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SCHUR–HARMONIC CONVEXITY FOR DIFFERENCES

OF SOME SPECIAL MEANS IN TWO VARIABLES

YING WU, FENG QI AND HUAN-NAN SHI

(Communicated by Alan Horwitz)

Abstract. In the paper, the authors find Schur-harmonic convexity of linear combinations of
differences between some means such as the arithmetic, geometric, harmonic, and root-square
means, and establish some inequalities related to these means and differences.

1. Introduction

In 2006, the following chain of inequalities for the binary means is given in [5].

THEOREM 1.1. ([5]) Let a,b ∈ R+ = (0,∞) . Then

H(a,b) � G(a,b) � N1(a,b) � N3(a,b) � N2(a,b) � A(a,b) � S(a,b), (1.1)

where

A(a,b) =
a+b

2
, G(a,b) =

√
ab , H(a,b) =

2ab
a+b

, N1(a,b) =
(√

a +
√

b
2

)2

,

S(a,b) =

√
a2 +b2

2
, N3(a,b) =

a+
√

ab +b
3

, N2(a,b) =
√

a +
√

b
2

√
a+b

2
.

The means A(a,b) , G(a,b) , H(a,b) , S(a,b) , N1(a,b) , and N3(a,b) are called
the arithmetic, geometric, harmonic, root-square, square-root, and Heron means respec-
tively. The mean N2(a,b) can be found in [4].

In [2, 3, 5, 8], the differences of means

MSA(a,b) = S(a,b)−A(a,b), MSN2(a,b) = S(a,b)−N2(a,b), (1.2)

MSN3(a,b) = S(a,b)−N3(a,b), MSN1(a,b) = S(a,b)−N1(a,b), (1.3)

MSG(a,b) = S(a,b)−G(a,b), MSH(a,b) = S(a,b)−H(a,b), (1.4)

MAN2(a,b) = A(a,b)−N2(a,b), MAG(a,b) = A(a,b)−G(a,b), (1.5)

MAH(a,b) = A(a,b)−H(a,b), MN2N1(a,b) = N2(a,b)−N1(a,b), (1.6)

MN2G(a,b) = N2(a,b)−G(a,b), (1.7)
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MAN3(a,b) = A(a,b)−N3(a,b), MAN1(a,b) = A(a,b)−N1(a,b), (1.8)

MN2N3(a,b) = N2(a,b)−N3(a,b), MN2H(a,b) = N2(a,b)−H(a,b), (1.9)

MN3N1(a,b) = N3(a,b)−N1(a,b), MN3G(a,b) = N3(a,b)−G(a,b), (1.10)

MN3H(a,b) = N3(a,b)−H(a,b), MN1G(a,b) = N1(a,b)−G(a,b), (1.11)

MN1H(a,b) = N1(a,b)−H(a,b), MGH(a,b) = G(a,b)−H(a,b) (1.12)

and

DSH−SA(a,b) =
MSH(a,b)

3
−MSA(a,b), (1.13)

DAH−SH(a,b) =
MAH(a,b)

2
− MSH(a,b)

3
, (1.14)

DSG−AH(a,b) = MSG(a,b)−MAH(a,b), (1.15)

DAG−SG(a,b) = MAG(a,b)− MSG(a,b)
2

, (1.16)

DN2N1−AH(a,b) = MN2N1(a,b)− MAH(a,b)
8

, (1.17)

DN2G−N2N1(a,b) =
MN2G(a,b)

3
−MN2N1(a,b), (1.18)

DAG−N2G(a,b) =
MAG(a,b)

4
− MN2G(a,b)

3
, (1.19)

DAN2−AG(a,b) = MAN2(a,b)− MAG(a,b)
4

, (1.20)

DSN2−SA(a,b) =
4MSN2(a,b)

5
−MSA(a,b), (1.21)

DAN2−SN2(a,b) = 4MAN2(a,b)− 4MSN2(a,b)
5

, (1.22)

DSN1−SH(a,b) = 2MSN1(a,b)−MSH(a,b), (1.23)

DSG−SN1(a,b) =
3MSG(a,b)

2
−2MSN1(a,b), (1.24)

DSN3−SA(a,b) =
3MSN3(a,b)

4
−MSA(a,b), (1.25)

DSN1−SN3(a,b) =
2MSN1(a,b)

3
− 3MSN3(a,b)

4
. (1.26)

were considered and obtained the following theorems.

THEOREM 1.2. ([5]) The differences of means defined by (1.2) to (1.7) are non-
negative and convex in R

2
+ .

THEOREM 1.3. ([3]) The differences given in (1.2) to (1.7) are Schur-geometrically
convex in R

2
+ .
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THEOREM 1.4. ([8, Theorem 3.1]) The differences of means listed in equations
(1.2) to (1.12) are Schur-harmonically convex on R

2
+ .

THEOREM 1.5. ([2]) The differences given by (1.13) to (1.26) are Schur-geomet-
rically convex in R

2
+ .

In [7], some inequalities for differences of power means in two variables were
obtained.

In this paper, we will prove that linear combinations of differences (1.13) to (1.26)
are Schur-harmonic in R

2
+ and establish some inequalities of these differences of means.

2. Definitions and a lemma

In order to verify our main results, we need the following definitions and lemma.
It is general knowledge that a set Ω ⊆ R

n is said to be convex if

λx+(1−λ )y = (λx1 +(1−λ )y1, . . . ,λxn +(1−λ )yn) ∈ Ω

for every x,y ∈ Ω and λ ∈ [0,1] .

DEFINITION 2.1. ([1, p. 8 and p. 80] and [6]) Let

x = (x1, . . . ,xn) ∈ R
n and y = (y1, . . . ,yn) ∈ R

n.

1. The tuple x is said to be majorized by y (in symbols x ≺ y) if

k

∑
i=1

x[i] �
k

∑
i=1

y[i] (2.1)

for k = 1,2, . . . ,n−1 and
n

∑
i=1

xi =
n

∑
i=1

yi, (2.2)

where x[1] � · · · � x[n] and y[1] � · · · � y[n] are rearrangements of x and y in a
descending order.

2. A function ϕ : Ω ⊆ R
n → R is said to be Schur-convex on Ω if x ≺ y on Ω

implies ϕ(x) � ϕ(y) . A function ϕ is said to be Schur-concave on Ω if and
only if −ϕ is Schur-convex.

DEFINITION 2.2. ([9, Definition 1.3]) Let Ω ⊂ R
n
+ .

1. A set Ω is said to be harmonically convex if xy
λ x+(1−λ )y ∈ Ω for every x,y ∈ Ω

and λ ∈ [0,1] , where xy = ∑n
i=1 xiyi and 1

x =
(

1
x1

, · · · , 1
xn

)
.

2. A function ϕ : Ω → R+ is said to be Schur-harmonically convex on Ω if 1
x ≺ 1

y
implies ϕ(x) � ϕ(y) .
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LEMMA 2.1. ([9, Lemma 2.4]) Let Ω ⊂ R
n
+ be a symmetric and harmonically

convex set with inner points and let ϕ : Ω → R+ be a continuously symmetric function
which is differentiable on Ω◦ . Then ϕ is Schur-harmonically convex on Ω if and only
if

(x1 − x2)
[
x2
1

∂ϕ(x)
∂x1

− x2
2

∂ϕ(x)
∂x2

]
� 0, x ∈ Ω◦. (2.3)

3. Main results

Now we start out to state and verify our main results.

THEOREM 3.1. The differences given by (1.13) to (1.26) are Schur-harmonically
convex functions in R

2
+ .

Proof. It is easy to obtain that

∂DSH−SA(a,b)
∂a

=
1
2
− 2b2

3(a+b)2 −
2
3

a√
2
(
a2 +b2

)
and

∂DSH−SA(a,b)
∂b

=
1
2
− 2a2

3(a+b)2 −
2
3

b√
2
(
a2 +b2

) .

Hence,

(a−b)
[
a2 ∂DSH−SA(a,b)

∂a
−b2 ∂DSH−SA(a,b)

∂b

]

=
2(a−b)2

3

⎡
⎣3(a+b)

4
− a2 +ab+b2√

2
(
a2 +b2

)
⎤
⎦

=

√
2(a−b)2

[
a4 +2a3b+2ab3 +b4−6a2b2

]
6
√

a2 +b2
[
3
√

2(a+b)
√

a2 +b2 +4
(
a2 +ab+b2

)]
� 0,

Thus, by Lemma 2.1, it follows that DSH−SA is Schur-harmonically convex in R
2
+ .

Since

∂DSG−AH(a,b)
∂a

=
a√

2
(
a2 +b2

) − b

2
√

ab
− 1

2
+

2b2

(a+b)2

and
∂DSG−AH(a,b)

∂b
=

b√
2
(
a2 +b2

) − a

2
√

ab
− 1

2
+

2a2

(a+b)2 ,
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we have

(a−b)
[
a2 ∂DSG−AH(a,b)

∂a
−b2 ∂DSG−AH(a,b)

∂b

]

=
(a−b)2

2

[√
2
(
a2 +ab+b2

)
√

a2 +b2
− (

a+
√

ab +b
)]

=
(a−b)2[

(
a2 +b2

)2 +ab(a+b)2−2
√

ab(a+b)
(
a2 +b2

)
]

2
√

a2 +b2
[√

2(a2 +ab+b2)+
(
a+b+

√
ab

)√
a2 +b2

]
� 0.

Therefore, by Lemma 2.1, it follows that DSG−AH is Schur-harmonically convex in R
2
+ .

Because

∂DAG−SG(a,b)
∂a

=
1
2

⎡
⎣1− b

2
√

ab
− a√

2
(
a2 +b2

)
⎤
⎦

and

∂DAG−SG(a,b)
∂b

=
1
2

⎡
⎣1− a

2
√

ab
− b√

2
(
a2 +b2

)
⎤
⎦ ,

we have

(a−b)
[
a2 ∂DAG−SG(a,b)

∂a
−b2 ∂DAG−SG(a,b)

∂b

]

=
(a−b)2

2

⎡
⎣a+b−

√
ab
2

− a2 +ab+b2√
2
(
a2 +b2

)
⎤
⎦

� (a−b)2

2

⎡
⎣3(a+b)

4
− a2 +ab+b2√

2
(
a2 +b2

)
⎤
⎦

� 0.

By Lemma 2.1, it follows that DAG−SG is Schur-harmonically convex in R
2
+ .

Since

∂DN2N1−AH(a,b)
∂a

=
1

4
√

a

√
a+b

2
+

1
4

(√
a +

√
b

2

)(
a+b

2

)−1/2

− 1
4
− b

4
√

ab
− 1

8

[
1
2
− 2b2

(a+b)2

]
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and

∂DN2N1−AH(a,b)
∂b

=
1

4
√

b

√
a+b

2
+

1
4

(√
a +

√
b

2

)(
a+b

2

)−1/2

− 1
4
− a

4
√

ab
− 1

8

[
1
2
− 2a2

(a+b)2

]
,

we have

(a−b)
[
a2 ∂DN2N1−AH(a,b)

∂a
−b2 ∂DN2N1−AH(a,b)

∂b

]

=
(a−b)2

16
(√

a +
√

b
)[

2
√

2
√

a+b
(
2a+3

√
ab +2b

)−(√
a +

√
b
)(

5a+4
√

ab +5b
)]

.

Because

2
√

2
√

a+b
(
2a+3

√
ab +2b

)− (√
a +

√
b
)(

5a+4
√

ab +5b
)
� 0,

that is,
7
(
a3 +b3)+6

(
a2 +b2)√ab � 3

(
a2b+ab2)+20ab

√
ab ,

we have

(a−b)
[
a2 ∂DN2N1−AH(a,b)

∂a
−b2 ∂DN2N1−AH(a,b)

∂b

]
� 0.

From Lemma 2.1, it follows that DN2N1−AH(a,b) is Schur-harmonically convex in R
2
+ .

It is not difficult to obtain that

∂DN2G−N2N1(a,b)
∂a

=
1
4

+
b

12
√

ab
− 1

6
√

a

√
a+b

2
− 1

6

(√
a +

√
b

2

)(
a+b

2

)−1/2

and

∂DN2G−N2N1(a,b)
∂b

=
1
4

+
a

12
√

ab
− 1

6
√

b

√
a+b

2
− 1

6

(√
a +

√
b

2

)(
a+b

2

)−1/2

.

Consequently,

(a−b)
[
a2 ∂DN2G−N2N1(a,b)

∂a
−b2 ∂DN2G−N2N1

∂b

]

=
(a−b)2

12
(√

a +
√

b
)[(√

a +
√

b
)(

3a+
√

ab +3b
)−√

2(a+b)
(
2a+3

√
ab +2b

)]
.

It is clear that replacing
√

a and
√

b by a and b in

(√
a +

√
b
)(

3a+
√

ab +3b
)−√

2(a+b)
(
2a+3

√
ab +2b

)
� 0
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reduces to
a3 +b3 +2ab

√
ab � 2a2b+2ab2.

Let f (u) = u6−2u4 +2u3−2u2 +1 for u � 1. Then

f ′(u) = 6u5−8u3 +6u2−4u, f ′′(u) = 30u4−24u2 +12u−4 > 0,

and f ′(u) � f ′(1) = 0 for u � 1. So f (u) � f (1) = 0 for u � 1. Without loss of

generality, assume that b � a and let u =
√

b
a , then f (u) � 0 becomes

a3 +b3 +2ab
√

ab −2a2b−2ab2 � 0.

As a result,

(a−b)
[
a2 ∂DN2G−N2N1(a,b)

∂a
−b2 ∂DN2G−N2N1

∂b

]
� 0.

From Lemma 2.1, it follows that DN2G−N2N1(a,b) is Schur-harmonically convex in R
2
+ .

Since

∂DSN2−SA(a,b)
∂a

=
1
2
− a

5
√

2(a2 +b2)
− 1

5

√
a+b
2a

−
√

a +
√

b

5
√

2(a+b)

and
∂DSN2−SA(a,b)

∂b
=

1
2
− b

5
√

2(a2 +b2)
− 1

5

√
a+b
2b

−
√

a +
√

b

5
√

2(a+b)
,

we have

(a−b)
[
a2 ∂DSN2−SA(a,b)

∂a
−b2 ∂DSN2−SA(a,b)

∂b

]

=
√

2(a−b)2

20
(√

a +
√

b
)√

a2 +b2

[
5
√

2(a+b)
(√

a +
√

b
)√

a2 +b2

−2
(√

a +
√

b
)(

a2 +ab+b2)−2
√

a+b
√

a2 +b2
(
2a+3

√
ab +2b

)]
=

√
2(a−b)2

40
(√

a +
√

b
)√

a2 +b2

{(√
a +

√
b
)[

3
√

2(a+b)
√

a2 +b2 −4
(
a2 +ab+b2)]

+
√

a2 +b2
[
7
√

2(a+b)
(√

a +
√

b
)−4

√
a+b

(
2a+3

√
ab +2b

)]}
� 0.

By Lemma 2.1, it follows that DSN2−SA(a,b) is Schur-harmonically convex in R
2
+ .

Notice that

DAH−SH(a,b) =
DSH−SA(a,b)

2
, DAN2−AG(a,b) = 3DAG−N2G(a,b),

DSG−SN1(a,b) = DAG−SG(a,b), DAG−N2G(a,b) =
DN2G−N2N1(a,b)

2
,
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DAN2−SN2(a,b) = 4DSN2−SA(a,b), DSN1−SH(a,b) = DSG−AH(a,b),

DSN3−SA(a,b) =
DAG−SG(a,b)

2
, DSN1−SN3(a,b) =

DAG−SG(a,b)
6

.

So, the differences

DAH−SH(a,b), DAN2−AG(a,b), DSG−SN1(a,b), DAG−N2G(a,b),
DAN2−SN2(a,b), DSN1−SH(a,b), DSN3−SA(a,b), DSN1−SN3(a,b)

are Schur-harmonically convex in R
2
+ . The proof of Theorem 3.1 is complete. �

COROLLARY 3.1. For a,b ∈ R+ and 0 � t � 1 , we have

A(a,b)− 2
3
S(a,b) �

A(pa,b(t),qa,b(t))− 2
3S(pa,b(t),qa,b(t))

pa,b(t)qa,b(t)
� 0, (3.1)

S(a,b)−2N1(a,b) � S(pa,b(t),qa,b(t))−2N1(pa,b(t),qa,b(t))
pa,b(t)qa,b(t)

� 0, (3.2)

A(a,b)− 1
2
G(a,b)− 1

2
S(a,b)

�
A(pa,b(t),qa,b(t))− 1

2G(pa,b(t),qa,b(t))− 1
2S(pa,b(t),qa,b(t))

pa,b(t)qa,b(t)

� 0,

(3.3)

N2(a,b)− 5
8
A(a,b)− 1

2
G(a,b)

�
N2(pa,b(t),qa,b(t))− 5

8A(pa,b(t),qa,b(t))− 1
2G(pa,b(t),qa,b(t))

pa,b(t)qa,b(t)

� 0,

(3.4)

1
2
A(a,b)+

1
6
G(a,b)− 2

3
N2(a,b)

�
1
2A(pa,b(t),qa,b(t))+ 1

6G(pa,b(t),qa,b(t))− 2
3N2(pa,b(t),qa,b(t))

pa,b(t)qa,b(t)

� 0,

(3.5)

A(a,b)− 1
5
S(a,b)− 4

5
N2(a,b)

�
A(pa,b(t),qa,b(t))− 1

5S(pa,b(t),qa,b(t))− 4
5N2(pa,b(t),qa,b(t))

pa,b(t)qa,b(t)

� 0,

(3.6)

where pa,b(t) = t
a + 1−t

b and qa,b(t) = 1−t
a + t

b .
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Proof. We only prove the inequality (3.1), since the rest can be proved similarly.
It is easy to see that(
1
2

(
1
a

+
1
b

)
,
1
2

(
1
a

+
1
b

))
≺

(
t
a

+
1− t

b
,
1− t

a
+

t
b

)
≺

(
1
a
,
1
b

)
, 0 � t � 1.

By Theorem 3.1, the difference DSH−SA is Schur-harmonically convex in R
2
+ . Hence,

DSH−SA(a,b) =
a+b

2
− 2ab

3(a+b)
− 2

3

√
a2 +b2

2

� 1
2

[(
t
a

+
1− t

b

)−1

+
(

1− t
a

+
t
b

)−1]
− 2ab

3(a+b)

− 2
3

√
1
2

[(
t
a

+
1− t

b

)−2

+
(

1− t
a

+
t
b

)−2]
� 0

which is equivalent to the inequality (3.1). The proof of Corollary 3.1 is complete. �
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