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A MULTIDIMENSIONAL DISCRETE HILBERT-TYPE INEQUALITY

BICHENG YANG AND QIANG CHEN

(Communicated by J. Pecari¢)

Abstract. In this paper, by using the way of weight coefficients and technique of real analysis,
a multidimensional discrete Hilbert-type inequality with parameters and a best possible constant
factor is given. The equivalent form, the operator expressions with the norm are also considered.

1. Introduction

Ifp>1, ;+,=1 f(x), g0) 20, feL’(Ry), g LIRy), [If]l, =

1
{Jo" fP(x)dx}r >0, ||g||ls > 0, then we have the following Hardy-Hilbert’s integral
inequality (cf. [1]):

= [T f(x)gy)
/O /0 ﬁdxdy< (77:/ )||f|‘p”g”q» (1)

where the constant factor 3 is the best possible. Assuming that a,,, b, > 0,

ﬂin(z/p
a={a}yy €17, b={by}i, €19, llall, = (S5 ah}? > 0. |[olly >0, we have
the following discrete Hardy-Hilbert’s inequality with the same best constant

> ¥ o

m=1n=1

sin(n/p) .

m+n sm(ﬂ:/p)” ||P|‘b”f] (2)

Inequalities (1) and (2) are important in Analysis and its applications (cf. [1], [2], [3],
[4], [51, [6D).

In 1998, by introducing an independent parameter A € (0,1], Yang [7] gave an
extension of (1) at p = g =2. In recent years, Yang [3] and [4], gave some extensions
of (1) and (2) as follows:

If 41, A2, AR, A1+ 4, = A, ky (x,y) is a non-negative homogeneous function
of degree —A, with

k(21) =/O ky (6, )M~ dr e Ry,
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00) = xR0 () = xR f(x). g(y) >0,
retps®0)={Fillfllei={ [ oWlrran’t <},

g€ Lyy(Ry), [|fllpo- |Igllg.w > 0, then we have

| [ e segtidsay < k(i) 3)
0 0

where the constant factor k(A;) is the best possible. Moreover, if k) (x,y) is finite
and k;, (x,y)x* =1 (k (x,y)y*271) is decreasing with respect to x > 0 (y > 0), then for
am,bn >0,

a€lpo= {“§|a|p7¢ = {Z do(m)lanl?}r < W}7

b=Ab,}7_ | €lgy, llallpe, [|Pllgy > 0, we have the following inequality:

o oo

Y. 2 ka(m,n)ambn < k(A1)llallpgllbllg.y, S

m=1n=1

where the constant factor k() is still the best possible.

Clearly, for A =1, ky(x,y) = x+ , A= q, A = %, (3) reduces to (1), while (4)
reduces to (2). Some other results 1nc1ud1ng the multidimensional Hilbert-type integral
inequalities are provided by [8]-[21].

About the topic of half-discrete Hilbert-type inequalities with the non-homogene-
ous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did
not prove that the the constant factors are the best possible. However, Yang [22] gave
a result with the kernel T by introducing a variable and proved that the constant

factor is the best possible. In 2011 Yang [23] gave the following half-discrete Hilbert’s
inequality with the best possible constant factor B (4;,4;):

oz

n—l

—dx < B(A1,22) (5)

where 11, L, >0,0< L <1, A1+ =4,

= 1
B(M7V) :/0 WZM 1dt(u,v>0)
is the beta function. Zhong et al ([24]-[17]) investigated several half-discrete Hilbert-
type inequalities with particular kernels.

Applying the way of weight functions and the techniques of discrete and integral
Hilbert-type inequalities, a half-discrete Hilbert-type inequality with a general homoge-
neous kernel of degree —A € R and a best constant factor & (4,) is obtained as follows:

7160 X ki mands < k()| (©)
n=1
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which is an extension of (5) (see Yang and Chen [30]). At the same time, a half-discrete
Hilbert-type inequality with a general non-homogeneous kernel and a best constant
factor is given by Yang [31].

In this paper, by using the way of weight coefficients and technique of real analy-
sis, a multidimensional discrete Hilbert’s inequality with parameters and a best possible

constant factor is given, which is an extension of (4) for k; (m,n) = % . The

equivalent form, the operator expressions with the norm are also considered.

2. Some lemmas

If ip, jo € N(N is the set of positive integers), ¢, B > 0, we put
, 1
0 o .
HXHOC = (Zxka> (x:(xlf"vxio)ERlO)» (7)

k=1
1

Jo B .
Il := (Z ykﬁ> (y=1,--,yj,) ER?). ®)
=1

LEMMA 1. If seN, v, M >0, Y(u) is a non-negative measurable function in
(0,1], and

Dy = {x € R;,ny < My}

i=1

then we have (cf. [32])

s MT* l) 1 ;
dre e ) s-1
/ /D ' (; )dxl e /0 W ()t du. )

LEMMA 2. For se N, y> 0, € > 0, we have

2|l = r'y) +0(1)(e —07) (10)
v 0",
et
Proof. For M > s/, we set
0, 0<u< g7,
Y(u) =
(Mul/y) a7 Su<l
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Then by (9), it follows
Sl e [ Il
€R’ xi>1}
S
= lim / / dxy ---dx,
M—o0 Dy i=l
ST s (1
_ MT (Y) 1/y\—s—g, 5—1 4 r (7_/)
= lim (Mu''7) ur duy= ——"———.
M= PT(35) sy ese/Ty 1T (5)

By the above way, we still find

o< 3 lmlps [l
, T Jperymzy ese/TpI0(2)

{meNs;m;>2}

Fors=1,0<Y)_, HmH;l’e < oo for 5 > 2,

— —(s—1)—(1+
0< D [Im||,* ¢ <a+ 3 HmHy( )= (1+¢)
{mENS;Hio,miO:l} {mENSil;m,'>2}
r()
S L < oo(a € R+)a

_|_
(T+e)(s— DI 2 (50)

Z\Im\l_s = )y il + 3 lml], "

{meNs3ig,mj =1} {meNs;m;>2}

(L)

" (g0t

<O (1)+
Then we have (10). [

DEFINITION 1. For —y < M < -7 —r< Mh<jo—7, M+Ah=A m=
(mi,---,mjy) € N0, n=(ny,---,nj,) € N0, define two weight coefficients wy (A2,n)
and W), (A1, m) as follows:

. 212
(min{||m|[q, [n]|g})7  [lnllg
127 7 (12)
% (max{[lmlloc Tall )VF7 ]
1
Wy (Ay,m Z (min{{|mlla, [|n][})7 [|m]|G (13)

(max{[|mlla, (2]l }) 7 ||n] 0=

where, 3, = X, 1 Xy—1 and Ty =30 X
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LEMMA 3. As the assumptions of Definition 1, then (i) we have

wy (A2,n) < Ka(n € N70), (14)
Wy (A1,m) < Ky(m € N0), (15)
where,
K — T () A+2y
pi-IT(f) M+ 1 (Aa+7)
oL
K, — (a)l A2y (16)

oo IT(8) (A1 + 1) (A2 + 1)

(ii) for p>1, 0 <& < E(A1 +7), setting 7L1 ll—ﬁjzzb—kf—?,wehave

0 < Ky(1—0;(n)) < wy(Az,n), a7
where,
A+ )haty) [0/lnls (minfv, 1})rvh-!
6, (n) — S [0 T
A+2y 0 (max{v, 1})A+7
—o|——), (18)
Il 3+
_ Tio(L
Ky = — (0‘). _ )L“L,Zf/ : (19)

o0~ I0(L) (A +7) (A2 +7)

Proof. In view of the assumptions,

f(x,y) =

, A
(min{x,y})?7xM—0 xy;iy Lo<x<y,
= Y
(max{x,y})*+7 W,x 2,

is decreasing with respect to x € R, and strict decreasing with respect to x > y.
By the decreasing property and (9), it follows

| "
wi(han) < [, (<mm{lxla,|n|ﬁ}>y Il

9 maX{HxHa»HnHﬁ}))LHHxHiO_M

o [ _(min{MISE ()7 [Inllg)) il
M= [y (max{M[32 (5 )e ]é7HnHﬁ})HYM,-O%[Zﬁil(%)a]%

 MOTO(LY 1 (min{Mul/% |[n]|g})7 Il du
lim ———< / : '
Moo oo (L) Jo (max{Mu/®,||n[|g})*+7 Mio=t1ylio=h1)/e
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ML) o (min{Mu/ gDVl 4
A (% / Mul/e sy Y
oioT(2) Jo  (max{Mu'/®||n[|g})

u=|nl g Tio(L) /w (min{v, 1})7v"~1
B oo 1T(%2) Jo  (max{v, 1})*+7
(D) A+2y

2.

Hence, we have (14). By the same way, we have (15).
By the decreasing property and the same way of obtaining (10), we have

7 in|Ixll [nllg})? lInll
W;L(z,z,n) >/ . (mln{HxHOC HnHﬁ}))H_ B
{(xeR0:x>1} (max{||x]|«, ||7[|g}) y|

io—A
el

ro(d) [ (min{y, 1})7vA !
oo I T(12) Jiy/® ally -~ (max{v, 1})A+7
= K>(1—6,(n)) >0,
g g 1/o . Y
~ io' /Il Yyhi—1
0 < 8 (n) = (M+7)(A2+7) /0 B (min{v, 1})%v
A+2y 0 (max{v, 1})A+7
Y ~ /o
< (4 +Y)(7LZ+Y)M/I° /1lnllg =1 g,
A+2y 0
124_)/ ig)/"‘ll)/a
= M —
A2

(M >0).
The lemma is proved. [J

3. Main results and operator expressions

Setting ®(m) := ||| [0 (m € Nio) and W(n) = [|n][§ 020 (n e Nb),
we have

THEOREM 1. If —y< A <ip—7v, - y<hh <jo—7 M+ =A, then for

p>1, Il—,—i-é =1, am, by 20, 0 <|la||p®, ||b||lgw < oo, we have the following
inequality

min{ ||m||q, ||n Y
pyy il )

o (max{[[m]|a, nlg A+
1 1

< K{' K ||al[p.o[[b]

¥ (20)
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where the constant factor

e r/o(%) » rio(é) 7 A+2y
B = g r(%“>] lm ()] MtNaty) o

is the best possible.
Proof. By Holder’s inequality (cf. [33]), we have

A
=33 (mind {mla 12]1g})" | [lmllo " Mb
(max{||m||e,||n[|g})*+7 HnHJO W) /p " Go—A)/q "

[Imlla

1

1
ig—A1)—i P io—A2)—J 4
< {E,Wx(ﬂtl,m)Iml’&(0 M %g} {zwl(lz,n)|n|%(‘m %) ~’°bg}

Then by (14) and (15), we have (20).
For0<e<&(Ai+7), A= M—E, Jo= Ay + 5, we set
A . .
= llmlle” ™ 7 By = [Jnlly "7 (m € Non € N,

Then by (10) and (17), we obtain

1 1
ig—A1)—i p jo—A2)—jo7g L7
= { S im0 1" L5 g4

= { Sl }{z| all5 }

"(z)
Le/aaio_lr(%_) +€e0(1)

llall .ol

[

~

_ (min{ oo 1l })" ]+
=2 [2 (max [l Inllg DA+ ] "

n m

3wz (A, 570

=K [L).—FO(I)—O(U] : (23)
€]
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11 11
If there exists a constant K < K"K}/, such that (20) is valid as we replace K" K/

by K, then using (22) and (23) we have

rfo(%) .
(K2 +0(1)) | ———"——+¢€0(1) —€0(1)
2 5P BT ()
<el(1,0) < SKHaHp,qDHE ay
1
l"i() 1 P F/O 1 _ 9
=K a _("‘>1_ +¢€0(1) 7B ,( ) — +£0(1)
i e T(2) P T(R)
For € — 0", we find
, 1 . 1
Dhp) T  a+ay [ Do) ][ P ]
B IT(I) oo T(2) a+7)(a+7) " oo (@) | | pio'T(H)|

and then Kf Kf < K. Hence, K = Kf K2a is the best possible constant factor of (20). [

THEOREM 2. As the assumptions of Theorem 1, for 0 < ||a||p.a < o, we have the
1 1

following inequality with the best constant factor K f Kzﬁ :

i [ tmindlnlla nllg)an \ "\
" {;' s (%(maxﬂmu,m}w) }

11
< KK} [|allp.o, @4

which is equivalent to (20).

Proof. We set b,, as follows:

-1
. min , v b )
by = |2 (2 (min{lla lI7]15}) am> e,

o (max{||ml[a, ||n||g })*+7

Then it follows J? = HbHZ\P If J =0, then (24) is trivially valid for 0 < ||a||,,a < o
if J = oo, then it is impossible since the right hand side of (24) is finite. Suppose that
0 < J < eo. Then by (20), we find
11
6]l =7 =1 < K{ K ljal p ol b lgv-

namely,

1 1
—1 > -
HbHZ\y =J <K{K}|lallpe
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and then (24) follows.
On the other hand, assuming that (24) is valid, by Holder’s inequality, we have

-1 in{||m||q, ||n 4
B L PR TN o

n m (max{HmHmHnHﬁ})MFY

< J|[b|]gw- (25)
Then by (24), we have (20). Hence (24) and (20) are equivalent.
1 1

<

bn)

By the equivalency, the constant factor Kf Kf in (24) is the best possible. Other-
11
wise, we would reach a contradiction by (25) that the constant factor K/ K,/ in (20) is

not the best possible. [

For p > 1, we define two real weight normal discrete spaces 1,4 and 1, as
follows:

lp,q) = {a = {am};HaHp,(I) = {Z(D(m)aﬁ}% < oo} ,
by = {b = {ba}s Bl = {X ®(n)b1} 7 < oo} .

L1
As the assumptions of Theorem 1, in view of J < K{" K} ||a||p.®, we have the
following definition:

DEFINITION 2. Define a multidimensional Hilbert-type operator 7' :1, o —1,, g1
as follows: For a €1, ¢, there exists an unique representation Ta € 1, g1, satisfying

3 (min{]|m||, |n[|5})" an(n

= (max{ [l 5.l 1747 "

Ta(n) = € NI, (26)

For b €1, y, we define the following formal inner product of Ta and b as follows:

i Y
Ta b 22 mln{HmHmHnHﬁ}) apb,. 27)

n om maX{HmH H”Hﬁ})lﬂ/

Then by Theorem 1 and Theorem 2, for 0 < ||a||p,p, ||b|l4,y < o, We have the
following equivalent inequalities:

L1
(Ta,b) < K{ Ky ||| po|[b|lgw, (28)
11
| Tall,p1-» < K{' Ky []al|po- (29)
It follows that 7" is bounded with
Ta _ 11
IT|| = WTall,p- <K'K]. (30)

a(#0)€l, o HaHpKD

11
Since the constant factor K K, in (29) is the best possible, we have
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COROLLARY 1. As the assumptions of Theorem 2, T is defined by Definition 2, it

follows

Hence, (20) is an extension of (4) for k (m,n) =

(1
2]
(3]
[4]
(5]
[6]
(7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

1
ITl] = K K5
. 1 1
to(g) 17 roky 17 a+2y
~ | Bio—1( Lo () | A+ (Aaty) S
Bio F(F) o011 (L) 1+ A2+Yy
REMARK 1. For iy = jo =1 in (20), we have inequality
S & (min{m,n})Yaby A+2y
< b . 32
2 2 a7 < e el G2

(min{m,n})"
(max{m,n})*+7"
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