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(Communicated by J. Pečarić)

Abstract. In this article, we establish some fundamental strict and non-strict differential inequal-
ities for the fractional hybrid differential equations of distributed order (DOFHDEs). We derive
these inequalities with respect to a nonnegative density function in the Riemann-Liouville deriva-
tive of order 0 < q < 1 . As an application of these inequalities, we prove the existence results
for extremal solution of DOFHDEs and state the comparison principle.

1. Introduction

Differential inequalities are important in qualitative study of the nonlinear differ-
ential equations. An extensive literature of the differential inequalities along with some
applications may be found in the works of many researchers. For example see [18].
In the scope of the fractional differential equations [17], [21], other researchers (e.g.
[19]) established strict and non-strict fractional differential inequalities for the follow-
ing fractional differential equation involving the Riemann-Liouville derivative of order
0 < q < 1,

Dq
t x(t) = f (t,x), x(0) = x0. (1)

Also, the quadratic perturbations of the nonlinear differential equations and the first or-
der ordinary functional differential equations in Banach algebras, have attracted much
attention to researchers. These type equations have been called the hybrid differential
equations (HDE), [7–14]. In this sense, the differential inequalities for implicit per-
turbations of the first order ordinary differential equations have been studied in Dhage
[15]. One of the important first order hybrid differential equations is defined as⎧⎨

⎩
d
dt

[
x(t)

f (t,x(t))

]
= g(t,x(t)), t ∈ J,

x(t0) = x0,
(2)

where f ∈C(J×R,R\{0}) and g∈C (J×R) . For the above hybrid differential equa-
tion, Dhage and Lakshmikantham [10] established some fundamental hybrid differen-
tial inequalities which are useful for the existence of extremal solution and comparison
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theorems. Later, Zhao et al. [22] developed the following fractional hybrid differential
equations involving the Riemann-Liouville derivative of order 0 < q < 1,⎧⎨

⎩Dq
[

x(t)
f (t,x(t))

]
= g(t,x(t)), t ∈ J,

x(0) = 0,
(3)

where f ∈ C(J ×R,R \ {0}) and g ∈ C (J ×R) . They established some basic frac-
tional hybrid differential inequalities for the existence of extremal solutions. Also, they
considered necessary tools under the mixed Lipschitz and Caratheodory conditions to
prove the comparison principle.

Now, in this article in view of the distributed order fractional derivative [1–3], we
develop the distributed order fractional hybrid differential equations (DOFHDEs) with
respect to a nonnegative density function and establish some differential inequalities
for DOFHDEs which are useful for the existence of extremal solutions and comparison
theorems.

In this regard, we introduce the fractional hybrid differential equation of dis-
tributed order and state some basic strict and non-strict fractional hybrid differential
inequalities of distributed order. Next, we prove the existence theorem for this class
and express the existence of extremal solution theorem. Finally, we conclude some
comparison theorem for distributed order fractional hybrid differential equations.

2. The fractional hybrid differential equation of distributed order

The distributed order fractional hybrid differential equation with respect to the
nonnegative density function b(q) > 0, is defined in the sense of Riemann-Liouville
derivative of order 0 < q < 1, as follows [20]⎧⎨

⎩
∫ 1
0 b(q)Dq

[
x(t)

f (t,x(t))

]
dq = g(t,x(t)), t ∈ J,

∫ 1
0 b(q)dq = 1,

x(0) = 0,
(1)

where the function t �→ x
f (t,x) is continuous for each x∈R and J = [0,T ] is closed in R

for some T ∈ R . Also, f ∈C(J×R,R\{0}) and g∈ C (J×R) , such that C(J×R,R)
is the class of continuous functions and C (J×R) is called the Caratheodory class of
bounded functions g : J×R → R which are Lebesgue integrable on J . Furthermore

(i) the map t �→ g(t,x) is measurable for each x ∈ R ,

(ii) the map x �→ g(t,x) is continuous for each t ∈ J .

Also, for the above DOFHDE we consider some hypotheses as follows:

(A0 ) The function x �→ x
f (t,x) is increasing in R for each t ∈ J .

(A1 ) There exists a constant L > 0, such that

| f (t,x)− f (t,y) |� L | x− y |, (2)

for all t ∈ J and x,y ∈ R .
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(A2 ) There exists a function h ∈ L1(J,R), such that

| g(t,x) |� h(t), (3)

for all t ∈ J and x ∈ R .

3. The fractional hybrid differential inequalities of distributed order

In this section, we prove the fundamental results related to strict and non-strict
inequalities for the DOFHDE (1). We begin with a result of strict inequalities. The
following lemma may be useful in next sections.

LEMMA 3.1. (Lakshmikantham and Vatsala [19]) Let m : R
+ → R be locally

Hölder continuous such that for any t1 ∈ (0,∞) , we have

m(t1) = 0, m(t) � 0, 0 � t � t1, (1)

then
Dqm(t1) � 0. (2)

THEOREM 3.2. Suppose that the hypothesis (A0) holds and there exist two func-
tions u,v : [0,T ] → R, which are locally Hölder continuous such that

∫ 1

0
b(q)Dq

[ u(t)
f (t,u(t))

]
dq � g(t,u(t)),

∫ 1

0
b(q)dq = 1, (3)

∫ 1

0
b(q)Dq

[ v(t)
f (t,v(t))

]
dq � g(t,v(t)),

∫ 1

0
b(q)dq = 1, (4)

where b(q) > 0 is the density function. Then

u(0) < v(0), (5)

and for all t ∈ J, we have
u(t) < v(t). (6)

Proof. Assume that the inequality (4) is strict and the inequality (6) is false. Then
the set Z∗ defined by

Z∗ = {t ∈ J : u(t) � v(t),t ∈ J}, (7)

is non-empty. By denoting t1 = infZ∗ and without loss of generality, we may suppose
that u(t1) = v(t1) and u(t) < v(t) for all t < t1 . Define the function U and V on J as

U(t) =
u(t)

f (t,u(t))
, V (t) =

v(t)
f (t,v(t))

,

then, we have
U(t1) = V (t1), (8)
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and in view of the hypothesis (A0) for all t < t1 , we get

U(t1) = V (t1). (9)

Now, by setting
m(t) = U(t)−V(t), 0 � t � t1, (10)

we have
m(t) � 0, 0 � t � t1, m(t1) = 0. (11)

which by Lemma 3.1 we obtain Dqm(t1) � 0 and for b(q) > 0, we get

∫ 1

0
b(q)Dq[m(t1)]dq � 0.

Also, by the inequalities (3) and (4), we find that

g(t1,u(t1)) �
∫ 1

0
b(q)Dq[U(t1)]dq �

∫ 1

0
b(q)Dq[V (t1)] > g(t1,v(t1)). (12)

This is a contradiction with u(t1) = v(t1) and hence the set Z∗ is empty. Finally, the
inequality (6) holds for all t ∈ J . �

THEOREM 3.3. Suppose that the conditions of Theorem 3.2 and the inequalities
(3) and (4) hold. Also, for all x1,x2 ∈ R with x1 � x2 , assume that there exists a real
number M > 0, such that

g(t,x1)−g(t,x2) � M
1+ tq

( x1

f (t,x1)
− x2

f (t,x2)

)
, t ∈ J, (13)

and

M �
∫ 1

0

b(q)
TqΓ(1−q)

dq,

∫ 1

0
b(q)dq = 1.

Then
u(0) � v(0), (14)

which implies for all t ∈ J,
u(t) � v(t). (15)

Proof. Let ε > 0 be given. Setting

vε(t)
f (t,vε (t))

=
v(t)

f (t,v(t))
+ ε(1+ tq), (16)

we find that
vε(t)

f (t,vε (t))
>

v(t)
f (t,v(t))

,

and by hypothesis (A0) , we get
vε(t) > v(t). (17)
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Now, for all t ∈ J we define

Vε(t) =
vε(t)

f (t,vε(t))
, V (t) =

v(t)
f (t,v(t))

,

which by the relation (13), we get

g(t,v) � g(t,vε)− M
1+ tq

(Vε −V ).

Since
Vε −V = ε(1+ tq),

we obtain
g(t,v) � g(t,vε)− εM. (18)

Applying the fractional differential of distributed operator
∫ 1
0 b(q)Dqdq, on the both

sides of equation (16), we have∫ 1

0
b(q)Dq[Vε(t)]dq =

∫ 1

0
b(q)Dq[V (t)]dq+ ε

∫ 1

0
b(q)Dq[1+ tq]dq. (19)

Hence by using the relations (4) and (19) and M �
∫ 1
0

b(q)
TqΓ(1−q)

dq , we find that

∫ 1

0
b(q)Dq[Vε(t)]dq � g(t,v(t))+ ε

∫ 1

0
b(q)

( 1
tqΓ(1−q)

+ Γ(1+q)
)
dq,

> g(t,vε(t))−Mε + ε
∫ 1

0

b(q)
tqΓ(1−q)

dq

> g(t,vε(t))−Mε +Mε = g(t,vε(t)). (20)

Also, we get vε(0) > v(0) � u(0) which by setting v = vε for all t ∈ J, we obtain
u(t) < vε(t) . Since ε > 0 is arbitrary, by taking the limit as ε → 0, we deduce that
u(t) � v(t) . �

4. Existence of extremal solutions

In this section, we apply the inequalities expressed in previous section and prove
the maximal and minimal solutions for the DOFHDE (1) on J = [0,T ] . For small
real number ε > 0, we consider the following DOFHDE of order 0 < q < 1, with the
density function b(q) > 0,{∫ 1

0 b(q)Dq[ x(t)
f (t,x(t)) ]dq = g(t,x(t))+ ε, t ∈ J,

∫ 1
0 b(q)dq = 1,

x(0) = 0,
(1)

where J = [0,T ] , f ∈C(J×R,R−{0}) and g ∈ C (J×R,R) . We define a supremum
norm of ‖.‖ in C(J,R) as

‖x‖ = sup
t∈J

|x(t)| , (2)
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and for x,y ∈C(J,R), we set

(xy)(t) = x(t)y(t). (3)

It is easy to verify that C(J,R) is a Banach algebra with respect to norm ‖.‖ and
multiplication (3). Moreover the norm ‖.‖L1 for x ∈C(J,R) is defined by

‖x‖L1 =
∫ T

0
|x(s)| ds. (4)

Now, for expressing the existence theorem for the DOFHDE (1), we state a fixed
point theorem in the Banach algebra and recall the Titchmarsh theorem for the inverse
Laplace transform of a function with branch point.

THEOREM 4.1. (Dhage [6]) Let S be a non-empty, closed convex and bounded
subset of the Banach algebra X and suppose that A : X → X and B : S → X are two
operators such that

(a) A is Lipschitz constant α ,

(b) B is completely continuous,

(c) x = AxBy for all y ∈ S implies that x ∈ S ,

(d) αM1 < 1 , where M1 =‖ B(S) ‖= sup{‖ B(x) ‖: x ∈ S} .

Then, the operator equation AxBx = x has a solution in S.

THEOREM 4.2. (Titchmarsh Theorem [4]) Let F(s) be an analytic function which
has a branch cut on the real negative semiaxis. Furthermore, F(s) has the following
properties

F(s) = O(1), |s| → ∞, (5)

F(s) = O

(
1
|s|

)
, |s| → 0, (6)

for any sector |arg(s)|< π−η , where 0 < η < π . Then, the inverse Laplace transform
f (t) , can be written as the Laplace transform of the imaginary part of the function
F(re−iπ) as follows:

f (t) = L −1{F(s);t} =
1
π

∫ ∞

0
e−rtℑ(F(re−iπ))dr. (7)

LEMMA 4.3. Assume that the hypothesis (A0 ) holds, then for any h ∈ L1(J,R)
and 0 < q < 1 , the function x ∈C(J,R) is a solution of the DOFHDE (1) if and only if
x satisfies the following equation

x(t) =
f (t,x(t))

π

∫ t

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t − τ

}
(g(τ,x(τ))+ ε)dτ, (8)

such that 0 � τ � t � T and

B(s) =
∫ 1

0
b(q)sqdq. (9)
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Proof. Applying the Laplace transform on the both sides of (1) and setting

H(t) =
x(t)

f (t,x(t))
, (10)

we have

L
{∫ 1

0
b(q)Dq[H(t)]dq;s

}
= L {g(t,x(t))+ ε;s}

=
∫ 1

0
b(q)[sqH(s)−Dq−1

t H(0)]dq

= G(s)+
ε
s
. (11)

Since H(0) = 0, we have

H(s)
(∫ 1

0
b(q)sqdq

)
= G(s)+

ε
s
,

and hence

H(s) =
1

B(s)

(
G(s)+

ε
s

)
, (12)

such that

B(s) =
∫ 1

0
b(q)sqdq. (13)

Now, using the inverse Laplace transform on the both sides of (12) and applying the
convolution product, we get

L −1{H(s);t} =
x(t)

f (t,x(t))
= L −1

{ 1
B(s)

(G(s)+
ε
s
); t

}

=
∫ t

0
L −1

{ 1
B(s)

;t− τ
}
(g(τ,x(τ))+ ε)dτ,

or equivalently

x(t) = f (t,x(t))
∫ t

0
L −1

{ 1
B(s)

;t− τ
}
(g(τ,x(τ))+ ε)dτ. (14)

Since B(s) is an analytic function which has a branch cut on the real negative semiaxis,
according to the Theorem 4.2 we get

x(t) =
f (t,x(t))

π

∫ t

0

∫ ∞

0
e−r(t−τ)ℑ

{ 1
B(re−iπ)

}
(g(τ,x(τ))+ ε)drdτ, (15)

which by the Laplace transform definition, the equation (8) is held. Conversely, let
x satisfies the equation (8), therefore x satisfies the equivalent equation (14) and by
setting t = 0 in the equation (8), we obtain

x(0)
f (0,x(0))

= 0 =
0

f (0,0)
.
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According to the hypothesis (A0) , the map x �→ x
f (0,x) is injective in R and hence

x(0) = 0. Now, by using the fact that H(0) = 0, and applying the inverse Laplace
transform on (11), the relation (1) is held and the proof is completed. �

At this point, the main existence theorem for the DOFHDE (1) is stated.

THEOREM 4.4. Suppose that the hypotheses (A0)–(A2) hold and for small real
number ε > 0, we have

LM(‖h‖L1 + εT )
π

< 1, M > 0, (16)

then, the DOFHDE (1) has a solution on J = [0,T ] .

Proof. We set X = C(J,R) as a Banach algebra and define a subset S of X by

S = {x ∈ X |‖x‖ � N}, (17)

such that for ε > 0, we have

N =
F0M(‖h‖L1 + εT )

π −LM(‖h‖L1 + εT )
, F0 = sup

t∈J
| f (t,0)| . (18)

It is obvious that S is closed and if x1,x2 ∈ S , then ‖x1‖ � N and ‖x2‖ � N . Also, by
the properties of the norm, we get

‖λx1 +(1−λ )x2‖ � λ ‖x1‖+(1−λ )‖x2‖ � λN +(1−λ )N = N,

which implies that S is convex and bounded. Now, by applying Lemma 4.3, DOFHDE
(1) is equivalent to the equation (8). Also, we define the operators A : X −→ X and
B : S −→ X by

Ax(t) = f (t,x(t)), t ∈ J, (19)

and

Bx(t) =
1
π

∫ t

0
L

{
ℑ{ 1

B(re−iπ)
};t− τ

}
(g(τ,x(τ))+ ε)dτ, t ∈ J. (20)

Thus, from the equation (8) we obtain the operator equation as follows:

Ax(t)Bx(t) = x(t), t ∈ J. (21)

If the operators A and B satisfy all the conditions of Theorem 4.1, then the operator
equation (21) has a solution in S . To see this, let x,y ∈ X , then by the hypothesis (A1)
we have

|Ax(t)−Ay(t)|= | f (t,x(t))− f (t,y(t))| � L|x(t)− y(t)| � L‖x− y‖, t ∈ J,

and if for all x,y ∈ X take a supremum over t , we get

‖Ax−Ay‖� L‖x− y‖. (22)
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Therefore, A is a Lipschitz operator on X with the Lipschitz constant L > 0, and the
condition (a) from Theorem 4.1 is held. Now, for checking the condition (b) of this
theorem, let {xn} be a sequence in S such that

lim
n→∞

xn = x, (23)

with x ∈ S . Now,

lim
n→∞

Bxn(t) = lim
n→∞

1
π

∫ t

0
L

{
ℑ{ 1

B(re−iπ)
};t− τ

}
(g(τ,xn(τ))+ ε)dτ

=
1
π

∫ t

0
L

{
ℑ{ 1

B(re−iπ)

}
;t− τ} lim

n→∞
(g(τ,xn(τ))+ ε)dτ

=
1
π

∫ t

0
L

{
ℑ{ 1

B(re−iπ)

}
;t− τ}(g(τ,x(τ))+ ε)dτ

= Bx(t). (24)

This shows that B is pointwise continuous on J . It can be shown as in the following
part that the sequence {Bxn} is an equicontinuous set in C(J,R) . So the convergence
Bxn → Bx is uniform. As a result, B is continuous on C(J,R) . In this stage, we shall
show that B is a compact operator on S . To see this, we shall show that B(s) is a
uniformly bounded and eqicontinuous set in X . Let x ∈ S , then by hypothesis (A2) for
all t ∈ J , we have

|Bx(t)| =
∣∣∣∣ 1
π

∫ t

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t − τ

}
(g(τ,x(τ))+ ε)dτ

∣∣∣∣
� 1

π

∫ t

0

∣∣∣∣L {
ℑ

{ 1
B(re−iπ)

}
;t − τ

}∣∣∣∣ |h(τ)+ ε|dτ. (25)

Let s = t−τ be such that 0 � τ � t � T . Then by the existence theorem of the Laplace
transform [5], there exists a constant M′ > 0 such that for s > c ,∣∣∣∣ℑ{ 1

B(re−iπ)

}∣∣∣∣ � M′ecr. (26)

Hence, we find an upper bound for the integrand of (25) as follows.∣∣∣∣L {
ℑ{ 1

B(re−iπ)

}
;t − τ}

∣∣∣∣ =
∣∣∣∣
∫ ∞

0
e−srℑ

{ 1
B(re−iπ)

}
dr

∣∣∣∣
�

∫ ∞

0
e−sr

∣∣∣∣ℑ{ 1
B(re−iπ)

}
∣∣∣∣dr

�
∫ ∞

0
M′e(c−s)rdr � M′

|s− c| � M, (27)

such that

M = sup
0�τ�t�T

M′

|t− τ − c| . (28)
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Finally, with respect to the inequality (25), we obtain

|Bx(t)| � M(‖h‖L1 + εT )
π

,

and by applying supremum over t , we get for all x ∈ S

‖Bx‖ � M
π

(‖h‖L1 + εT ). (29)

Thus, B is uniformly bounded on S .
In this stage, we show that B(S) is an equicontinuous set in X . Let t1,t2 ∈ J , with

t1 < t2 , then for all x ∈ S , we have

|Bx(t1)−Bx(t2)| =
∣∣∣ 1
π

∫ t1

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t1 − τ

}
(g(τ,x(τ))+ ε)dτ

− 1
π

∫ t2

0
L

{
ℑ{ 1

B(re−iπ)

}
;t2 − τ}(g(τ,x(τ))+ ε)dτ

∣∣∣
�

∣∣∣ 1
π

∫ t1

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t1 − τ

}
(g(τ,x(τ))+ ε)dτ

− 1
π

∫ t1

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t2 − τ

}
(g(τ,x(τ))+ ε)dτ

∣∣∣
+

∣∣∣ 1
π

∫ t1

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t2 − τ

}
(g(τ,x(τ))+ ε)dτ

− 1
π

∫ t2

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t2 − τ

}
(g(τ,x(τ))+ ε)dτ

∣∣∣. (30)

If we set s1 = t1 − τ and s2 = t2 − τ , then by definition of the Laplace transform and
the equation (4–19), for s1 > c and s2 > c we can write∣∣∣∣L {

ℑ
{ 1

B(re−iπ)

}
;s1

}
−L

{
ℑ

{ 1
B(re−iπ)

}
;s2

}∣∣∣∣
=

∣∣∣∣
∫ ∞

0
e−s1rℑ

{ 1
B(re−iπ)

}
)dr−

∫ ∞

0
e−s2rℑ

{ 1
B(re−iπ)

}
dr

∣∣∣∣
�

∫ ∞

0

∣∣e−s1r − e−s2r
∣∣ ∣∣∣∣ℑ{ 1

B(re−iπ)

}∣∣∣∣dr

� M′
∫ ∞

0
(e(c−s1)r − e(c−s2)r)dr = M′

( 1
s1− c

− 1
s2− c

)
. (31)

Therefore, we have∣∣∣∣ 1
π

∫ t1

0

(
L

{
ℑ

{ 1
B(re−iπ)

}
;s1

}
−L {ℑ

{ 1
B(re−iπ)

}
;s2}

)
(g(τ,x(τ))+ ε)dτ

∣∣∣∣
� (‖h‖L1 + εT )

π

∫ t1

0
M′

( 1
t1− τ − c

− 1
t2− τ − c

)
dτ

=
M′

(
‖h‖L1 + εT

)
π

ln
((c+ t1− t2)(c− t1)

c(c− t2)

)
. (32)
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Also, by equation (27) we have∣∣∣∣ 1
π

∫ t1

t2
L

{
ℑ

{ 1
B(re−iπ)

}
;t2 − τ

}
(g(τ,x(τ))+ ε)dτ

∣∣∣∣
� (‖h‖L1 + εT )

π

∫ t1

t2

M′

t2− τ − c
dτ

=
M′(‖h‖L1 + εT )

π
ln

( c
c+ t1− t2

)
. (33)

Finally with respect to relations (30), (32) and (33), we obtain

|Bx(t1)−Bx(t2)| � M′(‖h‖L1 + εT )
π

(
ln

((c+ t1− t2)(c− t1)
c(c− t2)

)
+ ln

( c
c+ t1− t2

))

=
M′(‖h‖L1 + εT )

π
ln

(c− t1
c− t2

)
. (34)

Hence, for ε > 0, there exists δ > 0 such that if |t1− t2|< δ , then for all t1,t2 ∈ J and
all x ∈ S we have

|Bx(t1)−Bx(t2)| < ε, (35)

which implies that B(S) is an equicontinuous set in X and according to the Arzelá-
Ascoli theorem, B is compact. Therefore B is continuous and compact operator on S
into X and B is a completely continuous operator on S and the condition (b) from the
Theorem 4.1 is held. �

For checking the condition (c) of Theorem 4.1, let x ∈ X and y ∈ S be arbitrary
such that x = AxBy . Then, by hypothesis (A1) we get

|x(t)| = |Ax(t)| |By(t)|
= | f (t,x(t))|

∣∣∣∣ 1
π

∫ t

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t− τ

}
(g(τ,x(τ))+ ε)dτ

∣∣∣∣
� (| f (t,x(t))− f (t,0)|+ | f (t,0)|)

×
( 1

π

∫ t

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t− τ

}
|(g(τ,x(τ))+ ε)|dτ

)

� (L |x(t)|+F0)
( 1

π

∫ t

0
L

{
ℑ

{ 1
B(re−iπ)

}
; t− τ

}
(h(τ)+ ε)dτ

)

� (L |x(t)|+F0)
(M(‖h‖L1 + εT )

π

)
. (36)

Therefore,

|x(t)| � F0M(‖h‖L1 + εT )
π −LM(‖h‖L1 + εT )

,

which by taking a supremum over t , we obtain

‖x(t)‖ � F0M(‖h‖L1 + εT )
π −LM(‖h‖L1 + εT )

= N. (37)
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Thus, the condition (c) of Theorem 4.1 is satisfied. If we consider

M1 = ‖B(s)‖ = sup{‖Bx‖ : x ∈ S} � M
π

(‖h‖L1 + εT ), (38)

and

αM1 � L
(M

π
(‖h‖L1 + εT )

)
< 1, (39)

the hypothesis (d) of Theorem 4.1 is satisfied. Hence, all the conditions of Theorem
4.1 are satisfied and therefore the operator equation AxBx = x has a solution in S . As a
result, the DOFHDE (1) has a solution on J and proof is completed.

DEFINITION 4.5. A solution y of DOFHDE (1) is maximal if for all t ∈ J and
solution x of this system, x(t) � y(t) . Similarly, a solution z of the DOFHDE (1) is
minimal if for all t ∈ J , one has z(t) � x(t) , such that x is the solution of the DOFHDE
(1).

Now, we ready to expressing the main existence theorem about the maximal so-
lution for the DOFHDE (1). Also, the case of minimal solution is similar and can be
obtained with the same arguments with appropriate modifications.

THEOREM 4.6. Suppose that the hypotheses (A0)–(A2) and the condition (16)
hold, then the DOFHDE (1) has a maximal solution on J = [0,T ] .

Proof. We set {εn}∞
0 as a decreasing sequence of positive real numbers such that

limn→∞ εn = 0. Also, in view of the inequality (16), there exists a positive real number
ε0 such that

LM(‖h‖L1 + ε0T )
π

< 1. (40)

If we apply the Theorem 4.4, then for the DOFHDE{∫ 1
0 b(q)Dq[ x(t)

f (t,x(t)) ]dq = g(t,x(t))+ εn, t ∈ J,
∫ 1
0 b(q)dq = 1,

x(0) = 0,
(41)

where b(q) is a nonnegative density function, we have a solution y(t,εn) such that

∫ 1

0
b(q)Dq

[ y(t,εn)
f (t,y(t,εn))

]
dq = g(t,y(t,εn))+ εn > g(t,y(t,εn)). (42)

Also, for any solution w of the DOFHDE (1) we get

∫ 1

0
b(q)Dq

[ w(t)
f (t,w(t))

]
dq � g(t,w(t)), (43)

such that w(0) = 0 � y(0,εn) = εn . Thus, by applying the Theorem 3.3, we have

w(t) � y(t,εn), t ∈ J, n = 0,1,2, ... (44)
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Also, since ε2 = y(0,ε2) � y(0,ε1) = ε1 , in view of the Theorem 3.3, we obtain

y(t,ε2) � y(t,ε1).

Then, {y(t,εn)} is decreasing sequence of positive real numbers and the limit

y(t) = lim
n→∞

y(t,εn), (45)

exists. We shall show that the limit (45) is uniform on J = [0,T ] . To see this, we
prove the sequence y(t,εn) is equicontinuous. Suppose that t1, t2 ∈ J such that t1 < t2 .
Since y(t,εn) is the solution of DOFHDE (41), then by Lemma 4.3 y(t,εn) satisfies in
equation

y(t,εn) = ( f (t,y(t,εn)))
( 1

π

∫ t

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t − τ

}
(g(τ,y(τ,εn))+ εn)dτ

)
.

(46)
Therefore, by the relations (32) and (33) we have

|y(t1,εn)− y(t2,εn)|
=

∣∣∣( f (t1,y(t1,εn)))
( 1

π

∫ t1

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t1 − τ

}
(g(τ,y(τ,εn))+ εn)dτ

)

−( f (t2,y(t2,εn)))
( 1

π

∫ t2

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t2 − τ

}
(g(τ,y(τ,εn))+ εn)dτ

)∣∣∣
�

∣∣∣( f (t1,y(t1,εn)))
( 1

π

∫ t1

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t1 − τ

}
(g(τ,y(τ,εn))+ εn)dτ

)

−( f (t2,y(t2,εn)))
( 1

π

∫ t1

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t2 − τ

}
(g(τ,y(τ,εn))+ εn)dτ

)∣∣∣
+

∣∣∣( f (t2,y(t2,εn)))
( 1

π

∫ t1

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t2 − τ

}
(g(τ,y(τ,εn))+ εn)dτ

)

−( f (t2,y(t2,εn)))
( 1

π

∫ t2

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t2 − τ

}
(g(τ,y(τ,εn))+ εn)dτ

)∣∣∣.
� | f (t1,y(t1,εn))− f (t2,y(t2,εn))| M

′(‖h‖L1 + εn)
π

ln
((c+ t1− t2)(c− t1)

c(c− t2)

)

+F
M′(‖h‖L1 + εn)

π
ln

( c
c+ t1− t2

)
, (47)

such that F = sup(t,x)∈J×[−N,N] | f (t,x)| . Hence, for ε > 0 there exists δ > 0 such that
for |t1− t2| < δ , we have

|y(t1,εn)− y(t2,εn)| < ε, n ∈ N,

which implies that for all t ∈ J , y(t,εn) → y(t) . Now, taking the limits from equation
(46) when n → ∞ , we get

y(t) = [ f (t,y(t))]
( 1

π

∫ t

0
L

{
ℑ

{ 1
B(re−iπ)

}
;t− τ

}
(g(τ,r(τ))dτ

)
, t ∈ J.

Therefore, y is a solution of the DOFHDE (1) on J and from inequality (44), we deduce
w(t) � y(t) . Hence, the DOFHDE (1) has a maximal solution on J = [0,T ] . �
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5. Comparison Theorems

In this section, we estimate a bound for the solution set of the differential inequal-
ity related to DOFHDE (1). Also, we prove that the extremal solutions are bounds for
the solutions of this differential inequality.

THEOREM 5.1. Suppose that the hypotheses (A0)–(A2) and the condition (16)
hold. Also, assume that there exists a real number M > 0, such that for all t ∈ J

g(t,x1)−g(t,x2) � M
1+ tq

( x1

f (t,x1)
− x2

f (t,x2)

)
, x1,x2 ∈ R, x1 � x2, (1)

where

M �
∫ 1

0

b(q)
TqΓ(1−q)

dq,

∫ 1

0
b(q)dq = 1. (2)

Furthermore, if there exists a function w ∈C(J,R), such that⎧⎨
⎩

∫ 1
0 b(q)Dq

[
w(t)

f (t,w(t))

]
dq � g(t,w(t)), t ∈ J,

w(0) � 0,
(3)

then, for all t ∈ J
w(t) � y(t), (4)

where y is a maximal solution of the DOFHDE (1).

Proof. Letting ε > 0 and using the Theorem 4.6, y(t,ε) is a maximal solution of
the DOFHDE (1) such that

y(t) = lim
ε→0

y(t,ε), (5)

is uniform on J = [0,T ] . Therefore, for nonnegative density function b(q), we have⎧⎨
⎩

∫ 1
0 b(q)Dq

[
y(t,ε)

f (t,y(t,ε))

]
dq = g(t,y(t,ε))+ ε, t ∈ J,

∫ 1
0 b(q)dq = 1,

y(0,ε) = 0.
(6)

Hence {∫ 1
0 b(q)Dq[ y(t,ε)

f (t,y(t,ε)) ]dq > g(t,y(t,ε)), t ∈ J,
∫ 1
0 b(q)dq = 1,

y(0,ε) = 0.
(7)

Now, by the Theorem 3.3 for the inequalities (3) and (7) we obtain w(t) < y(t,ε) .
Finally, the limit (5) implies that w(t) � y(t) . �

COROLLARY 5.2. Suppose that the hypotheses (A0)–(A2) and the condition (16)
hold. Also, assume that there exists a real number M > 0, such that for all t ∈ J

g(t,x1)−g(t,x2) � M
1+ tq

( x1

f (t,x1)
− x2

f (t,x2)

)
, x1,x2 ∈ R, x1 � x2,
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where

M �
∫ 1

0

b(q)
TqΓ(1−q)

dq,
∫ 1

0
b(q)dq = 1.

Furthermore, if there exists a function u ∈C(J,R) such that⎧⎨
⎩

∫ 1
0 b(q)Dq

[
u(t)

f (t,u(t))

]
dq � g(t,u(t)), t ∈ J,

u(0) > 0,

then
z(t) � u(t),

where z is a minimal solution of the DOFHDE (1).

Next theorem is a result about the uniqueness of solutions of DOFHDE (1).

THEOREM 5.3. Suppose that the hypotheses (A0)–(A2) and the condition (16)
hold. Also, assume that there exists a real number M > 0, such that for all t ∈ J

g(t,x1)−g(t,x2) � M
1+ tq

( x1

f (t,x1)
− x2

f (t,x2)

)
, x1,x2 ∈ R, x1 � x2,

where

M �
∫ 1

0

b(q)
TqΓ(1−q)

dq,

∫ 1

0
b(q)dq = 1.

If identically zero function is the only solution of the differential equation

∫ 1

0
b(q)Dq[p(t)]dq =

M
1+ tq

p(t), p(0) = 0,

∫ 1

0
b(q)dq = 1, (8)

then, the DOFHDE (1) has a unique solution on J = [0,T ] .

Proof. According to the Theorem 4.4, the DOFHDE (1) has a solution on J =
[0,T ] . Let v1 and v2 be two solution of the DOFHDE (1) with v1 > v2 and set the
function p : J → R

p(t) =
v1(t)

f (t,v1(t))
− v2(t)

f (t,v2(t))
. (9)

Since v1 > v2 , by the hypothesis (A0) we obtain p(t) > 0. Therefore for the nonnega-
tive density function b(q) , we get

∫ 1

0
b(q)Dq[p(t)]dq �

∫ 1

0
b(q)Dq

[ v1(t)
f (t,v1(t))

]
dq−

∫ 1

0
b(q)Dq

[ v2(t)
f (t,v2(t))

]
dq

� g(t,v1)−g(t,v2)

� M
1+ tq

( v1

f (t,v1)
− v2

f (t,v2)

)

=
M

1+ tq
p(t), t ∈ J, p(0) = 0.



442 H. NOROOZI, A. ANSARI AND M. SH. DAHAGHIN

Since identically zero function is the only solution of the differential equation (8), ap-
plying the Theorem 5.1 with f (t,x)≡ 1, implies that p(t) � 0, which is a contradiction
with p(t) > 0. Finally, v1 = v2 . �

6. Conclusions

In this paper, we introduced a new class of the fractional hybrid differential in-
equalities of distributed order with respect to a nonnegative density function. By these
inequalities, we established the existence of extremal solution and proved some com-
parison theorems for this class. These results enable us to find the extremal solutions of
many fractional differential equations with respect to the various order density function.

Acknowledgements. The authors are gratefully thankful to Professor Bapurao C.
Dhage (India) and the referee for giving some constructive comments for the improve-
ment of this paper. They would also like to thank the Center of Excellence for Mathe-
matics, Shahrekord university for financial support.

RE F ER EN C ES

[1] M. CAPUTO, Elasticita e Dissipazione, Zanichelli, Bologna, Italy, 1969.
[2] M. CAPUTO, Mean fractional-order-derivatives differential equations and filters, Annali dell univer-

sita di Ferrara. Nuova Serie. Sezione VII. Scienze Mathematiche, 41 (1995) 73–84.
[3] M. CAPUTO, Distributed order differential equations modeling dielectric induction and diffusion,

Fractional Calculas and Applied Analysis, 4 (2001) 421–442.
[4] A. V. BOBYELV AND C. CERCIGNANI,The inverse laplace transform of some analytic functions with

an application to the eternal solutions of the Boltzmann equation, Applied Mathematics Letters, 15
(7) (2002) 807–813.

[5] B. DAVIS, Integral Transforms and their applications, 3rd edition, Springer-Verlag, New York, 2001.
[6] B. C. DHAGE, On a fixed point theorem in Banach algebras with applications, Applied Mathematics

Letters, 18 (2005) 273–280.
[7] B. C. DHAGE, A nonlinear alternative in Banach algebras with applications to functional differential

equations, Nonlinear Functional Analysis and Applications, 8 (2004) 563–575.
[8] B. C. DHAGE, Nonlinear quadratic first order functional integro-differential equation with periodic

boundary conditions, Dynamic Systems and Applications, 18 (2009) 303–322.
[9] B. C. DHAGE, Theorical approximation methods for hybrid differential equations, Dynamic Systems

and Applications, 20, (2011) 455–478.
[10] B. C. DHAGE, V. LAKSHMIKANTHAM, Basic results on hybrid differential equations, Nonlinear

Analysis Hybrid, 4 (2010) 414–424.
[11] B. C. DHAGE, V. LAKSHMIKANTHAM, Quadratic perturbations of boundary value problems of sec-

ond order ordinary differential equations, Differential Equations and Applications, 2 (4) (2010) 465–
486.

[12] B. C. DHAGE AND B. D. KARANDE, First order integro-differential equations in banach algebras
involving caratheodory and discontinuous nonlinearities, Electronic Journal of Qualitative Theory of
Differential Equations, 21, (2005) 1–16.

[13] B. C. DHAGE, On α -condensing mappings in Banach algebras, Mathematics Student, 63 (1994)
146–152.

[14] B. C. DHAGE, Fixed point theorems in ordered Banach algebras and applications, Panamerican Math-
ematical Journal, 9 (4) (1999) 93–102.

[15] B. C. DHAGE, Differential inequalities for implicit perturbations of first order differential equations
with applications, Mathematical Inequalities and Applications (2011), 811–817.



FUNDAMENTAL INEQUALITIES FOR THE DOFHDES AND APPLICATIONS 443

[16] G. B. FOLLAND, Real Analysis: Modern Techniques and Their Applications, 2nd Edition, Wiley,
1999.

[17] A. A. KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO, Theory and Applications of Fractional Differ-
ential Equations, North-Holland Mathematics Studies, 204, Elsevier Science Publishers, Amsterdam,
Heidelberg and New York, 2006.

[18] V. LAKSHMIKANTHAM, S. LEELA, Differential and Integral Inequalities, Academic Press, New
York, 1969.

[19] V. LAKSHMIKANTHAM, A. S. VATSALA, Theory of fractional differential inequalities and applica-
tions, Communications in Applied Analysis, 11 (2007) 395–402.

[20] H. NOROOZI, A. ANSARI, M. SH. DAHAGHIN, Existence results for the distributed order fractional
hybrid differential equations, Abstract and Applied Analysis, 2012, ArticleID 163648, 16 pages.

[21] I. PODLUBNY, Fractional Differential Equations, Academic Press, San Diego, 1999.
[22] Y. ZHAO, S. SUN, Z. HAN, Q. LI, Theory of fractional hybrid differential equations, Computer and

Mathematics with Applications, 62 (2011) 1312–1324.

(Received June 16, 2012) Hossein Noroozi
Department of Applied Mathematics

Faculty of Mathematical Sciences
Shahrekord University

P. O. Box 115, Shahrekord, Iran
e-mail: hono1458@yahoo.com

Alireza Ansari
Department of Applied Mathematics

Faculty of Mathematical Sciences
Shahrekord University

P. O. Box 115, Shahrekord, Iran
e-mail: ansari.alireza@sci.sku.ac.ir

Mohammad Shafi Dahaghin
Department of Applied Mathematics

Faculty of Mathematical Sciences
Shahrekord University

P. O. Box 115, Shahrekord, Iran
e-mail: msh-dahaghin@sci.sku.ac.ir

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


