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EQUIVALENCE OF SOME MATRIX INEQUALITIES

GANTONG HE

(Communicated by J. I. Fujii)

Abstract. In the present article, some Kantorovich type and Wielandt type matrix inequalities
and their equivalent forms are discussed respectively, and the equivalence of these Kantorovich
type inequalities with the corresponding Wielandt type inequalities are established too.

1. Introduction

It is well known that considerable progress have been made in the study of the
matrix versions of the Cauchy-Schwarz inequality, the Kantorovich inequality, and the
Wielandt inequality in the Löwner partial ordering sense. Marshall and Olkin [4], Bak-
salary and Puntanen[1], and Mond and Pečarić [5, 6] presented some matrix versions of
the Kantorovich inequality involving a positive definite or semidefinite matrix. Pečarić
et al. [7] derived some general matrix Cauchy-Schwarz type inequalities and Kan-
torovich type inequalities. Liu and Neudecker [3] also gave some matrix Kantorovich
type inequalities. A matrix version of the Wielandt inequality is presented by Wang and
Ip [8], and the equivalence of this matrix Wielandt inequality and corresponding matrix
Kantotovich inequality was proved by Zhang [9] and Drury et al. [2]. The purpose of
this paper is to show some of the matrix Kantorovich type inequalities are equivalent
each other, some of the matrix Wielandt type inequalities are equivalent each other, and
these matrix Kantorovich type inequalities and the corresponding matrix Wielandt type
inequalities are equivalent.

In Section 2, we will discuss some matrix Kantorovich type inequalities and their
equivalent forms. In Section 3, we shall give a matrix inequality first, and then we
will introduce some matrix versions of Wielandt inequality and their equivalent forms,
and show the equivalence of these Wielandt type inequalities and the corresponding
Kantorovich type inequalities.

All matrices in this paper is assumed to be complex. For n×n Hermitian matrices
A and B , A � B will mean that B−A is positive semidefinite. Let A∗ and A+ denote
the conjugate transpose and the Moore-Penrose inverse of A respectively, R(A) be the
column space of A , and PA = A(A∗A)+A∗ = AA+ be the orthogonal projector on R(A) .
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2. Kantorovich type inequalities and their equivalent forms

In the following theorem, we collect together some of the Kantotovich type in-
equalities that appeared in the literature [1, 3, 4, 5, 6, 7] except the inequalities (2.3)
and (2.5). For the completeness, we will give a unified proof.

THEOREM 2.1. (Kantorovich type inequalities) Let A be an n×n positive defi-
nite matrix, λ1 and λn be its largest and smallest eigenvalues. If H is an n× r matrix
such that H∗H = Ir , then

H∗A2H � (λ1 + λn)2

4λ1λn
(H∗AH)2, (2.1)

H∗A2H− (H∗AH)2 � 1
4
(λ1 −λn)2Ir, (2.2)

H∗A2H − (H∗AH)2 � (
√

λ1−
√

λn)2H∗AH. (2.3)

Another equivalent form of each of above inequalities is

H∗AH � (λ1 + λn)2

4λ1λn
(H∗A−1H)−1, (2.4)

H∗AH− (H∗A−1H)−1 � 1
4
(λ1−λn)2H∗A−1H, (2.5)

H∗AH− (H∗A−1H)−1 � (
√

λ1−
√

λn)2Ir (2.6)

respectively.

Proof. Since 0 � (λ1In −A)(A− λnIn) , we have A2 � (λ1 + λn)A− λ1λnIn and
then,

H∗A2H � (λ1 + λn)H∗AH−λ1λnIr.

The right hand side of this inequality can be expressed as

(λ1 + λn)H∗AH−λ1λnIr

=
(λ1 + λn)2

4λ1λn
(H∗AH)2−

(√
λ1λnIr − λ1 + λn

2
√

λ1λn
H∗AH

)2

=(H∗AH)2 +
1
4
(λ1−λn)2Ir −

(
H∗AH− λ1 + λn

2
Ir

)2

=(H∗AH)2 +(
√

λ1−
√

λn)2H∗AH− (
√

λ1λnIr −H∗AH)2.

Hence we obtain (2.1), (2.2) and (2.3).
Replacing H by A− 1

2 H(H∗A−1H)−
1
2 in (2.1), (2.2) and (2.3) respectively, and

then pre- and post-multiplying them by (H∗A−1H)
1
2 , we obtain (2.4), (2.5) and (2.6)
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respectively; Conversely, replacing H by A
1
2 H(H∗AH)−

1
2 in (2.4), (2.5) and (2.6) re-

spectively, and then pre- and post-multiplying them by (H∗AH)
1
2 , we get (2.1), (2.2)

and (2.3) respectively. �
Next we generalized the above theorem to positive semidefinite matrices. The

inequality (2.10) below was introduced by Drury et al. [2], The special case of (2.7),
(2.8), (2.10) and (2.12) with X∗PAX being idempotent were considered by Pečarić et
al. [7]. And the special case of (2.8) and (2.12) under the condition that X = AA+X
were discussed by Liu and Neudecker [3].

THEOREM 2.2. (Generalized Kantorovich type inequalities) Let A be an n × n
positive semidefinite matrix, λ1 and λk be its largest and smallest nonzero eigenvalues,
where k = rank(A) . Then for any n× p matrix X ,

X∗A2X � (λ1 + λk)2

4λ1λk
X∗AX(X∗PAX)+X∗AX , (2.7)

X∗A2X −X∗AX(X∗PAX)+X∗AX � 1
4
(λ1−λk)2X∗PAX , (2.8)

X∗A2X −X∗AX(X∗PAX)+X∗AX � (
√

λ1−
√

λk)2X∗AX . (2.9)

Another equivalent form of each of above inequalities is

X∗AX � (λ1 + λk)2

4λ1λk
X∗PAX(X∗A+X)+X∗PAX , (2.10)

X∗AX −X∗PAX(X∗A+X)+X∗PAX � 1
4
(λ1 −λk)2X∗A+X , (2.11)

X∗AX −X∗PAX(X∗A+X)+X∗PAX � (
√

λ1−
√

λk)2X∗PAX (2.12)

respectively.

Proof. Let A = UΛU∗ be the singular value decomposition of A , where Λ is an
k× k diagonal matrix with positive diagonal elements and k = rank(A) , U is an n× k
matrix such that U∗U = Ik . Then consider the singular value decomposition of U∗X ,
U∗X = HΔG∗ where H∗H = G∗G = Ir and r = rank(U∗X) , we have PA = UU∗ and
X∗PAX = GΔ2G∗ . Taking A = Λ in (2.1), (2.2) and (2.3) respectively, then pre- and
post-multiplying them by GΔ and ΔG∗ , noticing that

GΔ(H∗Λ2H)ΔG∗ = X∗A2X ,

GΔ(H∗ΛH)ΔG∗ = X∗AX ,

GΔ(H∗ΛH)2ΔG∗ = GΔ(H∗ΛH)ΔG∗(GΔ2G∗)+GΔ(H∗ΛH)ΔG∗

= X∗AX(X∗PAX)+X∗AX ,

we obtain (2.7), (2.8) and (2.9).
Replacing X by A+ 1

2 X in (2.7), (2.8) and (2.9), we get (2.10), (2.11) and (2.12)
respectively. Conversely, replacing X by A

1
2 X in (2.10), (2.11) and (2.12), we obtain

(2.7), (2.8) and (2.9). �
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3. Wielandt type inequalities and their equivalent forms

First we present an interesting matrix inequality, which is equivalent to the in-
equality (2.15) in [2, pp. 462], that is, the inequality (3.3) here, and plays a pivotal
role in deriving our following results, here we prove it in a different way and give the
condition in which the equality holds.

THEOREM 3.1. Let A be an n× n positive semidefinite matrix. If X and Y are
n× p and n×q matrices respectively such that X∗PAY = 0 , then

X∗AY (Y ∗PAY )+Y ∗AX � X∗A2X −X∗AX(X∗PAX)+X∗AX . (3.1)

Equality holds in (3.1) if and only if

R(AX) ⊆ R(PA(X ,Y )), (3.2)

where (X ,Y ) is an n× (p+q) partitioned matrix.
Another equivalent form of (3.1) is

X∗AY (Y ∗AY )+Y ∗AX � X∗AX −X∗PAX(X∗A+X)+X∗PAX . (3.3)

Equality holds in (3.3) if and only if (3.2) holds.

Proof. Since the condition X∗PAY = 0 implies PPAXPPAY = PPAY PPAX = 0, and
since PPAX , PPAY are Hermitian idempotent matrices, so PPAX + PPAY is a Hermitian
idempotent matrix also. By the simple fact that the eigenvalues of a Hermitian idem-
potent matrix are 0,1, we know that In � PPAX +PPAY . Pre- and post-multiplying this
inequality by X∗A and AX , we have

X∗A2X �X∗A(PPAX +PPAY )AX

=X∗AX(X∗PAX)+X∗AX +X∗AY (Y ∗PAY )+Y ∗AY.
(3.4)

Thus we obtain (3.1). The equality holds in (3.1) if and only if the equality holds in
(3.4), if and only if

AX = (PPAX +PPAY )AX .

Noticing that

PPAX +PPAY = (PPAX ,PPAY )(PPAX ,PPAY )∗ = (PPAX ,PPAY )(PPAX ,PPAY )+,

and

R((PPAX ,PPAY )) = R(PPAX )+R(PPAY ) = R(PAX)+R(PAY ) = R(PA(X ,Y )),

we know that the equality holds in(3.1) if and only if R(AX) ⊆ R(PA(X ,Y )) , that is,
(3.2) holds.

Replacing X by A+ 1
2 X and Y by A

1
2Y in (3.1), we get (3.3). Conversely, replacing

X by A
1
2 X and Y by A+ 1

2Y in (3.3), we obtain (3.1). The equality holds in (3.3) if and
only if the equality holds in (3.1) and if and only if (3.2) holds. �
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Based on the matrix inequality (3.1), we can derive some matrix Wielandt type
inequalities easily from the matrix Kantorovich type inequalities appeared in Theorem
2.2. The inequality (3.8) below was established by Drury et al. [2, pp. 464, (2.29)].

THEOREM 3.2. (Generalized Wielandt type inequalities) Let A be an n×n pos-
itive semidefinite matrix, λ1 and λk be its largest and smallest nonzero eigenvalues
where k = rank(A) . If X and Y are n× p matrix and n× q matrix respectively such
that X∗PAY = 0 , then

X∗AY (Y ∗PAY )+Y ∗AX �
(

λ1−λk

λ1 + λk

)2

X∗A2X , (3.5)

X∗AY (Y ∗PAY )+Y ∗AX � 1
4
(λ1−λk)2X∗PAX , (3.6)

X∗AY (Y ∗PAY )+Y ∗AX � (
√

λ1−
√

λk)2X∗AX . (3.7)

Another equivalent form of each of above inequalities is

X∗AY (Y ∗AY )+Y ∗AX �
(

λ1−λk

λ1 + λk

)2

X∗AX , (3.8)

X∗AY (Y ∗AY )+Y ∗AX � 1
4
(λ1−λk)2X∗A+X , (3.9)

X∗AY (Y ∗AY )+Y ∗AX � (
√

λ1−
√

λk)2X∗PAX (3.10)

respectively.

Proof. The inequalities (3.5) to (3.10) can be reduced directly from Theorem 2.2
and Theorem 3.1. By the seme way used in the proof of Theorem 3.1, we know that
(3.5), (3.6) and (3.7) imply (3.8), (3.9) and (3.10) respectively and vice versa. �

In [9], Zhang proved the equivalence of the Kantorovich inequality (2.4) and the
Wielandt inequality (3.8) with A is positive definite by means of submatrices and the
eigenvalue interlacing theorem. In [2] Drury et al. presented the equivalence of the
Kantorovich inequality (2.10) and the Wielandt inequality (3.8) by making use of the
matrix inequality (3.3). In above theorem, we have driven the Wielandt type inequal-
ities (3.5) to (3.10) from the Kantorovich type inequalities (2.7) to (2.12) in Theorem
2.2. Now we will show that the Kantorovich type inequalities (2.7) to (2.12) can be
driven easily from the Wielandt type inequalities (3.5) to (3.10) by using (3.1) and
(3.3). Hence each of the Kantorovich type inequalities in Theorem 2.2 is equivalent to
the corresponding one of the Wielandt type inequalities in Theorem 3.2.

THEOREM 3.3. Let A be an n× n positive semidefinite matrix, λ1 and λk be
its largest and smallest nonzero eigenvalues where k = rank(A) . Then each of the
Kantorovich type inequalities in Theorem 2.2 is equivalent to the corresponding one of
the Wielandt type inequalities in Theorem 3.2 with X∗PAY = 0 .
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Proof. We only need to prove that the Wielandt type inequalities imply the Kan-
torovich type inequalities. Let A = UΛU∗ and U∗X = HΔG∗ be the singular value
decompositions of A and U∗X respectively, just as we do in the proof of Theorem
2.2. Since H∗H = Ir , there exists an k× (k− r) matrix V such that Q = (H,V ) is an
k×k unitary matrix. Take Y =UVV ∗U∗ , then X∗PAY = X∗UU∗Y = GΔH∗VV ∗U∗ = 0
since H∗V = 0. From the fact that

PA(X ,Y )
(

G 0
0 UV

)(
Δ−1 0
0 Ik−r

)
Q∗ = U,

we have
R(AX) ⊆ R(U) ⊆ R(PA(X ,Y )).

Hence, for these X and Y , equalities hold in (3.1) and (3.3), and then, by Theorem 3.2,
the inequalities in Theorem 2.2 hold at once. �
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