LOCAL HÖLDER ESTIMATES FOR GENERAL ELLIPTIC p(x)-LAPLACIAN EQUATIONS ## FENGPING YAO (Communicated by D. Žubrinić) Abstract. In this paper we obtain the interior Hölder regularity of the gradients of weak solutions for general elliptic p(x)-Laplacian equations $$\operatorname{div}\left(a(x,\nabla u)\right) = \operatorname{div}\left(\left|\mathbf{f}\right|^{p(x)-2}\mathbf{f}\right),\,$$ under some proper assumptions on a and the Hölder continuous functions p, \mathbf{f} . #### 1. Introduction In this paper we mainly study the interior Hölder regularity of the gradients of weak solutions for the following general elliptic p(x)-Laplacian equation $$\operatorname{div}\left(a\left(x,\nabla u\right)\right)=\operatorname{div}\left(|\mathbf{f}|^{p(x)-2}\mathbf{f}\right)\quad\text{in}\quad\Omega,\tag{1.1}$$ where Ω is an open bounded domain in \mathbb{R}^n and $\mathbf{f} = (f^1, \dots, f^n)$ is a given vector field satisfying $$1 < \gamma_1 = \inf_{\Omega} p(x) \leqslant \sup_{\Omega} p(x) = \gamma_2 < \infty, \tag{1.2}$$ $$p(x) \in C_{loc}^{0,\alpha_1}(\Omega)$$ and $f^i(x) \in C_{loc}^{0,\alpha_2}(\Omega)$ (1.3) for $1 \le i \le n$, where the constants $\alpha_1, \alpha_2 \in (0,1)$. Moreover, the structural conditions on the function $a(x,\xi)$ are given as follows $$[a(x,\xi) - a(x,\eta)] \cdot (\xi - \eta) \geqslant \begin{cases} C_1 |\xi - \eta|^{p(x)}, & p(x) \geqslant 2 \\ C_1 \left(\mu^2 + |\xi|^2 + |\eta|^2\right)^{\frac{p(x) - 2}{2}} |\xi - \eta|^2, & 1 < p(x) < 2, \end{cases}$$ (1.4) $$|a(x,\xi)| \le C_2 \left(1 + |\xi|^2\right)^{\frac{p(x)-1}{2}},$$ (1.5) $$a(x,\xi) \cdot \xi \geqslant C_3 \left(\mu^2 + |\xi|^2\right)^{\frac{p(x)}{2}} - C_4,$$ (1.6) Mathematics subject classification (2010): 35J60, 35J70. Keywords and phrases: $C^{1,\alpha}$, Hölder, regularity, gradient, divergence, elliptic, p(x)-Laplacian. 240 F. Yao $$|a(x,\xi) - a(y,\xi)| \le C_5|x - y|^{\alpha_3} \left| \log \left(\mu^2 + |\xi|^2 \right) \right| \left(\mu^2 + |\xi|^2 \right)^{\frac{p(x) - 1}{2}}$$ (1.7) for all $\xi, \eta \in \mathbb{R}^n$, $x, y \in \Omega$ and some positive constants μ, α_3, C_i , i = 1, 2, 3, 4, 5. We point out that the above structural condition (1.4) for p(x) = p is the monotonicity condition (see [6]) while the remaining conditions were previously used in [3,8]. When p(x) = p, many authors [4,5,9,13,14,19,20,23,26] studied the regularity for weak solutions of quasilinear elliptic equations $$\operatorname{div}(a(x,\nabla u)) = \operatorname{div}(|\mathbf{f}|^{p-2}\mathbf{f}) \quad \text{in} \quad \Omega$$ (1.8) under some proper assumptions on a, \mathbf{f} . When p(x) is not a constant, such elliptic problems (1.1) appear in mathematical models of various physical phenomena, such as the electro-rheological fluids (see, e.g., [2, 24, 25]). Especially when $a(x, \nabla u) = |\nabla u|^{p(x)-2} \nabla u$ and $\mathbf{f} = 0$, (1.1) is reduced to the p(x)-Laplacian elliptic equation $$\operatorname{div}\left(|\nabla u|^{p(x)-2}\nabla u\right) = 0 \quad \text{in } \Omega, \tag{1.9}$$ which can be derived from the variational problem $$\Phi(u) = \min_{v|_{\partial\Omega} = \varphi} \Phi(v) =: \min_{v|_{\partial\Omega} = \varphi} \int_{\Omega} \frac{1}{p(x)} |\nabla v|^{p(x)} dx.$$ There have been many investigations [8, 22, 27] on Hölder estimates for the p(x)-Laplacian elliptic equation (1.9). Recently, Challal and Lyaghfouri [7] obtained the local L^{∞} estimates of $|\nabla u|^{p(x)}$ for the weak solutions of (1.9). Moreover, Acerbi and Mingione [3] have proved that $$|\mathbf{f}|^{p(x)} \in L^q_{loc}(\Omega) \implies |\nabla u|^{p(x)} \in L^q_{loc}(\Omega) \text{ for any } q > 1$$ for weak solutions of (1.1) under some assumptions on $a, p(x), \mathbf{f}$. Recently, many authors (see for example [10, 11, 12, 15, 16, 18]) have studied the properties of the variable exponent Lebesgue-Sobolev spaces. We denote by $L^{p(x)}(\Omega)$ the variable exponent Lebesgue space $$L^{p(x)}(\Omega) = \left\{ f : \Omega \to \mathbb{R} \mid f \text{ is measurable and } \int_{\Omega} |f|^{p(x)} \ dx < \infty \right\} \tag{1.10}$$ equipped with the Luxemburg type norm $$||f||_{L^{p(x)}(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{f}{\lambda} \right|^{p(x)} dx \leqslant 1 \right\}. \tag{1.11}$$ Furthermore, we define the variable exponent Sobolev space $$W^{1,p(x)}(\Omega) = \left\{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \right\}$$ (1.12) equipped with the norm $$||u||_{W^{1,p(x)}(\Omega)} = ||u||_{L^{p(x)}(\Omega)} + ||\nabla u||_{L^{p(x)}(\Omega)}.$$ (1.13) Moreover, $W_0^{1,p(x)}(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p(x)}(\Omega)$. Actually, the $L^{p(x)}(\Omega)$, $W^{1,p(x)}(\Omega)$ and $W_0^{1,p(x)}(\Omega)$ are Banach spaces. As usual, the solutions of (1.1) are taken in a weak sense. We now state the definition of weak solutions. DEFINITION 1.1. Assume that $\mathbf{f} \in L^{p(x)}_{loc}(\Omega)$. A function $u \in W^{1,p(x)}_{loc}(\Omega)$ is a local weak solution of (1.1) in Ω if for any $\varphi \in W^{1,p(x)}_0(\Omega)$, we have $$\int_{\Omega} a(x, \nabla u) \cdot \nabla \varphi \ dx = \int_{\Omega} |\mathbf{f}|^{p(x)-2} \mathbf{f} \cdot \nabla \varphi \ dx.$$ Now let us state the main result of this work. THEOREM 1.2. If u is a local weak solution of problem (1.1) under the assumptions (1.2)–(1.7), then ∇u is locally Hölder continuous. ## 2. Proof of the main result In this section we provide the proof of Theorem 1.2. We first recall the following reverse Hölder inequality. LEMMA 2.1. (see [3], Theorem 5) If u is a local weak solution of problem (1.1) under the assumptions (1.2)–(1.6), then there exist positive constants σ_0 , $R_0 < 1$, C, depending on $n, \mu, \gamma_1, \gamma_2, C_i > 0$, i = 1, 2, 3, 4, such that $$\oint_{B_{R/2}} |\nabla u|^{p(x)(1+\sigma)} dx \leqslant C \left(\oint_{B_R} |\nabla u|^{p(x)} dx \right)^{1+\sigma} + C \left(\oint_{B_R} 1 + |\mathbf{f}|^{p(x)(1+\sigma)} dx \right)$$ for any $R \leq R_0$ and $\sigma \leq \sigma_0$. We denote $$p_m(R) = \min_{\overline{B_R}} p(x)$$ and $p_M(R) = \max_{\overline{B_R}} p(x)$. Furthermore, we can obtain the following result. LEMMA 2.2. If u is a local weak solution of problem (1.1) under the assumptions (1.2)–(1.6), then there exists a positive constant $R_1 \in (0,R_0)$ such that $$\int_{B_{R/2}} |\nabla u|^{p(x)(1+\sigma_0)} dx \leq CR^{-n\sigma_0} \int_{B_R} \left(|\nabla u|^{p_M(R)} + 1 \right) dx$$ for any $R \leqslant R_1$ with $B_{R_0} \subset \Omega$. *Proof.* We shall initially take R_1 small enough such that $0 < R_1 < R_0 < 1$ and $$|p(x) - p(y)| \leqslant C_1 |x - y|^{\alpha_1} \leqslant C_1 (2R_1)^{\alpha_1} \leqslant \frac{\sigma_0 \gamma_1}{\sigma_0 + 2}$$ for any $x,y \in B_{R_1}$. Assume that $R \leqslant R_1$. Then we find that $p_m(R) \geqslant \gamma_1 > 1$ and $$p_M(R) \leq p_M(R) - p_m(R) + p_m(R) \leq p_m(R) + \frac{\sigma_0 \gamma_1}{\sigma_0 + 2}$$ which implies that $$p_{M}(R) \leq p_{M}(R)(1 + \sigma_{0}/2) \leq \left(p_{m}(R) + \frac{\sigma_{0}\gamma_{1}}{\sigma_{0} + 2}\right)(1 + \sigma_{0}/2)$$ $$\leq p_{m}(R)\left(1 + \frac{\sigma_{0}}{\sigma_{0} + 2}\right)(1 + \sigma_{0}/2) = p_{m}(R)(1 + \sigma_{0})$$ $$\leq p(x)(1 + \sigma_{0}). \tag{2.1}$$ From Lemma 2.1 and the fact that $\{f^i\}\in C^{0,\alpha_2}_{loc}(\Omega)$ we have $$\int_{B_{R/2}} |\nabla u|^{p(x)(1+\sigma_0)} dx \le C \left\{ \left(\int_{B_R} |\nabla u|^{p(x)} dx \right)^{1+\sigma_0} + 1 \right\},$$ which implies that $$\int_{B_{R/2}} |\nabla u|^{p(x)(1+\sigma_0)} dx \leq C \left\{ \left(\int_{B_R} |\nabla u|^{p(x)} dx \right)^{\sigma_0} \times \left(\int_{B_R} |\nabla u|^{p(x)} dx \right) + 1 \right\} \leq C \left\{ R^{-n\sigma_0} \int_{B_R} |\nabla u|^{p(x)} dx + 1 \right\} \leq C R^{-n\sigma_0} \int_{B_R} \left(|\nabla u|^{p(x)} + 1 \right) dx \leq C R^{-n\sigma_0} \int_{B_R} \left(|\nabla u|^{p_M(R)} + 1 \right) dx$$ (2.2) for any $R \leqslant R_1 \leqslant R_0 < 1$ with $B_{R_0} \subset \Omega$, since $u \in W_{loc}^{1,p(x)}(\Omega)$. \square Assume that $R \leq R_1/2 \leq R_0/2$ with $B_{R_0} \subset \Omega$. We may assume that $$p(x_M) = p_M(2R) = \max_{\overline{B_{2R}}} p(x).$$ For simplicity we write $$p_2 =: p(x_M).$$ Let us consider the weak solution of the following reference equation $$\begin{cases} \operatorname{div} a(x_M, \nabla v) = 0 & \operatorname{in} B_R, \\ v = u & \operatorname{on} \partial B_R, \end{cases}$$ which implies that $$\begin{cases} \operatorname{div} a(x_M, \nabla v) = \operatorname{div} (|\mathbf{f}(x_M)|^{p_2 - 2} \mathbf{f}(x_M)) & \operatorname{in} B_R, \\ v = u & \operatorname{on} \partial B_R, \end{cases} (2.3)$$ since div $(|\mathbf{f}(x_M)|^{p_2-2}\mathbf{f}(x_M)) = 0$. LEMMA 2.3. (see [21], Lemma 5.1) If v is the weak solution of problem (2.3), then we have $$\sup_{B_{R/2}} |\nabla v|^{p_2} \leqslant CR^{-n} \int_{B_R} |\nabla v|^{p_2} dx, \tag{2.4}$$ $$\int_{B_{\rho}} \left| \nabla v - (\nabla v)_{B_{\rho}} \right|^{p_2} dx \leqslant C \left(\frac{\rho}{R} \right)^{\beta_1} \int_{B_{\rho}} \left| \nabla v - (\nabla v)_{B_{\rho}} \right|^{p_2} dx, \tag{2.5}$$ $$\int_{B_R} |\nabla v|^{p_2} dx \leqslant C \int_{B_R} |\nabla u|^{p_2} + 1 dx, \tag{2.6}$$ for any $\rho < R$, where $$(\nabla v)_{B_{\rho}} = \int_{B_{\rho}} \nabla v \, dx,$$ and $\beta_1 \in (0,1)$ and C are two positive constants depending on $p_2, n, \mu, \gamma_1, \gamma_2, C_i$ $(1 \le i \le 5)$. Lemma 2.4. Assume that $R \leq R_1/2 \leq R_0/2$ with $B_{R_0} \subset \Omega$. If u is a local weak solution of problem (1.1) under the assumptions (1.2)-(1.7) and v is the weak solution of the reference equation (2.3), then there exists a positive constant $\beta \in (0,1)$, depending on $n, \sigma_0, \gamma_1, \gamma_2, \alpha_i$ $(1 \leq i \leq 3)$, such that $$\int_{B_R} |\nabla u - \nabla v|^{p_2} dx \leqslant CR^{\beta} \int_{B_{2R}} (|\nabla u|^{p_2} + 1) dx,$$ where C depends on $n, \mu, \gamma_1, \gamma_2, \alpha_i$ $(1 \le i \le 3)$, C_j $(1 \le j \le 5)$, and the Hölder norms of $\{f^i\}$, p(x). *Proof.* Without loss of generality we may as well select the test function $\varphi = u - v$. From the definitions of weak solutions we have $$\int_{B_R} a(x, \nabla u) \cdot \nabla(u - v) \ dx = \int_{B_R} |\mathbf{f}(x)|^{p(x) - 2} \mathbf{f}(x) \cdot \nabla(u - v) \ dx$$ and $$\int_{B_R} a(x_M, \nabla v) \cdot \nabla(u - v) \ dx = \int_{B_R} |\mathbf{f}(x_M)|^{p_2 - 2} \mathbf{f}(x_M) \cdot \nabla(u - v) \ dx.$$ After a direct calculation we show the resulting expression as $$I_4 = I_1 + I_2 + I_3$$ where $$\begin{split} I_1 &= -\int_{B_R} \left(a(\mathbf{x}, \nabla u) - a(\mathbf{x}_M, \nabla u) \right) \cdot \nabla(u - v) \ d\mathbf{x}, \\ I_2 &= \int_{B_R} \left(|\mathbf{f}(\mathbf{x})|^{p(\mathbf{x}) - 2} \mathbf{f}(\mathbf{x}) - |\mathbf{f}(\mathbf{x}_M)|^{p(\mathbf{x}) - 2} \mathbf{f}(\mathbf{x}_M) \right) \cdot \nabla(u - v) \ d\mathbf{x}, \\ I_3 &= \int_{B_R} \left(|\mathbf{f}(\mathbf{x}_M)|^{p(\mathbf{x}) - 2} \mathbf{f}(\mathbf{x}_M) - |\mathbf{f}(\mathbf{x}_M)|^{p_2 - 2} \mathbf{f}(\mathbf{x}_M) \right) \cdot \nabla(u - v) \ d\mathbf{x}, \\ I_4 &= \int_{B_R} \left(a(\mathbf{x}_M, \nabla u) - a(\mathbf{x}_M, \nabla v) \right) \cdot \nabla(u - v) \ d\mathbf{x}. \end{split}$$ Estimate of I_1 . From (1.7) and Hölder's inequality, we have $$I_{1} \leq C \int_{B_{R}} |x - x_{M}|^{\alpha_{3}} \left| \log \left(\mu^{2} + |\nabla u|^{2} \right) \right| \left(\mu^{2} + |\nabla u|^{2} \right)^{\frac{p_{2}-1}{2}} |\nabla (u - v)| dx$$ $$\leq CR^{\alpha_{3}} \int_{B_{R}} \left(1 + |\nabla u|^{p_{2}-1+\delta} \right) |\nabla (u - v)| dx$$ $$\leq CR^{\alpha_{3}} \left(\int_{B_{R}} |\nabla (u - v)|^{p_{2}} dx \right)^{1/p_{2}} \left(\int_{B_{R}} (|\nabla u| + 1)^{\frac{(p_{2}-1+\delta)p_{2}}{p_{2}-1}} dx \right)^{\frac{p_{2}-1}{p_{2}}}$$ for any $\delta>0$. Selecting proper $\delta\in(0,(\gamma_1-1)\sigma_0/2)$, we deduce from (2.1) that $$\frac{p_2(p_2 - 1 + \delta)}{p_2 - 1} = p_2 \left(1 + \frac{\delta}{p_2 - 1} \right) \leqslant p_2 \left(1 + \frac{\delta}{\gamma_1 - 1} \right) \leqslant p_2 \left(1 + \frac{\sigma_0}{2} \right) \leqslant p(x) (1 + \sigma_0).$$ Therefore, Lemma 2.2 implies that $$\begin{split} I_{1} &\leqslant CR^{\alpha_{3}} \left(\int_{B_{R}} |\nabla(u-v)|^{p_{2}} dx \right)^{1/p_{2}} \left(\int_{B_{R}} (|\nabla u|+1)^{p(x)(1+\sigma_{0})} dx \right)^{\frac{p_{2}-1}{p_{2}}} \\ &\leqslant CR^{\alpha_{3}-\frac{n\sigma_{0}(p_{2}-1)}{p_{2}}} \left(\int_{B_{R}} |\nabla(u-v)|^{p_{2}} dx \right)^{1/p_{2}} \left(\int_{B_{2R}} (|\nabla u|^{p_{2}}+1) dx \right)^{\frac{p_{2}-1}{p_{2}}} \\ &\leqslant CR^{\alpha_{3}-n\sigma_{0}+\frac{n\sigma_{0}}{p_{2}}} \left(\int_{B_{R}} |\nabla(u-v)|^{p_{2}} dx \right)^{1/p_{2}} \left(\int_{B_{2R}} (|\nabla u|^{p_{2}}+1) dx \right)^{\frac{p_{2}-1}{p_{2}}}, \end{split}$$ since $$R^{\alpha_3 - \frac{n\sigma_0(p_2 - 1)}{p_2}} = R^{\alpha_3 - n\sigma_0 + \frac{n\sigma_0}{p_2}} \leqslant R^{\alpha_3 - n\sigma_0 + \frac{n\sigma_0}{\gamma_2}}.$$ Estimate of I_2 . We consider the following two cases. Case 1. $p(x) \ge 2$. Using the elementary inequality $$||\xi|^{p-2}\xi - |\eta|^{p-2}\eta| \le C(|\xi| + |\eta|)^{p-2}|\xi - \eta|$$ for any $p\geqslant 2$, $\xi,\eta\in\mathbb{R}^n$ with C=C(p), Hölder's inequality and the fact that $\{f^i\}\in C^{0,\alpha_2}_{loc}(\Omega)$, we have $$I_{2} \leq \int_{B_{R}} \left| |\mathbf{f}(x)|^{p(x)-2} \mathbf{f}(x) - |\mathbf{f}(x_{M})|^{p(x)-2} \mathbf{f}(x_{M}) \right| |\nabla(u-v)| dx,$$ $$\leq \int_{B_{R}} (|\mathbf{f}(x)| + |\mathbf{f}(x_{M})|)^{p(x)-2} |\mathbf{f}(x) - \mathbf{f}(x_{M})| |\nabla(u-v)| dx,$$ $$\leq CR^{\alpha_{2}} \int_{B_{R}} |\nabla(u-v)| dx$$ $$\leq CR^{\alpha_{2}} \left(\int_{B_{R}} |\nabla u - \nabla v|^{p_{2}} dx \right)^{\frac{1}{p_{2}}}.$$ Case 2. 1 < p(x) < 2. Using the elementary inequality $$||\xi|^{p-2}\xi - |\eta|^{p-2}\eta| \le C|\xi - \eta|^{p-1}$$ for any $p \in (1,2)$, $\xi, \eta \in \mathbb{R}^n$ with C = C(p), Hölder's inequality and the fact that $\{f^i\} \in C^{0,\alpha_2}_{loc}(\Omega)$, we have $$\begin{split} I_2 &\leqslant \int_{B_R} |\mathbf{f}(x) - \mathbf{f}(x_M)|^{p(x)-1} |\nabla(u - v)| \, dx \\ &\leqslant C \int_{B_R} R^{(p(x)-1)\alpha_2} |\nabla(u - v)| \, \, dx \\ &\leqslant C R^{(\gamma_1 - 1)\alpha_2} \int_{B_R} |\nabla(u - v)| \, \, dx \\ &\leqslant C R^{(\gamma_1 - 1)\alpha_2} \left(\int_{B_R} |\nabla u - \nabla v|^{p_2} \, dx \right)^{\frac{1}{p_2}}. \end{split}$$ Estimate of I_3 . From the mean-value theorem, Hölder's inequality and the facts that $p(x) \in C^{0,\alpha_1}_{loc}(\Omega)$ and $\{f^i\} \in C^{0,\alpha_2}_{loc}(\Omega)$, we have $$I_{3} \leq C \int_{B_{R}} |p_{2} - p(x)| \left(1 + |\mathbf{f}(x_{M})|^{p_{2}-1}\right) |\ln\left(|\mathbf{f}(x_{M})|\right)| |\nabla(u - v)| dx$$ $$\leq CR^{\alpha_{1}} \int_{B_{R}} |\nabla(u - v)| dx$$ $$\leq CR^{\alpha_{1}} \left(\int_{B_{R}} |\nabla u - \nabla v|^{p_{2}} dx\right)^{\frac{1}{p_{2}}}.$$ Combining all the estimates of I_i $(1 \le i \le 3)$, we obtain $$I_{4} = I_{1} + I_{2} + I_{3}$$ $$\leq CR^{\beta_{2}} \left(\int_{B_{R}} |\nabla u - \nabla v|^{p_{2}} dx \right)^{\frac{1}{p_{2}}} \left(\int_{B_{2R}} (|\nabla u|^{p_{2}} + 1) dx \right)^{\frac{p_{2}-1}{p_{2}}}, \quad (2.7)$$ where $$\beta_2 =: \min \left\{ \alpha_1, \alpha_2, (\gamma_1 - 1)\alpha_2, \alpha_3 - n\sigma_0 + \frac{n\sigma_0}{\gamma_2} \right\}.$$ Without loss of generality we may as well assume that $\sigma_0 > 0$ small enough such that $\sigma_0 n(1 - 1/\gamma_2) < \alpha_3$. Then we observe that $\beta_2 > 0$. Estimate of I_4 . We consider the following two cases. Case 1. $p_2 = p(x_M) \ge 2$. Using the following condition $$[a(x,\xi) - a(x,\eta)] \cdot (\xi - \eta) \geqslant C_1 |\xi - \eta|^{p(x)},$$ we have $$I_4 \geqslant C \int_{B_R} |\nabla u - \nabla v|^{p_2} dx.$$ From (2.7) we have $$\int_{B_R} |\nabla u - \nabla v|^{p_2} dx \leqslant CR^{\frac{\beta_2 p_2}{p_2 - 1}} \int_{B_{2R}} (|\nabla u|^{p_2} + 1) dx \leqslant CR^{\frac{\beta_2 p_2}{p_2 - 1}} \int_{B_{2R}} (|\nabla u|^{p_2} + 1) dx.$$ Case 2. $1 < p_2 = p(x_M) < 2$. From the following condition $$[a(x,\xi) - a(x,\eta)] \cdot (\xi - \eta) \ge C \left(\mu^2 + |\xi|^2 + |\eta|^2\right)^{\frac{p(x) - 2}{2}} |\xi - \eta|^2$$ we have $$I_{4} \geqslant C \int_{B_{D}} \left(\mu^{2} + |\nabla u|^{2} + |\nabla v|^{2} \right)^{\frac{p_{2}-2}{2}} |\nabla u - \nabla v|^{2} dx. \tag{2.8}$$ Therefore, using Hölder's inequality and (2.6), we have $$\begin{split} \int_{B_R} |\nabla u - \nabla v|^{p_2} dx &= \int_{B_R} \left(\mu^2 + |\nabla u|^2 + |\nabla v|^2 \right)^{\frac{p_2 - 2}{4} + \frac{2 - p_2}{4}} |\nabla u - \nabla v| |\nabla u - \nabla v|^{p_2 - 1} dx \\ &\leq \left(\int_{B_R} \left(\mu^2 + |\nabla u|^2 + |\nabla v|^2 \right)^{\frac{p_2 - 2}{2}} |\nabla u - \nabla v|^2 dx \right)^{\frac{1}{2}} \\ &\times \left(\int_{B_R} \left(\mu^2 + |\nabla u|^2 + |\nabla v|^2 \right)^{\frac{2 - p_2}{2}} |\nabla u - \nabla v|^{2p_2 - 2} dx \right)^{\frac{1}{2}}. \end{split}$$ Therefore, it follows from (2.6) and (2.8) that $$\begin{split} \int_{B_R} |\nabla u - \nabla v|^{p_2} \, dx & \leq C I_4^{1/2} \left(\int_{B_R} \left(1 + |\nabla u|^2 + |\nabla v|^2 \right)^{\frac{2-p_2}{2}} \left(1 + |\nabla u|^2 + |\nabla v|^2 \right)^{\frac{2p_2 - 2}{2}} \, dx \right)^{\frac{1}{2}} \\ & \leq C I_4^{1/2} \left(\int_{B_R} \left(1 + |\nabla u|^{p_2} + |\nabla v|^{p_2} \right) \, dx \right)^{\frac{1}{2}} \end{split}$$ $$\leq CI_4^{1/2} \left(\int_{B_R} (1 + |\nabla u|^{p_2}) \ dx \right)^{\frac{1}{2}}$$ $$\leq CI_4^{1/2} \left(\int_{B_{2R}} (1 + |\nabla u|^{p_2}) \ dx \right)^{\frac{1}{2}}.$$ Thus, in view of (2.7) we find that $$\int_{B_R} |\nabla u - \nabla v|^{p_2} dx \le CR^{\beta_2/2} \left(\int_{B_R} |\nabla u - \nabla v|^{p_2} dx \right)^{\frac{1}{2p_2}} \left(\int_{B_{2R}} (1 + |\nabla u|^{p_2}) dx \right)^{\frac{2p_2 - 1}{2p_2}},$$ which implies that $$\begin{split} \int_{B_R} |\nabla u - \nabla v|^{p_2} \, dx & \leq C R^{\frac{\beta_2 p_2}{2p_2 - 1}} \int_{B_{2R}} \left(|\nabla u|^{p_2} + 1 \right) dx \\ & \leq C R^{\frac{\beta_2 \gamma_2}{2\gamma_2 - 1}} \int_{B_{2R}} \left(|\nabla u|^{p_2} + 1 \right) dx. \end{split}$$ Thus, combining the estimates of I_4 in Case 1 and Case 2, we obtain $$\int_{B_R} |\nabla u - \nabla v|^{p_2} dx \leqslant CR^{\frac{\beta_2 \gamma_2}{2\gamma_2 - 1}} \int_{B_{2R}} (|\nabla u|^{p_2} + 1) dx,$$ which can finish the proof by choosing $\beta = \frac{\beta_2 \gamma_2}{2\gamma_2 - 1}$. LEMMA 2.5. Assume that $B_{8R_0} \subset \Omega_0 \subset \subset \Omega$. If u is a local weak solution of problem (1.1) under the assumptions (1.2)-(1.7), then for any $\tau \in (0,n)$ there exist positive constants $R_2 \in (0,R_1)$ and C, depending on $n,\mu,\gamma_1,\gamma_2,\alpha_i$ $(1 \leq i \leq 3)$, C_j $(1 \leq j \leq 5)$, dist $\{\Omega_0,\Omega\}$, such that for any $0 < \rho \leqslant R/16 \leqslant R_2/16 < R_1/16 \leqslant R_0/16$. Proof. From (2.5) in Lemma 2.3, Lemma 2.4 and Hölder's inequality we have $$\begin{split} &\int_{B_{\rho}} |\nabla u|^{p_2} \, dx \\ &\leqslant C \left(\int_{B_{\rho}} |\nabla u - \nabla v|^{p_2} \, dx + \int_{B_{\rho}} \left| \nabla v - (\nabla v)_{B_{\rho}} \right|^{p_2} \, dx + \rho^n \left| (\nabla v)_{B_{\rho}} \right|^{p_2} \right) \\ &\leqslant C \left(R^{\beta} \int_{B_{R/4}} \left(|\nabla u|^{p_2} + 1 \right) dx + \left(\frac{\rho}{R} \right)^{n+\beta_1} \int_{B_R} \left| \nabla v - (\nabla v)_{B_R} \right|^{p_2} dx + \int_{B_{\rho}} |\nabla v|^{p_2} \, dx \right) \\ &\leqslant C \left(R^{\beta} \int_{B_{R/4}} \left(|\nabla u|^{p_2} + 1 \right) dx + \left(\frac{\rho}{R} \right)^{n+\beta_1} \int_{B_R} \left| \nabla v - (\nabla v)_{B_R} \right|^{p_2} dx + \rho^n \sup_{B_{\rho}} |\nabla v| \right), \end{split}$$ which implies that $$\begin{split} &\int_{B_{\rho}} |\nabla u|^{p_2} \, dx \\ &\leqslant C \left(R^{\beta} \int_{B_{R/4}} \left(|\nabla u|^{p_2} + 1 \right) dx + \left(\frac{\rho}{R} \right)^{n+\beta_1} \int_{B_R} |\nabla v|^{p_2} \, dx + \left(\frac{\rho}{R} \right)^n \int_{B_R} |\nabla v|^{p_2} \, dx \right) \\ &\leqslant C \left(R^{\beta} \int_{B_{R/4}} \left(|\nabla u|^{p_2} + 1 \right) \, dx + \left(\frac{\rho}{R} \right)^n \int_{B_R} \left(|\nabla u|^{p_2} + 1 \right) dx \right) \end{split}$$ for any $\rho \leqslant R/8 \leqslant R_1/8$, in view of (2.4) and (2.6) in Lemma 2.3. So, we have $$\int_{B_{\rho}} |\nabla u|^{p_2} dx \leqslant C \left[\left(R^{\beta} + \left(\frac{\rho}{R} \right)^n \right) \int_{B_{R}} |\nabla u|^{p_2} dx + R^n \right].$$ Finally, similarly to the proof of (12) in [8], from a covering and iteration argument (see Lemma 3.2 in [1]), for every $\tau \in (0,n)$ there exist positive constants $R_2, C > 0$ such that for all $0 < \rho \le R/16 \le R_2/16 \le R_1/16 \le R_0/16$ such that (2.9) holds. \square Now we are ready to prove the main result, Theorem 1.2. Proof. From Young's inequality and Hölder's inequality, we have $$\begin{split} &\int_{B_{\rho}} \left| \nabla u - (\nabla u)_{B_{\rho}} \right|^{p_{2}} dx \\ &\leqslant C \left[\int_{B_{\rho}} \left| \nabla u - (\nabla v)_{B_{\rho}} \right|^{p_{2}} dx + \rho^{n} \left| (\nabla u)_{B_{\rho}} - (\nabla v)_{B_{\rho}} \right|^{p_{2}} \right] \\ &\leqslant C \int_{B_{\rho}} \left| \nabla u - (\nabla v)_{B_{\rho}} \right|^{p_{2}} dx \\ &\leqslant C \left[\rho^{n} - \int_{B_{\rho}} \left| \nabla v - (\nabla v)_{B_{\rho}} \right|^{p_{2}} dx + \int_{B_{\rho}} \left| \nabla u - \nabla v \right|^{p_{2}} dx \right]. \end{split}$$ Therefore, it follows from (2.5)–(2.6) in Lemma 2.3 and Lemma 2.5 that $$\begin{split} &\int_{B_{\rho}} \left| \nabla u - (\nabla u)_{B_{\rho}} \right|^{p_{2}} dx \\ &\leqslant C \left[\left(\frac{\rho}{R} \right)^{\beta_{1}} \rho^{n} \int_{B_{R/16}} \left| \nabla v - (\nabla v)_{B_{R/16}} \right|^{p_{2}} dx + R^{\beta} \int_{B_{2R}} (|\nabla u|^{p_{2}} + 1) \ dx \right] \\ &\leqslant C \left[\left(\frac{\rho}{R} \right)^{\beta_{1}} \rho^{n} \int_{B_{R/16}} |\nabla v|^{p_{2}} dx + R^{n+\beta-\tau} \right] \\ &\leqslant C \left[\left(\frac{\rho}{R} \right)^{\beta_{1}} \rho^{n} \int_{B_{R}} (|\nabla u|^{p_{2}} + 1) dx + R^{n+\beta-\tau} \right] \\ &\leqslant C \left[\left(\frac{\rho}{R} \right)^{\beta_{1}} \rho^{n} R^{-\tau} + R^{n+\beta-\tau} \right] = CR^{-\tau-\beta_{1}} \left[\rho^{n+\beta_{1}} + R^{n+\beta+\beta_{1}} \right] \end{split}$$ for any $0 < \rho \leqslant R/32 \leqslant R_2/32 \leqslant R_1/32 \leqslant R_0/32$ with $B_{8R_0} \subset \Omega_0 \subset\subset \Omega$. Choose $\rho = \frac{R^{1+\mu}}{32}$, where $\mu = \frac{\beta}{n+\beta_1} > 0$. Then we obtain $$\rho^{n+\beta_1} \leqslant CR^{n+\beta+\beta_1},$$ which implies that $$\int_{B_{\rho}} \left| \nabla u - (\nabla u)_{B_{\rho}} \right|^{p_2} dx \leqslant CR^{n+\beta-\tau} \leqslant C\rho^{\frac{n+\beta-\tau}{1+\mu}} \leqslant C\rho^{n+\frac{\beta-\mu n-\tau}{1+\mu}}.$$ Choose $\tau = \frac{\beta \beta_1}{2(n+\beta_1)} > 0$. Then we have $$\beta - \mu n - \tau = \frac{\beta \beta_1}{n + \beta_1} - \tau = \frac{\beta \beta_1}{2(n + \beta_1)} > 0.$$ Furthermore, from Hölder's inequality we have $$\int_{B_{\rho}} \left| \nabla u - (\nabla u)_{B_{\rho}} \right|^{\gamma_{1}} dx$$ $$\leq \left(\int_{B_{\rho}} \left| \nabla u - (\nabla u)_{B_{\rho}} \right|^{p_{2}} dx \right)^{\frac{\gamma_{1}}{p_{2}}} \leq C \rho^{\frac{(\beta - \mu n - \tau)\gamma_{1}}{(1 + \mu)p_{2}}} \leq C \rho^{\frac{(\beta - \mu n - \tau)\gamma_{1}}{(1 + \mu)\gamma_{2}}} =: C \rho^{\alpha}$$ for any $0 < \rho \leqslant R/32 \leqslant R_2/32 \leqslant R_1/32 \leqslant R_0/32$ with $B_{8R_0} \subset \Omega_0 \subset\subset \Omega$. It is easy to see that $$\alpha = \frac{(\beta - \mu n - \tau)\gamma_1}{(1 + \mu)\gamma_2} > 0.$$ Then from Campanato's theorem (see [17], Theorem 1.3 of Chapter 3) we conclude that $u \in C^{1,\alpha}(B_{R_2/32})$. Thus, we can complete the proof of Theorem 1.2 by an elementary covering argument. \square Acknowledgements. The author wishes to thank the anonymous reviewer for the valuable comments and suggestions to improve the expressions. This work is supported in part by the NSFC (11001165) and a grant of "The First-class Discipline of Universities in Shanghai". ## REFERENCES - [1] E. ACERBI & G. MINGIONE, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121–140. - [2] E. ACERBI & G. MINGIONE, Regularity results for a stationary electro-rheologicaluids, Arch. Ration. Mech. Anal., 164 (3) (2002), 213–259. - [3] E. ACERBI & G. MINGIONE, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math., 584 (2005), 117–148. - [4] S. BYUN & L. WANG, Quasilinear elliptic equations with BMO coefficients in Lipschitz domains, Trans. Amer. Math. Soc., 359 (12) (2007), 5899–5913. - [5] S. BYUN, L. WANG & S. ZHOU, Nonlinear elliptic equations with BMO coefficients in Reifenberg domains, J. Funct. Anal., 250 (1) (2007), 167–196. - [6] S. BYUN & L. WANG, Nonlinear gradient estimates for elliptic equations of general type, Calc. Var. Partial Differ. Equ., 45 (3–4) (2012), 403–419. - [7] S. CHALLAL & A. LYAGHFOURI, Gradient estimates for p(x)-harmonic functions, Manuscripta Math., 131 (3-4) (2010), 403–414. - [8] A. COSCIA & G. MINGIONE, Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris Math., **328** (4) (1999), 363–368. - [9] E. DIBENEDETTO & J. MANFREDI, On the higer integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math., 115 (1993), 1107–1134. - [10] L. DIENING, Riesz potential and Sobolev embeddings of generalized Lebesgue and Sobolev spaces $L^{p(.)}$ and $W^{k,p(.)}$, Math. Nach., 268 (1) (2004), 31–43. - [11] L. DIENING & M. RÜŽIČKA, Calderón-Zygmund operators on generalized Lebesgue spaces L^{p(·)} and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197–220. - [12] L. DIENING & M. RÚŽIČKA, Integral operators on the halfspace in generalized Lebesgue spaces L^{p(.)}, part I, J. Math. Anal. Appl., 298 (2) (2004), 559–571. - [13] G. DI FAZIO, D. PALAGACHEV & M. A. RAGUSA, Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal. 166 (2) (1999), 179–196. - [14] F. DUZAAR & G. MINGIONE, Gradient estimates via non-linear potentials, Amer. J. Math., 133 (4) (2011), 1093–1149. - [15] X. FAN, J. SHEN & D. ZHAO, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749–760. - [16] X. FAN & D. ZHAO, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., **263** (2001), 424–446. - [17] M. GIAQUINTA, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton University Press, 1983. - [18] P. HARJULEHTO, Variable exponent Sobolev spaces with zero boundary values, Math. Bohem., 132 (2007), 125–136. - [19] J. KINNUNEN & S. ZHOU, A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differential Equations, 24 (1999), 2043–2068. - [20] T. KUUSI & G. MINGIONE, Universal potential estimates, J. Funct. Anal., 262 (10) (2012), 4205–4269. - [21] G. M. LIEBERMAN, The natural generalization of the natural conditions of Ladyzenskaja and Ural'tzeva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311–361. - [22] A. LYAGHFOURI, Hölder continuity of p(x)-superharmonic functions, Nonlinear Anal., 73 (8) (2010), 2433–2444. - [23] N. C. PHUC, Weighted estimates for nonhomogeneous quasilinear equations with discontinuous coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (1) (2011), 1–17. - [24] K. R. RAJAGOPAL & M. RŮŽIČKA, Mathematical modeling of electro-rheological materials, Contin. Mech. Thermodyn., 13 (1) (2001), 59–78. - [25] M. RůŽIČKA, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000. - [26] L. WANG, Compactness methods for certain degenerate elliptic equations, J. Differential Equations, 107 (2) (1994), 341–350. - [27] C. ZHANG & S. ZHOU, Hölder regularity for the gradients of solutions of the strong p(x)-Laplacian, J. Math. Anal. Appl., **389** (2) (2012), 1066–1077. (Received March 4, 2013) Fengping Yao Department of Mathematics Shanghai University Shanghai 200444, China e-mail: yfp@shu.edu.cn