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ON SOME MEANS DERIVED FROM THE SCHWAB–BORCHARDT MEAN

EDWARD NEUMAN

(Communicated by J. Pečarić)

Abstract. Bivariate means defined as the Schwab-Borchardt mean of two bivariate means are
investigated. Explicit formulas for those means are obtained. It is demonstrated that they inter-
polate inequalities connecting the well known bivariate means. Optimal bounds for the means
under discussion are also obtained. The bounding quantities are convex combinations of the
generating means.

1. Introduction

There is a renewed interest in the research which deals with inequalities for the
bivariate means. Among means which attracted attention of researchers is the Schwab-
Borchardt mean. This little known mean has been investigated in [2], [3], and [26, 27].
In [26] the authors have pointed out that the logarithmic mean, two Seiffert means
(see [29, 30]), and what some researchers called recently as the Neuman-Sándor mean
(see, e.g., [16, 32, 35]), are particular cases of the Schwab-Borchardt mean. They are
obtained by forming the Schwab-Borchardt mean of two means from the set containing
the geometric mean, the arithmetic mean, and the square-root mean. Lower and upper
bounds, in the form of convex combinations of the generating means, for two Seiffert
means, logarithmic mean and the Neuman-Sándor means have been obtained by several
researches. For more details, the interested reader is referred to [5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 16, 17, 20, 23, 24, 25, 28, 31, 33, 34].

This paper is organized as follows. Bivariate means used in the subsequent parts of
this work are introduced in Section 2. Two particular means derived from the Schwab-
Borchardt mean, denoted by SAH and SHA , are defined and discussed in Section 3. In
particular, explicit formulas, interpolation property, and best bounds in the form convex
combinations of the generating means H and A are obtained. Similar results for means
denoted in this paper by SCA and SAC are established in Section 4. In Section 5 we
shall establish four inequalities involving products of two means.
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2. Bivariate means used in this paper

In this section we provide definitions of several bivariate means used in the subse-
quent sections of this paper.

Let a and b be positive numbers. In order to avoid trivialities we will always
assume that a �= b . The unweighted arithmetic mean A of a and b is defined as

A =
a+b

2
.

For the reader’s convenience let us recall definitions of the first and the second
Seiffert means, denoted by P and T , respectively, the Neuman-Sándor mean M , and
the logarithmic mean L . Recall that

P = A
v

sin−1 v
, T = A

v
tan−1 v

,

M = A
v

sinh −1v
, L = A

v
tanh −1v

,
(1)

where

v =
a−b
a+b

. (2)

(see [29], [30], [26]). Clearly 0 < |v| < 1.
Other unweighted bivariate means used in this paper are the harmonic mean H , the

geometric mean G , the root-square mean Q and the contra-harmonic mean C which
are defined in usual way

H =
2ab
a+b

, G =
√

ab, Q =

√
a2 +b2

2
, C =

a2 +b2

a+b
. (3)

One can easily verify that the means listed in (3) all can be expressed in terms of
A and v . We have

H = A(1− v2), G = A
√

1− v2,

Q = A
√

1+ v2, C = A(1+ v2).
(4)

All the means mentioned above are comparable. It is known that

H < G < L < P < A < M < T < Q < C (5)

(see, e.g., [26]).
The four means included in (1) are special cases of the Schwab-Borchardt mean

SB which is defined as follows

SB(x,y) ≡ SB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
y2− x2

cos−1(x/y)
if x < y,√

x2− y2

cosh −1(x/y)
if y < x

(6)
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(see, e.g., [2], [3]), where both x and y are positive numbers. This mean has been
studied extensively in [26], [27], and in [19]. It is well known that the mean SB is
strict, nonsymmetric and homogeneous of degree one in its variables.

It has been pointed out in [26] that

P = SB(G,A), T = SB(A,Q),
M = SB(Q,A), L = SB(A,G).

(7)

Other bivariate means used in this paper are derived from the Schwab-Borchardt
mean. They are defined as follows

SAH = SB(A,H), SHA = SB(H,A), SCA = SB(C,A),
SAC = SB(A,C), SCH = SB(C,H), SHC = SB(H,C).

(8)

In the next sections we will deal with the pairs of means {SAH,SHA} , {SCA,SAC} ,
and {SCH ,SHC} .

3. Means SAH and SHA

For the later use let us record some elementary formulas

cos−1(x/y) = sin−1
(√

y2− x2

y

)
= tan−1

(√
y2− x2

x

)
(9)

(0 < x < y) and

cosh −1(x/y) = sinh −1
(√

x2− y2

y

)
= tanh −1

(√
x2− y2

x

)
(10)

(x > y > 0). They will be used in the sequel.
We shall establish now formulas for means under discussion. They bear some

resemblance of formulas (1).

THEOREM 1. Let p be defined implicitly as sech p = 1− v2 . Then

SAH = A
tanh p

p
. (11)

Similarly, if cosq = 1− v2 , then

SHA = A
sinq
q

. (12)

Proof. We shall establish formula (11) using (6) with x = A and y = H . Using
the first formula of (4) we get

√
A2−H2 = A

√
1− (1− v2)2 = Av

√
2− v2 = Aλ ,
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where
λ = v

√
2− v2. (13)

With sech p = 1− v2 we obtain

λ =
√

1− sech p
√

1+ sech p =
√

1− sech 2p = tanh p.

This in conjunction with (8), (6), and (10) yields

SAH = A
λ

tanh −1λ
= A

tanh p
p

. (14)

For the proof of (12) we use (6) with x = H and y = A . Then
√

A2−H2 = Aλ , where
λ is the same as in (13). Using cosq = 1− v2 we obtain

λ =
√

1− cosq
√

1+ cosq = sinq.

Then the second formula of (8), the first part of (6), and (9) give

SHA = A
λ

sin−1 λ
= A

sinq
q

(15)

which completes the proof of the theorem. �

COROLLARY 1. Let ρ = H/A. Then the following formula

SHA

SAH
=

sech −1(ρ)
cos−1(ρ)

is valid.

Proof. Let ρ = 1− v2 . Using the first formula of (4) we have ρ = H/A. Using
(14) and (15) we obtain

SHA

SAH
=

tanh −1λ
sin−1 λ

=
p
q
,

where λ is defined in (13) and also p and q are defined implicitly in Theorem1. This in
turn gives p = sech −1(1− v2) = sech −1(ρ) and q = cos−1(1− v2) = cos−1(ρ) . �

To the end of this section we will deal with inequalities involving means SAH and
SHA . For the latter use we recall the following result [21, 22]:

(xy2)1/3 < (ySB(y,x))1/2 < SB(x,y) <
y+SB(y,x)

2
<

x+2y
3

. (16)

Letting above x = A and y = H we obtain inequalities which connect SAH with SHA .
We omit further details.

We shall prove now that two means under discussion interpolate some of the in-
equalities which appear in the chain of inequalities (5).
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THEOREM 2. The inequalities

H < SAH < L < SHA < P (17)

hold true.

Proof. The first inequality in (17) is obvious because SAH is the mean value of
A and H therefore it satisfies H < SAH < A . For the proof of the second inequality
we shall use formulas (14) and the last part of (1). Then the inequality in question is
equivalent to

λ
tanh −1λ

<
v

tanh −1v
.

Also, it follows from (13) that λ > v . Since the function x/ tanh −1x is strictly decreas-
ing on the interval (0,1) , the desired inequality follows. We shall demonstrate now that
the third inequality in (17) is valid. To this aim we shall prove that the second inequality
in

L <
A+2G

3
< SHA

holds true. The first one is well known (see, e.g., [26]) and can be obtained using the
third and fifth members of (16) with x = A and y = G . It follows from (4) and (14) that
the inequality we have to prove is equivalent to

1+2
√

1− v2

3
<

λ
sin−1 λ

.

Since 1− v2 = (1−λ 2)1/2 (see (5)),

1+2(1−λ 2)1/4

3
<

λ
sin−1 λ

.

Letting λ = sin t (0 < t < π/2) we obtain

1+2
√

cost
3

<
sin t
t

. (18)

For the proof of (18) we will utilize the following result [21, 22]:

(1+ cost
2

)2/3
<

sin t
t

(19)

(0 < t < π/2). First we shall show that

1+2
√

cost
3

<
(1+ cost

2

)2/3
. (20)

Then (18) will follow from (20) and (19). In (20) we use the substitution cost = u2 .
The result is

1+2u
3

<
(1+u2

2

)2/3
. (21)
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In order to prove validity of (21) it suffices to show that f (u) > 0, where f (u) = 27(1+
u2)2 −4(1+2u)3 (0 � u � 1) . Differentiation yields f ′(u) = 12(u−1)(9u2 +u+2).
Thus f ′(u) < 0 on [0,1) . Since f (0) = 23 and f (1) = 0, we conclude that the function
f (u) is strictly decreasing and positive on the stated domain. This in turn implies that
the inequality (18) holds true. The proof of the third inequality in (17) is complete. It
follows from (15) and the first part of (1) that the last inequality in (17) is equivalent to

λ
sin−1 λ

<
v

sin−1 v
.

Since λ > v and the function x/sin−1 x is strictly decreasing on (0,1) , the assertion
follows. The proof is complete. �

In the proof of the next theorem we will utilize the following result-which is often
called L’Hospital’s rule for monotonicity (see, e.g., [1]):

THEOREM A. Let the functions f and g be continuous on [c,d] , differentiable

on (c,d) and such that g′(t) �= 0 on (c,d) . If f ′(t)
g′(t) is (strictly) increasing (decreas-

ing) on (c,d) , then the functions f (t)− f (d)
g(t)−g(d) and f (t)− f (c)

g(t)−g(c) are also (strictly) increasing

(decreasing) on (c,d) .

THEOREM 3. The inequality

α1A+(1−α1)H < SAH < β1A+(1−β1)H (22)

holds true if α1 = 0 and 1
3 � β1 < 1 . Also, the inequality

α2A+(1−α2)H < SHA < β2A+(1−β2)H (23)

is satisfied if 0 < α2 � 2/π and 2/3 � β2 < 1 .

Proof. For the proof of the first part of the thesis let us write (22) in the equivalent
form

α1 <
SAH −H
A−H

< β1.

Using (11), (4), and the fact that 1− v2 = sech p we can write the last two-sided in-
equality in the form

α1 <

tanh p
p

− sech p

1− sech p
< β1,

where p > 0. Let ϕ1(p) stand for the middle term in the last inequality. Using elemen-
tary identities for the hyperbolic functions we obtain

ϕ1(p) =
sinh p− p

pcosh p− p
.
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It has been proven in [20, Theorem 3.1] that the function ϕ1(p) is strictly decreasing
on its domain. Elementary computations yield ϕ1(0+) = 1/3 and limp−>∞ ϕ1(p) = 0.
The second part of the thesis can be established in a similar fashion. First we write (23)
as

α2 <
SHA −H
A−H

< β2.

Using (12) and the first formula in (4) in the form H = Acosq we can write the last
two-sided inequality as follows

α2 <

sinq
q

− cosq

1− cosq
< β2,

where 0 < q < π/2. Let ϕ2(q) denote the second term in the last simultaneous in-
equality. Then

ϕ2(q) =
sinq−qcosq
q−qcosq

.

Let f (q) = sinq−qcosq and g(q) = q−qcosq . Differentiation yields

f ′(q)
g′(q)

=
qsinq

1− cosq+qsinq
=: h(q).

Also,
(1− cosq+qsinq)2h′(q) = 2sin2(

q
2
)(sinq−q).

Since sinq < q , function h(q) is strictly decreasing on its domain and so is the func-
tion f ′(q)/g′(q) . Using Theorem A we conclude that the function ϕ2(q) is strictly
decreasing on the interval (0,π/2) . It is easy to demonstrate that ϕ2(0+) = 2/3 and
ϕ2(π/2) = 2/π . This gives the bounds for α2 and β2 . The proof is complete. �

4. Means SCA and SAC

In this section we shall establish results for the pair of means {SCA,SAC} . They
can be regarded as the counterparts of the results derived in Section 3 for the pair
{SAH,SHA} . For the sake of brevity let γ = cosh −1(2) = 1.317...) . The represen-
tation formulas for the means under discussion read as follow.

THEOREM 4. Let μ = v
√

2+ v2 . If cosh r = 1+ v2 (0 < r < γ) , then

SCA = A
μ

sinh −1μ
= A

sinh r
r

. (24)

Also, if sec s = 1+ v2 , then

SAC = A
μ

tan−1 μ
= A

tans
s

(25)

where 0 < s < π/3 .
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Proof. Use of (4) gives
√

C2−A2 = Av
√

2+ v2 = Aμ . Making use of (6) with
x = C and y = A followed by application of (10) yields

SCA = A
μ

sinh −1μ
.

On the other hand,
μ =

√
cosh r−1

√
cosh r+1 = sinh r.

The assertion (24) now follows. For the proof of (25) we follow the lines introduced
above with x = A and y =C to obtain

SAC = A
μ

tan−1 μ
.

Using definition of μ and the assumption that 1+ v2 = sec s we obtain

μ =
√

sec s−1
√

sec s+1 = tans.

The third term of (25) is now obtained and the proof is complete. �

COROLLARY 2. Let σ = C/A. Then

SAC

SCA
=

cosh −1(σ)
sec −1(σ)

.

Proof. Let σ = 1+ v2 . Making use of (4) we obtain σ = C/A. Using (24) and
(25) we obtain

SAC

SCA
=

sinh −1μ
tan−1 μ

=
r
s
,

where r and s are defined implicitly in Theorem 4. This in turn gives r = cosh −1(1+
v2) = cosh −1(σ) and s = sec −1(1+ v2) = sec −1(σ) . The proof is complete. �

Our next result reads as follows.

THEOREM 5. The following inequalities

T < SCA < Q < SAC < C (26)

hold true.

Proof. Let us begin proving the first inequality in (26). To this aim we need to
verify the second inequality in

T <
A+2Q

3
< SCA.
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The first one is well known (see, e.g., [26]) and can be obtained using (16) with x = A
and y = Q followed by application of the second formula in (7). It follows from (4)
and (24) that the inequality to be proven is equivalent to

1+2
√

1+ v2

3
<

μ
sinh −1μ

.

The last inequality can be written in terms of variable r . It follows from the proof of
Theorem 4 that 1 + v2 = cosh r and μ = sinh r , where 0 < r < γ . Thus we have to
show that

1+2
√

cosh r
3

<
sinh r

r
. (27)

To this aim we will utilize the inequality [22, 21]:(1+ cosh r
2

)2/3
<

sinh r
r

. (28)

The inequality (27) will follow if we shall demonstrate that

1+2
√

cosh r
3

<
(1+ cosh r

2

)2/3
. (29)

Letting in (29) cosh r = u2 we see that the last inequality is equivalent to f (u) > 0
(u > 1) , where

f (u) = 27(1+u2)2 −4(1+2u)3

(u � 1). We have already encountered this function in the proof of Theorem 3. Recall
that f ′(u) = 12(u−1)(9u2 +u+2) and also that f (1) = 0. Thus the function f (u) is
strictly increasing on the stated domain. This in turn implies that the inequalities (29)
and (28) are satisfied. Therefore the inequality (27) holds true. For the proof of the
second inequality in (26) we use formulas (24) and (4). Then the inequality in question
is equivalent to

μ
sinh −1μ

<
√

1+ v2.

With μ = sinh r and 1+ v2 = cosh r (0 < r < γ) the last inequality can be written as

sinh r
r

< (cosh r)1/2

which holds true for 0 < r < π/2 (see [15]). The proof of the second inequality is
complete because γ < π/2. We shall establish now the third inequality in (26). Using
(4) and (25) we see that the inequality in question is equivalent to√

1+ v2 <
μ

tan−1 μ
.

It follows from the proof of Theorem 4 that 1+v2 = sec s and μ = tans (0 < s < π/3) .
Thus the last inequality can be written as

(sec s)1/2 <
tans

s
.
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Multiplying both sides by coss we obtain

(coss)1/2 <
sins
s

.

Taking into account that
(coss)1/2 < (coss)1/3

holds true for 0 < s < π/2 and also that

(coss)1/3 <
sins
s

(0 < s < π/2) (see, e.g., [18]) we see that the inequality to be proven is valid. This
completes the proof of the third inequality in (26). Finally, the last inequality in the
chain (26) is obvious because SAC as the mean value of A and C is smaller than
max{A,C} = C . �

A counterpart of Theorem 3 for the means under discussion reads as follows.

THEOREM 6. The two-sided inequality

α1C+(1−α1)A < SCA < β1C+(1−β1)A (30)

holds true if 0 < α1 = (
√

3− γ)/γ = 0.315... and 1/3 � β1 < 1 . Also, the inequality

α2C+(1−α2)A < SAC < β2C+(1−β2)A (31)

is satisfied if 0 < α2 � (3
√

3−π)/π = 0.653... and 2/3 � β2 < 1 .

Proof. For the proof of the first part of the thesis let us write inequality (30) as
follows

α1 <
SCA −A
C−A

< β1.

Using (26), (4) and the fact that 1 + v2 = cosh r we can rewrite the last two-sided
inequality, after elementary transformations, as follows

α1 <
sinh r− r

rcosh r− r
< β1,

where 0 < r < γ . We have already encountered the middle term

sinh r− r
rcosh r− r

= ϕ1(r)

in the proof of Theorem 3. Therefore the function ϕ1(r) is strictly decreasing on the
stated domain. Since ϕ1(0+) = 1/3 and ϕ1(γ−) = (

√
3− γ)/γ , the thesis of the first

part of the theorem follows. The second part of the thesis can be established in a similar
manner. First we write (31) as

α2 <
SAC −A
C−A

< β2
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and next use (25), (4), and the formula 1+ v2 = sec s , where 0 < s < π/3. The result
is

α2 < ϕ2(s) < β2,

where

ϕ2(s) =
sins− scoss
s− scoss

was used in the proof of Theorem 3. We have demonstrated that the function is strictly
decreasing on the interval (0,π/2) . Easy computations give ϕ2(0+)= 2/3 and ϕ2(π/3)
= (3

√
3−π)/π . The proof is complete. �

5. Inequalities involving products of two means

Numerous inequalities involving particular means derived from the Schwab-Borc-
hardt mean have been obtained in [27]. Here is the sample of some results

PM < AQ2 and LT < A2

derived in the above cited paper.
In this section we shall establish four inequalities which involve products of two

means on each side of an inequality. First we shall prove the following

PROPOSITION 1. Formulas

SHC = T and SCH = L (32)

are valid.

Proof. In the proof of (32) we utilize the invariance property

SB(x,y) = SB
(x+ y

2
,

√
x+ y

2
y
)

(33)

(see,e.g., [2, 3]). For the proof of the first formula in (32) we let x = H and y = C .
Taking into account that

H = G2A−1 and C = Q2A−1

and employing homogeneity of SB , the identity (G2 +Q2)/2 = A2 , and (33) we obtain

SHC = SB(H,C) = SB(G2A−1,Q2A−1) = A−1SB(G2,Q2)

= A−1SB(A2,AQ) = (A−1A)SB(A,Q) = SB(A,Q) = T,

where the last equality follows from (7). The second formula in (32) can be established
in a similar way. We omit further details. �
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In [4] the authors have proven that the function SB(x,y)−1 (x,y > 0) is strictly
totally positive. This in particular implies that the following inequality

SB(x1,y1)SB(x2,y2) < SB(x1,y2)SB(x2,y1) (34)

holds true provided x1 < x2 and y1 < y2 .
We are in a position to prove the following

THEOREM 7. The following inequalities

SHASAC < AT, SAHSCA < AL (35)

and
SHAC < SCAT, SAHC < SACL (36)

are valid.

Proof. For the later use let us note that SB(A,A) = A . For the proof of the first
inequality in (35) we use (34) with {x1,x2} = {H,A} , {y1,y2} = {A,C} followed by
application of (8) and (32). Similarly, the second part of (35) follows from (34) with
{x1,x2} = {A,C} and {y1,y2} = {H,A} . Inequalities (36) are established in the same
way. The first one follows from (34) by letting {x1,x2}= {H,C} and {y1,y2}= {A,C}
while the second inequality in (36) is obtained using (34) with {x1,x2} = {A,C} and
{y1,y2} = {H,C} . The proof is complete. �

Acknowledgements.
The author is indebted to an anonymous referee for constructive remarks on the

first draft of this paper and also for calling his attention to related papers which have
been added to the list of References.

RE F ER EN C ES

[1] H. ALZER, S.-L. QIU, Monotonicity theorems and inequalities for complete elliptic integrals, J. Com-
put. Appl. Math. 172 (2004), 289–312.

[2] J. M. BORWEIN, P. B. BORWEIN, Pi and the AGM: A Study in Analytic Number Theory and Compu-
tational Complexity, John Wiley and Sons, New York, 1987.

[3] B. C. CARLSON, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly 78
(1971), 496–505.

[4] B. C. CARLSON, J. L. GUSTAFSON, Total positivity of mean values and hypergeometric functions,
SIAM J. Math. Anal. 14 (1983), 389–395.

[5] Y.-M. CHU, S.-W. HOU, Sharp bounds for Seiffert mean in terms of contra-harmonic mean, Abstr.
Appl. Anal. 2012 (2012), Article ID 425175.

[6] Y.-M. CHU, S.-W. HOU, Z.-H. SHEN, Sharp bounds for Seiffert mean in terms of root mean square,
J. Inequal. Appl. 2012, 11 (2012), 15 pages.

[7] Y.-M. CHU AND B.-Y. LONG, Bounds of the Neuman-Sándor mean using power and identric means,
Abstr. Appl. Anal. 2013, Article ID 832591, 6 pages.

[8] Y.-M. CHU, B.-Y. LONG, W.-M. GONG AND Y.-Q. SONG, Sharp bounds for Seiffert and Neuman-
Sándor means in terms of generalized logarithmic means, J. Inequal. Appl. 2013, 10 (2013), 13 pages.

[9] Y.-M. CHU, Y.-F. QIU, M.-K. WANG, G.-D. WANG, The optimal convex combination bounds
of arithmetic and harmonic means for the Seiffert mean, J. Inequal. Appl. 2010 (2010), Article ID
436457.



ON SOME MEANS DERIVED FROM THE SCHWAB-BORCHARDT MEAN 183

[10] Y.-M. CHU, M.-K. WANG, W.-M. GONG, Two sharp double inequalities for Seiffert mean, J. In-
equal. Appl. 2011, 44 (2011), 7 pages.

[11] Y.-M. CHU, M.-K. WANG, Z.-K. WANG, A best possible double inequality between Seiffert and
harmonic means, J. Inequal. Appl. 2011, 44 (2011), 7 pages.

[12] Y.-M. CHU, C. ZONG, G.-D. WANG, Optimal convex combination bounds of Seiffert and geometric
means for the arithmetic mean, J. Math. Inequal. 5 (2011), 429–434.

[13] S.-Q. GAO, H.-Y. GAO, W.-Y. SHI, Optimal convex combination bounds of the centroidal and har-
monic means for the Seiffert mean, Int. J. Pure Appl. Math. 70 (2011), 701–709.

[14] Z.-Y. HE, W.-M. QIAN, Y.-L. JIANG, Y.-Q. SONG AND Y.-M. CHU, Bounds for the combination
of Neuman-Sándor, arithmetic, and second Seiffert means in terms of contraharmonic mean, Abstr.
Appl. Anal., 2013, Article ID 903982, 5 pages.
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