2 = −2b4 +4(c2 +a2)b2− (c+a)2(c−a)2,

g3 = −2c4 +4(a2 +b2)c2 − (a+b)2(a−b)2,

h1 = 2(b2c2 + c2a2 +a2b2)−2(b+ c)2(b− c)2,

h2 = 2(b2c2 + c2a2 +a2b2)−2(c+a)2(c−a)2,

h3 = 2(b2c2 + c2a2 +a2b2)−2(a+b)2(a−b)2.

Next, we are going to prove that g1 > 0, g2 > 0, g3 > 0 and
√

g1 ,
√

g2 ,
√

g3 form a
triangle. First observe that

g1 = 4(v2 +6vw+w2)u2 +4(v+w)(v2 +6vw+w2)u+(v−w)2(v+w)2, (3.9)

where u = s−a > 0, v = s−b > 0, w = s−c > 0. Thus, g1 > 0 holds true. Similarly,
we have g2 > 0 and g3 > 0. Let l1 =

√
g1 , l2 =

√
g2 , l3 =

√
g3 , then by Heron’s

formula:
S =

√
s(s−a)(s−b)(s− c) (3.10)

and its equivalent form (2.17), we know that l1 , l2 , l3 form a triangle A′B′C′ if and
only if

G0 ≡ 2g2g3 +2g3g1 +2g1g2−g2
1−g2

2−g2
3 > 0. (3.11)

Using the expressions of g1 , g2 , g3 and formula (2.17), it is easy to verify that

G0 = 64n0S
2, (3.12)

where n0 is the same as in (2.31) and n0 > 0. Thus, G0 > 0 holds and the claimed
conclusion is proved.

Now, if we apply the Wolstenholme inequality (2.1) to triangle A′B′C′ and note
that

l22 + l23 − l21 = g2 +g3−g1 = h1, (3.13)

l23 + l21 − l22 = g3 +g1−g2 = h2, (3.14)

l21 + l22 − l23 = g1 +g2−g3 = h3, (3.15)

(which can be verified easily)then we obtain inequality (3.8) immediately, and by Lemma
1 we know its equality holds if and only if x = y = z . Hence, we complete the proof
of the case λ = 2 in (3.1), namely, inequality (1.5) is proved. Moreover, it is easily
seen that if λ = 2 then the quality in (3.1) holds if and only if x : y : z = a2 : b2 : c2 .
Therefore, the equality in (1.5) holds if and only if the barycentric coordinates of the
point P is (a2,b2,c2) , which means that P is the Lhuilier-Lemoine point of �ABC .
This completes the proof of Theorem 1 under the case λ = 2.
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Case 2 . −2 < λ < 2.
By Lemma 4, to prove (3.7) for this case, we first prove that

4e2e3− f 2
1 > 0. (3.16)

After calculating with the help of Maple, one obtains

4e2e3 − f 2
1 = 4(a1λ 2 +b1λ + c1), (3.17)

where

a1 = 16(2b2c2 +2c2a2 +2a2b2−a4−2b4−2c4)S2,

b1 = −4(b2 + c2)a6 +8(b2 +bc+ c2)(b2−bc+ c2)a4

−4(b2 + c2)(b4−4b2c2 + c4)a2 −8b2c2(b4−b2c2 + c4),
c1 = −4(b+ c)2(b− c)2a4 +8(b2 + c2)(b4 + c4)a2−4(b4 + c4)(b4−4b2c2 + c4).

Thus, we need to prove
a1λ 2 +b1λ + c1 > 0. (3.18)

Letting λ = 2− t , then by −2 < λ < 2 we have 0 < t < 4 and (3.18) becomes

a1(2− t)2 +b1(2− t)+ c1 > 0,

which is equivalent to
a0t

2 +b0t + c0 > 0, (3.19)

where a0 , b0 , c0 are the same as in Lemma 3. According to Lemma 3, we know that
inequality (3.19) strictly holds for 0 < t < 4. Hence, the strict inequalities (3.18) and
(3.16) are proved. Clearly, inequalities 4e3e1 − f 2

2 > 0 and 4e1e2 − f 2
3 > 0 similar to

(3.16) are also valid.
Now, by Lemma 4, it remains to prove the inequality:

K0 ≡ 4e1e2e3− ( f1 f2 f3 + e1 f 2
1 + e2 f 2

2 + e3 f 2
3 ) � 0.

Applying Maple software and the formula (2.17), it is not difficult to verify the follow-
ing identity:

K0 = 512(2−λ )(2+ λ )
(
∑a4−∑b2c2)(

∑b2c2 +4λS2)S2. (3.20)

By (2.17) and the fact ∑a4 −∑b2c2 � 0 with equality if and only if a = b = c , we
see that K0 � 0 holds for −2 < λ < 2 and the equality in K0 � 0 occurs if and only
if a = b = c , namely �ABC is equilateral. Further, by lemma 4 we know that the
equality in (3.7) holds if and only if a = b = c and x = y = z . Thus, when −2 < λ < 2
the equality in (3.1) holds if and only if �ABC is equilateral and P is its center. This
completes the proof under the second case.

Finally, combing the above arguments, the proof of Theorem 1 is completed.
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4. Two related conjectures

The inequality (1.4) inspires the author to conjecture the following similar inequal-
ity:

R2 +R3−2r1

a
+

R3 +R1−2r2

b
+

R1 +R2−2r3

c
�
√

3 (4.1)

holds for any interior point P of triangle ABC . With the help of the computer for
checking, we propose general conjecture:

CONJECTURE 1. Let λ be a real number such that 3
5 � λ � 2, then for any inte-

rior point P of triangle ABC we have

R2 +R3−λ r1

a
+

R3 +R1−λ r2

b
+

R1 +R2−λ r3

c
� (4−λ )

√
3

2
. (4.2)

In addition, considering the generalization of Theorem 1, we pose the following
conjecture:

CONJECTURE 2. Let k and λ be real numbers such that k > 2 and k � λ � −2,
then for any interior point P of triangle ABC we have

R k
2 +R k

3 + λ r k
1

ak +
R k

3 +R k
1 + λ r k

2

bk +
R k

1 +R k
2 + λ r k

3

ck �
3
(
2k+1 + λ

)
(2
√

3)k
. (4.3)
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