
Journal of
Mathematical

Inequalities

Volume 8, Number 3 (2014), 559–579 doi:10.7153/jmi-08-42

Lp –MIXED INTERSECTION BODIES

TONG-YI MA

(Communicated by G. Sinnamon)

Abstract. This paper presents the concept of Lp -mixed intersection body, and study the mono-
tonicity of the operator Ip,i for Lp -mixed intersection body. Meanwhile, we establish Busemann-
type inequalities and the dual Brunn-Minkowski type inequalities for Lp -mixed intersection
body.

1. Introduction

Projection body was originally invented by Minkowski [1] in 1934. Minkowski
mapping has a special role in the Banach spaces based on the fact that affine equivalent
convex body has the properties of affine equivalent projection body. The research on the
projection body has attracted much attention. Because the projection body has a variety
of new applications such as the combinatorics, the stereology, the stochastic geometry,
the random determinants, etc.

In [6], Lutwak presented the concept of intersection body and given the duality
relation between the projection body and intersection body.

We recall the definition of the Lp -projection body of a convex body in R
n (see

[7]): For every convex body K in R
n and real p � 1, the Lp -projection body, ΠpK , of

K is an origin-symmetric convex body whose support function is given by

h(ΠpK,u) =
(

1
nωncn−2,p

∫
Sn−1

|u · v|pdSp(K,v)
) 1

p

, for all u ∈ Sn−1, (1)

where
cn,p =

ωn+p

ω2ωnωp−1
.

The unusual normalization of the definition (1) is chosen so that for the unit ball B in
R

n , we have ΠpB = B .
Here we use the Lp -mixed volume to rewrite the definition of Lp -projection body

that its intrinsic geometric nature is even more clear:

h(ΠpK,u) =
(

Vp(K, [−u,u])
Vp(B, [−u,u])

) 1
p

, for all u ∈ Sn−1, (2)
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where [−u,u] denotes the line segment joining −u and u .
Similar to the definition of Lp -projection body, Wang and Leng in [14] gave the

definition of Lp -mixed projection body as follow: Let K be a convex body origin in its
interior, real p � 1 and i = 0,1, · · · ,n−1, the Lp -mixed projection body, ΠpK , of K
be origin-symmetric convex body whose support function is given by

h(Πp,iK,u) =
(

1
nωncn−2,p

∫
Sn−1

|u · v|pdSp,i(K,v)
) 1

p

, for all u ∈ Sn−1. (3)

Here the positive Borel measure Sp,i(K, ·) on Sn−1 is called the Lp -mixed surface area
measure of K which is introduced by Lutwak (see [8]).

Using the concept of mixed quermassintegrals, we can rewrite the Lp -mixed pro-
jection body as follows:

h(Πp,iK,u) =
(

Wp,i(K, [−u,u])
Wp,i(B, [−u,u])

) 1
p

, for all u ∈ Sn−1. (4)

There is a duality relation between the projection body and intersection body, from
this point, we believe that there is a certain duality relations between the Lp -mixed
projection body and the mixed intersection body. So that we can use the dual Lp -mixed
quermassintegrals to definite the Lp -mixed intersection bodies are as follows:

DEFINITION 1.1. Let K be a star body in R
n , p � 1 and i ∈ R , the Lp -mixed

intersection body, Ip,iK , of K is defined by

ρ(Ip,iK,u) =
(

W̃p,i(K,B∩u⊥)
W̃p,i(B,B∩u⊥)

) 1
p

=
(

1
(n−1)ωn−1

∫
Sn−1∩u⊥

ρn−p−i
K (v)dSn−2(v)

) 1
p

(5)
for all u ∈ Sn−1 . Where W̃p,i(K,L) denotes the dual Lp -mixed quermassintegrals of
star bodies K and L in R

n . The definition of W̃p,i(K,L) will be introduced in Section
2.

REMARK. The intersection body was first defined by Lutwak in [6], after the un-
usual normalization we can give the definition of the classic intersection body as fol-
lows:

ρ(IK,u) =
v(K∩u⊥)
v(B∩u⊥)

=
Ṽ1(K,B∩u⊥)
Ṽ1(B,B∩u⊥)

, for all u ∈ Sn−1, (6)

where v(·) denote (n−1)-dimensional volume of convex body.
1994, Zhang in [17] further proposed the concept of i th intersection body, and i th

intersection body of the unusual normalization are defined as follows:

ρ(IiK,u) =
w̃i(K∩u⊥)
w̃i(B∩u⊥)

=
W̃1,i(K,B∩u⊥)
W̃1,i(B,B∩u⊥)

, for all u ∈ Sn−1, (7)

where w̃i(·) denote (n−1)-dimensional i th dual quermassintegrals of star body. From
the definition of Lp -mixed intersection body, we have

I1,iK = IiK, I1,0 = IK.
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From a geometric point of view, the Lp -mixed intersection body which we defined
is a generalization of the classical intersection body.

The main purpose of this paper is to study the monotonicity of the operator Ip,i

base on our definition of Lp -mixed intersection body Ip,iK . Also the Busemann-type
inequalities for Lp -mixed intersection bodies and the dual Brunn-Minkowski type in-
equalities for Lp -mixed intersection bodies are established.

The structural arrangements of this article is: In Section 2 we introduces some no-
tations in convex geometry and preparation knowledge in order to discuss in this article;
In Section 3 we discusses the property of operator Ip,i of Lp -mixed intersection bodied;
In Section 4 we will establish the Busemann-type inequalities for Lp -mixed intersec-
tion bodies; In Section 5 we further propose and prove that dual Brunn-Minkowski type
inequalities of Lp -intersection bodies.

2. Notation and ready knowledge

The setting for this paper is n -dimensional Euclidean space R
n (n � 2) . Let K n

denotes the set of convex bodies (compact, convex subsets with non-empty interiors)
in R

n . For the set of convex bodies containing the origin in their interiors and the
set of origin-symmetric convex bodies, we write as K n

o and K n
c , respectively. Let

S n
o denotes the set of all star bodies (about the origin) in R

n , S n
c denotes set of all

origin-symmetric star bodies in S n
o . Let B denote the unit ball in R

n with the unit
sphere Sn−1 . We use V (K) for n -dimensional volume of geometry body K and denote
ωn = V (B) .

If K ∈ K n , then its support function, hK = h(K, ·) : R
n −→ (0,∞) , is defined by

h(K,x) = max{(x,y)|y ∈ K}, for all x ∈ R
n,

where (x,y) denotes the standard inner product of x and y in R
n .

The proof of Proposition 3.1 in Section 3 we will also be used a property of the
inner product (see [3]): If φ ∈ GLn,x,y ∈ R

n , then

(x,φy) = (φ t x,y), (8)

where GLn denotes the non-singular affine (or linear) transformation group, φ t denote
transpose of the transformation φ .

If L ∈ S n
o , its radial function about the origin, ρL(x) = ρ(L, ·) : R

n \ {0} −→
[0,∞) , is defined by

ρ(L,x) = max{λ � 0|λx ∈ L}, for all x ∈ R
n \ {0}.

Two star bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is
independent of u ∈ Sn−1 .

From the definition of radial function, we know that: If K,L∈S n
o and any x∈R

n ,
then (see [3,13])

(i) For the radial function ρK , if c > 0, then

ρK(cx) = c−1ρK(x);
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(ii) For the radial function ρK , if φ ∈ GLn , then

ρφK(x) = ρK(φ−1x),

where φ−1 denotes inverse transform of φ ;
(iii) For λ > 0,ρK(u) � λ ρL(u) for any u ∈ Sn−1 if and only if K ⊆ λL .
If K ∈ K n

o , the polar body, K∗ , of K is defined by

K∗ = {x ∈ R
n|(x,y) � 1,y ∈ K}.

From the definitions of the support and radial functions and the definition of the
polar body, it follows that for K ∈ K n

o and any u ∈ Sn−1 ,

h(K∗,u) =
1

ρ(K,u)
, and ρ(K∗,u) =

1
h(K,u)

.

Let f be a Borel function on Sn−1 , the spherical Radon transform of the function
f is defined by (see [4])

(R f )(u) =
∫

Sn−1∩u⊥
f (v)dSn−2(v). (9)

Using the spherical Radon transform, we can rewrite the definition of Lp -mixed
intersection body Ip,iK as follows

ρ(Ip,iK,u)p =
1

(n−1)ωn−1
R
(
ρn−p−i

K

)
(u), for any u ∈ Sn−1. (10)

Spherical Radon transform has the following two important properties:
(i) The spherical Radon transform is a continuous bijection from C∞

e (Sn−1) to
itself;

(ii) The spherical Radon transform is self-adjoint, i.e., if f and g are defined on
Sn−1 bounded Borel functional, then∫

Sn−1
f (u)Rg(u)dS(u) =

∫
Sn−1

R f (u)g(u)dS(u). (11)

Radial sum of the vector x1,x2, · · · ,xr in R
n is defined as follows: If x1,x2, · · · ,xr

are coplanar lines, then x1+̃ · · ·+̃xr is the usual vector addition, otherwise it is zero
vector.

If K1,K2, · · · ,Kr ∈ S n
o and λ1,λ2, · · · ,λr ∈ R , then the radial Minkowski linear

combination is defined as (see [9]):

λ1K1+̃ · · ·+ λrKr = {λ1x1+̃ · · ·+̃λrxr|xi ∈ Ki, i = 1,2, · · · ,r}.

It is easy to show that for any K,L ∈ S n
o and α,β � 0,

ρ(αK+̃βL,u) = αρ(K,u)+ β ρ(L,u). (12)
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Using the polar coordinate formula of the volume, then the volume of the radial
Minkowski linear combination λ1K1+̃ · · · +̃λrKr is defined as

V (λ1K1+̃ · · · +̃λrKr) = ∑
1�i1,···,in�r

Ṽ (Ki1 , · · · ,Kin)λi1 · · ·λin , (13)

where the sum is taken over all n -tuples (i1, · · · , in) of positive integers not exceeding r .
The coefficient Ṽ (Ki1 , · · · ,Kin) depends only on the bodies Ki1 , · · · ,Kin , and is uniquely
determined by (13), it is called the dual mixed volume of star bodies Ki1 , · · · ,Kin .

If K1, · · · ,Kn ∈ S n
o , then the integral representation of the dual mixed volume

Ṽ (K1, · · · ,Kn) of K1, · · · ,Kn can be expressed as follows:

Ṽ (K1, · · · ,Kn) =
1
n

∫
Sn−1

ρK1(u) · · ·ρKn(u)dS(u). (14)

In particular, Ṽ (K, · · · ,K) = V (K) .
If K,L ∈ S n

o , then

Ṽi(K,L) = Ṽ (K, · · · ,K︸ ︷︷ ︸
n−i

,L, · · · ,L︸ ︷︷ ︸
i

) =
1
n

∫
Sn−1

ρK(u)n−iρL(u)idS(u).

Apparently, for K,L,M ∈ S n
o and α,β � 0, we have

Ṽn−1(αK+̃βL,M) = αṼn−1(K,M)+ βṼn−1(L,M).

In particular, Ṽi(K,B) is said to be an i th dual quermassintegrals of star body K and is
written as W̃i(K) , namely

W̃i(K) =
1
n

∫
Sn−1

ρK(u)n−idS(u). (15)

DEFINITION 2.1. For K,L ∈ S n
o , real p > 0 and α , β � 0 (not both zero), the

Lp -radial linear combination, α ·K+̃pβ ·L , of K and L is the star body whose radial
function is defined by

ρ(α ·K+̃pβ ·L, ·)p = αρ(K, ·)p + β ρ(L, ·)p.

Corresponds to the Lp -mixed quermassintegrals and the Lp -radial linear combi-
nation, we will introduce the concept of dual Lp -mixed quermassintegrals as follows:

DEFINITION 2.2. If K,L ∈S n
o , for real p � 1 and real i �= n , the dual Lp -mixed

quermassintegrals, W̃p,i(K,L) , of K and L is defined by

n− i
p

W̃p,i(K,L) = lim
ε→0+

W̃i(K+̃p ε ·L)−W̃i(K)
ε

.

Apparently, for p = 1, W̃p,i(K,L) = W̃i(K,L) ; For any p � 1,

W̃p,i(K,K) = W̃i(K). (16)

According to the above definition 2.2 and the polar coordinate formula for volume,
we easily get the following integral representation of the dual Lp -mixed quermassinte-
grals W̃p,i(K,L) of K,L ∈ S n

o .
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LEMMA 2.1. If K,L ∈ S n
o , for real p � 1 and real i �= n, i �= n− p, the integral

representation of dual Lp -mixed quermassintegrals, W̃p,i(K,L) , of K and L can be
expressed as follows:

W̃p,i(K,L) =
1
n

∫
Sn−1

ρ(K,u)n−i−pρ(L,u)pdS(u). (17)

Proof. According to the definition of W̃p,i(K,L) and W̃i(K) , together with the
dual Lp -radial linear property, we have

n− i
p

W̃p,i(K,L) = lim
ε→0+

1
n

∫
Sn−1

(
ρ(K+̃pε ·L,u)n−i−ρ(K,u)n−i

)
dS(u)

ε

=
1
n

∫
Sn−1

lim
ε→0+

(
ρ(K,u)p + ερ(L,u)p

) n−i
p −ρ(K,u)n−i

ε
dS(u)

=
n− i
np

∫
Sn−1

ρ(K,u)n−i−pρ(L,u)pdS(u).

This complete the proof of Lemma 2.1. �

In the following we will give the dual Lp -mixed Minkowski inequality.

LEMMA 2.2. If K,L∈S n
o , and p � 1 , while real i �= n,n− p. Then for i < n− p,

W̃p,i(K,L)n−i � W̃i(K)n−i−pW̃i(L)p, (18)

with equality if and only if K and L are dilates. For n− p < i < n or i > n, inequality
(18) is reversed.

Proof. First we need the following extended Hölder’s inequality (see [5]): Sup-
pose f and g are two almost everywhere nonnegative bounded Borel functions on a set
X , and real p,q ∈ R

+ satisfies 1
p + 1

q = 1. Then

∫
X

f (x)g(x)dμ(x) �
(∫

X
f (x)pdμ(x)

) 1
p
(∫

X
g(x)pdμ(x)

) 1
q

. (19)

If one is negative of both p and q , the above inequality is reversed. For both cases
the equality holds if and only if one of the two functions for measure μ is almost
everywhere zero, or there exists insufficiency zero non-negative constants a,b , such
that a f p = bgq for the measure μ almost everywhere in the establishment.

Therefore, for i < n− p , we use integral representation (17) of W̃p,i(K,L) and
Hölder’s inequality (19) can be obtained

W̃p,i(K,L) =
1
n

∫
Sn−1

ρ(K,u)n−i−pρ(L,u)pdS(u)

�
(

1
n

∫
Sn−1

ρ(K,u)n−idS(u)
) n−i−p

n−i
(

1
n

∫
Sn−1

ρ(L,u)n−idS(u)
) p

n−i

= W̃i(K)
n−i−p

n−i W̃i(L)
p

n−i .
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Thus, we obtain inequality (18). For n− p < i < n or i > n we similarly can prove the
reverse inequality.

Note that the equality holds in Hölder’s inequality if and only if ρ(K,u)n−i =
cρ(L,u)n−i (c is a constant), i.e., ρ(K,u) = λ ρ(L,u) (λ is a constant). Thus the
equality holds in inequality (18) if and only if K and L are dilates. �

LEMMA 2.3. Suppose K,L ∈ S n
o , and i ∈ R,n− i �= p � 1 . If

W̃p,i(K,Q) = W̃p,i(L,Q) or W̃p,i(Q,K) = W̃p,i(Q,L), for all Q ∈ S n
o ,

then K = L. And vice versa.

Proof. We only show the first conclusion. Taking Q = K , using the known condi-
tions W̃p,i(K,Q) = W̃p,i(L,Q) , we have

W̃i(K) = W̃p,i(K,K) = W̃p,i(L,K),

for i < n− p , using Lemma 2.2, it is easy to know

W̃i(K)n−i � W̃i(L)n−i−pW̃i(K)p.

then W̃i(K) � W̃i(L) , with equality if and only if L and K are dilates.
For i < n− p , taking Q = L , we have W̃i(L) � W̃i(K) with equality if and only if

K and L are dilates.
Thus, W̃i(K) = W̃i(L) , and K and L are dilates each other. Therefore K = L .
Similarly, we can prove that for n− p < i < n or i > n , W̃p,i(K,Q) = W̃p,i(L,Q)

is also implication K = L . We have completed the proof of Lemma 2.3. �

We need to use the famous Jenesen inequality in the proof of Proposition 3.3 (see
Reference [5], Chapter 6). Suppose p �= 0,μ is a finite Borel measure in set X , and
f and ω are almost everywhere non-negative μ -integrable functions on X . Then p th
weighted mean, Mp,ω f , of f is defined as

Mp,ω f =
(

1
ω(X)

∫
X

f (x)pω(x)dμ(x)
) 1

p

,

lim
p→∞

Mp,ω f = esssup
x∈X

f (x),

there ω(X) =
∫
X ω(x)dμ(x) . And we are easy to know

lim
p→0

Mp,ω f = exp

(
1

ω(X)

∫
X

ω(x) log f (x)dμ(x)
)

.

Jensen’s inequality may be stated that: If p,q �= 0, p � q , and both Mp,ω f and
Mq,ω f are existence, then

Mp,ω f � Mq,ω f , (20)

with equality for p �= q if and only if f is a constant or if and only if p = q .
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The following the concept of Lp -mixed harmonic Blaschke plus K+̇pL will be
used later.

DEFINITION 2.3. [12] Suppose K,L∈S n
o , p � 1, and any real i �= n , i �= n+ p .

We denote ξ > 0, i.e.,

ξ
p

n+p−i =
1
n

∫
Sn−1

[
W̃i(K)−1ρ(K,u)n+p−i +W̃i(L)−1ρ(L,u)n+p−i] n−i

n+p−i dS(u). (21)

Then the Lp -mixed harmonic Blaschke plus, K+̇pL ∈ S n
o , of K and L is a star body

contains the origin in its internal whose radial function is defined by

ξ−1ρ(K+̇pL, ·)n+p−i = W̃i(K)−1ρ(K,u)n+p−i +W̃i(L)−1ρ(L,u)n+p−i. (22)

For i = 0, Definition 2.3 is introduced by Yuan in [15] whose it is called Lp -
harmonic Blaschke plus and write K +p L . For i = 0, p = 1, Definition 2.3 is intro-
duced by Lutwak in [10] whose it is called harmonic Blaschke plus and write K+̂L .

3. The property of the operator Ip,i

PROPOSITION 3.1. Suppose K ∈ S n
o , and real p � 1 . If φ ∈ GLn , then

Ip,iφK = |detφ |− 1
p φ−t(Ip,iK).

Proof. Let u ∈ Sn−1 . Using three properties (i), (ii), (iii) of the radial functions,
and the property (8) of the inner product, we have

ρ(Ip,iφK,u)p =
1

(n−1)ωn−1

∫
Sn−1∩u⊥

ρn−p−i
φK (v)dSn−2(v)

=
1

(n−1)ωn−1

∫
{v:(v,u)=0}

ρn−p−i
K (φ−1v)dSn−2(v) (Let y = φ−1v)

=
1

(n−1)ωn−1

∫
{φy:(φy,u)=0}

ρn−p−i
K (y)|detφ |dSn−2(y)

= |detφ | 1
(n−1)ωn−1

∫
{y:(y,φ t u)=0}

ρn−p−i
K (y)dSn−2(y)

= |detφ |ρ(Ip,iK,φ t u)p

= |detφ |ρ(φ−t Ip,iK,u)p.

From this, we obtain Proposition 3.1. The proof of Proposition 3.1 is completed. �

PROPOSITION 3.2. If K,L ∈ S n
o , p � 1 , and i, j ∈ R , then

W̃p, j(K, Ip,iL) = W̃p,i(L, Ip, jK). (23)

Proof. Using Lemma 2.1, (10) and (11), we easily show that the results (23).
Now define a class

Zp
p,i = {Ip,iK : K ∈ S n

o }.
We establish the monotonicity of the operator Ip,i (p � 1) , the result is the fol-

lowing proposition. �
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PROPOSITION 3.3. Let K,L ∈ S n
o , and real p � 1 . Then

(a) If p � q < ∞ , then

(
ωn−1

w̃i(K ∩u⊥)

) 1
p

Ip,iK ⊆
(

ωn−1

w̃i(K ∩u⊥)

) 1
q

Iq,iK,

with equality if and only if p = q or K is a ball centered at the origin.
(b) Let K ∈ S n

o and any real i ∈ R . If

W̃p,i(K,Q) � W̃p,i(L,Q)

holds for all Q ∈ S n
o , then

W̃j(Ip,iK) � W̃j(Ip,iL) for j < n− p,

and

W̃j(Ip,iK) � W̃j(Ip,iL) for j > n− p,

with equality if and only if K = L.
(c) Let K ∈ Zn

p,i and L ∈ S n
o . If for 1 � p < n− i satisfying Ip,iK ⊆ Ip,iL , then

W̃i(K) � W̃i(L),

with equality if and only if K = L.
Let L ∈ Zn

p,i and K ∈ S n
o . If for p > n− i satisfying Ip,iK ⊆ Ip,iL , then

W̃i(K) � W̃i(L),

with equality if and only if K = L.
(d) If K ⊆ L, then

Ip,iK ⊆ Ip,iL for i < n− p,

and

Ip,iK ⊇ Ip,iL for i > n− p,

with equality if and only if K = L.

Proof. (a) Note that for any u ∈ Sn−1 , we have∫
Sn−1∩u⊥

ρn−i
K (v)dSn−2(v) = (n−1)w̃i(K ∩u⊥).

From the definition 1.1 of Lp -mixed intersection body, Jenesen’s inequality (20)
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and the property (iii) of the radial functions, we have

ρ(Ip,iK,u)

=
(

1
(n−1)ωn−1

∫
Sn−1∩u⊥

ρn−p−i
K (v)dSn−2(v)

) 1
p

=
(

w̃i(K ∩u⊥)
ωn−1

) 1
p
(

1
(n−1)w̃i(K ∩u⊥)

∫
Sn−1∩u⊥

(
1

ρK(v)

)p

ρn−i
K (v)dSn−2(v)

) 1
p

�
(

w̃i(K ∩u⊥)
ωn−1

) 1
p
(

1
(n−1)w̃i(K ∩u⊥)

∫
Sn−1∩u⊥

(
1

ρK(v)

)q

ρn−i
K (v)dSn−2(v)

) 1
q

=
(

w̃i(K ∩u⊥)
ωn−1

) 1
p
(

ωn−1

w̃i(K ∩u⊥)

) 1
q

ρ(Iq,iK,u).

Namely, (
ωn−1

w̃i(K ∩u⊥)

) 1
p

ρ(Ip,iK,u) �
(

ωn−1

w̃i(K ∩u⊥)

) 1
q

ρ(Iq,iK,u).

Therefore, we get (
ωn−1

w̃i(K ∩u⊥)

) 1
p

Ip,iK ⊆
(

ωn−1

w̃i(K ∩u⊥)

) 1
q

Iq,iK.

We easily verify equation is true if and only if p = q . Or according to the conditions of
equality hold in Jenesen’s inequality, we know that the equality holds in (a) for p �= q if
and only if ρK(v) is a constant for v ∈ Sn−1 . Namely, K is a ball contains at the origin.

(b) For any Q∈S n
o and real p � 1, we have that W̃p,i(K,Q) � W̃p,i(L,Q) . Taking

Q = Ip,iM with M ∈ S n
o , we have

W̃p,i(K, Ip,iM) � W̃p,i(L, Ip,iM). (24)

By Lemma 2.3 we know that the equality holds in (24) if and only if K = L . Using
Proposition 3.2 in (24), we get

W̃p, j(M, Ip,iK) � W̃p, j(M, Ip,iL).

For j < n− p , taking M = Ip,iK , using (16) and Lp -mixed Minkowski inequality
(18), the above inequality can be turned into

W̃j(Ip,iK)n− j � W̃p, j(Ip,iK, Ip,iL)n− j � W̃j(Ip,iK)n−p− jW̃j(Ip,iL)p.

Simplified it into
W̃j(Ip,iK) � W̃j(Ip,iL), (25)

with equality if and only if Ip,iK and Ip,iL are dilates.
According to the condition of equality hold in the inequalities (24) and (25), we

know that the equality hold in (25) if and only if K = L .
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For n− p < j < n or i > n , using the same argument as in the first part of the
proof, we get

W̃j(Ip,iK) � W̃j(Ip,iL).

(c) If K ∈ Zn
p,i,L ∈S n

o and 1 � p < n− i . Let M ∈S n
o , from Proposition 3.2 and

Lemma 2.1, we can get

W̃p,i(K, Ip,iM) = W̃p,i(M, Ip,iK) =
1
n

∫
Sn−1

ρM(u)n−i−pρIp,iK(u)pdS(u).

Similarly,

W̃p,i(L, Ip,iM) = W̃p,i(M, Ip,iL) =
1
n

∫
Sn−1

ρM(u)n−i−pρIp,iL(u)pdS(u).

According to the condition Ip,iK ⊆ Ip,iL , we can get

W̃p,i(K, Ip,iM) � W̃p,i(L, Ip,iM) for any M ∈ S n
o . (26)

For each fixed i < n− p , taking Ip,iM = K in (26), and using the inequality (18),
we get

W̃i(K) = W̃p,i(K,K) � W̃p,i(L,K) � W̃i(L)
n−i−p

n−i W̃i(K)
p

n−i .

By this inequality, we immediately get

W̃i(K) � W̃i(L).

According to the condition of equality hold in the inequality (18), and known
conditions Ip,iK ⊆ Ip,iL , it is easy to know the equality holds in W̃i(K) � W̃i(L) if and
only if K = L .

IfL ∈ Zn
p,i,K ∈ S n

o and p > n− i . Taking Ip,iM = L in (26), and using the in-
equality (18), we have

W̃i(L) = W̃p,i(L,L) � W̃p,i(K,L) � W̃i(K)
n−i−p

n−i W̃i(L)
p

n−i .

Therefore, W̃i(K) � W̃i(L) , with equality holds if and only if K = L .
(d) By the property (iii) of the radial functions, for any u ∈ Sn−1 , ρK(u) � ρL(u) .

Therefore, for any u ∈ Sn−1 and i < n− p , ρn−p−i
K (u) � ρn−p−i

L (u) . Together with the
definition of Lp -mixed intersection body, we have ρ p

Ip,iK
(u) � ρ p

Ip,iL
(u) . Thus we get

Ip,iK ⊆ Ip,iL , with equality if and only if Ip,iK = Ip,iL . Because for any Q ∈ S n
o , we

have
W̃p,i(Q, Ip,iK) = W̃p,i(Q, Ip,iL).

Using Proposition 3.2, from the above equation, we can get

W̃p,i(K, Ip,iQ) = W̃p,i(L, Ip,iQ).

Further, by Lemma 2.3, we immediately have K = L .
For i > n− p , using the same argument as in the first part of the proof, we get

K ⊆ L implies Ip,iK ⊇ Ip,iL with equality if and only if K = L . �
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4. The Busemann-type inequalities for Lp -mixed intersection bodies

A classic affine inequalities in convex geometry and affine geometry is the Buse-
mann intersecting inequalities (see [2]). It can be expressed as follows: Let K be a
convex body in R

n , then

V (IK)V (K)1−n � ω2−n
n , (27)

with equality if and only if K is an ellipsoid.
In this section we will establish the Busemann-type inequalities for Lp -mixed in-

tersection bodies. To this end, we need the following some lemmas.

LEMMA 4.1. (see [11]) If K ∈ K n and i = 0,1, · · · ,n−1 , then

Wi(K) � ω
i
n
n V (K)

n−i
n , (28)

with equality if and only if K is a n-ball.

LEMMA 4.2. (see [[9]]) If K ∈ K n , i ∈ R and 0 < i < n, then

W̃i(K) � ω
i
n
n V (K)

n−i
n , (29)

with equality if and only if K is a n-ball centered at the origin. For i= 0,n, the equality
hold in inequality (29) for any convex body K in R

n .

Now we establish the following Busemann-type inequalities for Lp -mixed inter-
section bodies.

THEOREM 4.1. Let K ∈ K n , p > 1 , i, j ∈ R and 0 � i, j � n. Then for 1 < p <
n− i ,

W̃j(Ip,iK)Wj(K)1− n−i
p � ω

2− n−i
p

n . (30)

For p > n− i , the inequality (30) is reversed. When p �= n− i , the equality holds if and
only if K is a ball centered at the origin in the above two inequalities.

Proof. If 1 < p < n− i , using (5), (6) and Hölder’s inequality (19), we have

ρIp,iK(u)n− j =
(

1
(n−1)ωn−1

∫
Sn−1∩u⊥

ρK(u)n−p−idSn−2(v)
) n− j

p

�
[(

1
(n−1)ωn−1

∫
Sn−1∩u⊥

ρK(u)n−1dSn−2(v)
) n−p−i

n−1

×
(

1
(n−1)ωn−1

∫
Sn−1∩u⊥

1
n−1

p+i−1 dSn−2(v)
) p+i−1

n−1
] n− j

p

= ρIK(u)
(n−p−i)(n− j)

(n−1)p . (31)
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By (15), (31), Hölder’s inequality (19) and Lemma 4.2, we can get

W̃j(Ip,iK) =
1
n

∫
Sn−1

ρIp,iK(u)n− jdS(u)

� 1
n

∫
Sn−1

ρIK(u)
(n−p−i)(n− j)

(n−1)p dS(u)

�
(

1
n

∫
Sn−1

ρIK(u)n− jdS(u)
) n−p−i

(n−1)p
(

1
n

∫
Sn−1

1
(n−1)p

n(p−1)+i dS(u)
) n(p−1)+i

(n−1)p

= ω
n(p−1)+i
(n−1)p

n W̃j(IK)
n−p−i
(n−1)p

� ω
n2(p−1)+ j(n−p−i)+in

n(n−1)p
n V (IK)

(n− j)(n−p−i)
n(n−1)p . (32)

Using Lemma 4.1 and (27), and note that 1− n−i
p < 0, from (32) we have

W̃j(Ip,iK)Wj(K)1− n−i
p � ω

n2(p−1)+ j(n−p−i)+in
n(n−1)p

n ×ω
j(p−n+i)

np
n × (V (IK)V (K)1−n) (n− j)(n−p−i)

n(n−1)p

� ω
n2(p−1)+ j(n−p−i)+in

n(n−1)p
n ×ω

− j(n−p−i)
np

n ×ω
(2−n)(n− j)(n−p−i)

n(n−1)p
n

= ω
2− n−i

p
n . (33)

Namely

W̃j(Ip,iK)Wj(K)1− n−i
p � ω

2− n−i
p

n .

We have proved the first part of Theorem 4.1.
If p > n− i , then 0 < n−1

p+i−1 < 1 and 0 < (n−1)p
n(p−1)+i < 1. Therefore, according to

Hölder’s inequality we see that the inequalities in (31) and (32) are reversed. And noted
that 1− n−i

p > 0 and (n− j)(n−p−i)
n(n−1)p < 0, the inequality in (33) is reversed. This proves

the second part of the Theorem 4.1.
In the following we consider the conditions of equality holds in the inequality (30).

According to the conditions of equality hold in Hölder’s inequality (19), we know that
the equality hold in (31) and (32) if and only if ρK(·) is a constant. Namely, K is a ball
in R

n . This, combined with the conditions of equality holds in (27) and (28), we see
that for p �= n− i the equality hold in Theorem 4.1 if and only if K is a ball centered at
the origin. This completes the proof. �

Taking j = 0 in Theorem 4.1, we obtain that

COROLLARY 4.1. Let K ∈ K n , p > 1 , i ∈ R
n and 0 � i � n, then for 1 < p <

n− i ,

V (Ip,iK)V (K)1− n−i
p � ω

2− n−i
p

n . (34)

For p > n− i the inequality (34) is reversed. The equality holds for p �= n− i if and
only if K is a ball centered at the origin.

Taking i = 0 in Corollary 4.1, we obtain that
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COROLLARY 4.2. Let K ∈ K n and p > 1 , then for 1 < p < n,

V (IpK)V (K)1− n
p � ω

2− n
p

n . (35)

For p > n the inequality (35) is reversed. The equality hold for p �= n if and only if K
is a ball centered at the origin.

Corollary 4.2 is just Theorem 2.1 in [16]. Taking p = 1 in Corollary 4.2, we get
well-known Busemann intersecting inequalities in [2] (see (27) in our article).

Below, we will establish a relationship between Ip+q,iK , Ip,iK and Iq,iK .

THEOREM 4.2. Let K ∈ S n
o , i, j ∈ R and p,q � 1 . Then for p > q,(

W̃j(Ip+q,iK)

W̃j(Ip,iK)

)p2

�
(

W̃j(Ip+q,iK)

W̃j(Iq,iK)

)q2

, (36)

with equality holds if and only if K is a ball.

Proof. According to the definition of the Lp -mixed intersection bodies and Hölder’s
inequality (19), we have

ρIp+q,iK(u)p+q =
1

(n−1)ωn−1

∫
Sn−1∩u⊥

ρK(v)n−p−q−idSn−2(v)

=
1

(n−1)ωn−1

∫
Sn−1∩u⊥

(
ρK(v)n−p−i) p

p−q
(
ρK(v)n−q−i)− q

p−q dSn−2(v)

�
[

1
(n−1)ωn−1

∫
Sn−1∩u⊥

ρK(v)n−p−idSn−2(v)
] p

p−q

×
[

1
(n−1)ωn−1

∫
Sn−1∩u⊥

ρK(v)n−q−idSn−2(v)
]− q

p−q

= ρIp,iK(u)
p2

p−q ρIp,iK(u)−
q2
p−q .

Therefore,

W̃j(Ip+q,iK)p2−q2
=
[
1
n

∫
Sn−1

ρIp+q,iK(u)n− jdS(u)
]p2−q2

=
[
1
n

∫
Sn−1

(
ρIp+q,iK(u)p+q) n− j

p+q dS(u)
]p2−q2

�
[
1
n

∫
Sn−1

(
ρIp,i(u)

p2
p−q ρIq,iK(u)−

q2
p−q

) n− j
p+q

dS(u)
]p2−q2

=
[
1
n

∫
Sn−1

(
ρIp,iK(u)n− j

) p2

p2−q2
(

ρIp,iK(u)n− j
)− q2

p2−q2

dS(u)
]p2−q2

�
(

1
n

∫
Sn−1

ρIp,iK(u)n− jdS(u)
)p2(

1
n

∫
Sn−1

ρIq,iK(u)n− jdS(u)
)−q2

= W̃j(Ip,iK)p2
W̃j(Iq,iK)−q2

.
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According to the condition of equality holds in the Hölder’s inequality (19), we know
that the equality holds in (36) if and only if K is a ball. This completes the proof. �

From Definition 1.1 of the Lp -mixed intersection bodies and Theorem 4.2, we
have

COROLLARY 4.3. If K ∈ S n
o , p > q � 1 , i, j ∈ R and 0 � i � n− 1 . Then for

p+q+ i = n,

W̃j(Ip,iK)p2
W̃j(Iq,iK)−q2 � ω p2−q2

n , (37)

with equality if and only if K is a ball.

5. Dual Brunn-Minkowski-type inequalities for Lp -mixed intersection bodies

In this section we establish the dual Brunn-Minkowski-type inequalities for Lp -
mixed intersection bodies. To do this, we first give following two lemmas.

LEMMA 5.1. (Minkowski integral inequality, see [5]) Suppose f and g are two
nonnegative bounded Borel functions in a set X . Then for p � 1 ,(∫

X
( f (x)+g(x))pdμ(x)

) 1
p

�
(∫

X
f (x)pdμ(x)

) 1
p

+
(∫

X
g(x)pdμ(x)

) 1
p

; (38)

For 0 < p < 1 , the inequality (38) is the reverse. In both cases, the equalities holds if
and only if f and g are proportional.

LEMMA 5.2. Let K,L ∈ S n
o , p � 1 , q > 0 , and λ , μ � 0 (not both zero). Then

for i < n− p−q,

ρIp,i(λK+̃qμL)(u)
pq

n−p−i � λ ρIp,iK(u)
pq

n−p−i + μρIp,iL(u)
pq

n−p−i . (39)

For n− p−q < i < n− p, the inequality (39) is the reverse. In both cases, the equality
hold if and only if K and L be dilates. When q = n− p− i , the equality also holds in
inequality (39).

Proof. Since p � 1, q > 0, i < n− p−q , this yields n−p−i
q > 1. Then from (38),

we have

ρIp,i(λK+̃qμL)(u)
pq

n−p−i =
[

1
(n−1)ωn−1

∫
Sn−1∩u⊥

ρ(λK+̃qμL)(v)
n−p−idSn−2(v)

] q
n−p−i

=
[

1
(n−1)ωn−1

∫
Sn−1∩u⊥

(
λ ρK(v)q+μρL(v)q) n−p−i

q dSn−2(v)
] q

n−p−i

�
[

1
(n−1)ωn−1

∫
Sn−1∩u⊥

λ
n−p−i

q ρK(v)n−p−idSn−2(v)
] q

n−p−i

+
[

1
(n−1)ωn−1

∫
Sn−1∩u⊥

μ
n−p−i

q ρL(v)n−p−idSn−2(v)
] q

n−p−i

= λ ρIp,iK(u)
pq

n−p−i + μρIp,iL(u)
pq

n−p−i .
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From this, we know that the inequality holds in (39).
On the other hand, if p � 1, q > 0, n− p− q < i < n− p , then 0 < n−p−i

q < 1.
Similar to the proof of the above process, we can prove the reverse inequality of (39).

According to the conditions of equality holds in Minkowski integral inequality
(38), we know that the equalities holds in (39) and its the reverse inequality if and only
if K and L are dilates. The proof of Lemma 5.2 is completed. �

Particularly, taking q = n− p− i , we obtain that

ρIp,i(λK+̃n−p−iμL)(u)p = λ ρIp,iK(u)p + μρIp,iL(u)p. (40)

Here we establish dual Brunn-Minkowski-type inequalities for Lp -mixed intersec-
tion bodies.

THEOREM 5.1. Let K,L ∈ S n
o , λ , μ � 0 (not both zero), p � 1 , q > 0 and i, j

are real numbers. Then for i � n− p−q, j � n− p,

W̃j(Ip,i(λK+̃qμL))
pq

(n−p−i)(n− j) � λW̃j(Ip,iK)
pq

(n−p−i)(n− j) + μW̃j(Ip,iL)
pq

(n−p−i)(n− j) . (41)

For n− p− q < i < n− p,n− p < j < n, the inequality (41) is the reverse. In both
cases, the equality holds if and only if K and L are dilates.

Proof. By the known conditions i � n− p−q , j � n− p , we know

n− p− i
q

� 1,
(n− p− i)(n− j)

pq
� 1.

From Lemma 2.1, Lemma 5.2 and Minkowski integral inequality (38), we get

W̃j(Ip,i(λK+̃qμL))
pq

(n−p−i)(n− j) =
[
1
n

∫
Sn−1

ρIp,i(λK+̃qμL)(u)n− jdS(u)
] pq

(n−p−i)(n− j)

�
[
1
n

∫
Sn−1

(
λ ρIp, jK(u)

pq
n−p−i + μρIp, jL(u)

pq
n−p−i

) (n−p−i)(n− j)
pq

dS(u)
] pq

(n−p−i)(n− j)

�
(

1
n

λ
∫

Sn−1
ρIp, jK(u)n− jdS(u)

) pq
(n−p−i)(n− j)

+
(

1
n

λ
∫

Sn−1
ρIp, jL(u)n− jdS(u)

) pq
(n−p−i)(n− j)

= λW̃j(Ip,iK)
pq

(n−p−i)(n− j) + μW̃j(Ip,iL)
pq

(n−p−i)(n− j) .

From this, we immediately gives the inequality (41).
According to the conditions of equality holds in the inequality (38), we know that

equality holds in the inequality (41) if and only if ρIp,iK(·) and ρIp,iL(·) are proportional.
Therefore, the equality holds in (41) if and only if K and L are dilates.

On the other hand, since n− p−q < i < n− p , n− p < j < n , this yields

0 <
(n− p− i)(n− j)

pq
< 1, 0 <

n− p− i
q

< 1.
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Similar to the proof in the first case, from Minkowski integral inequality (38),
we can obtain the reverse inequality of inequality (41), with equality in the reverse
inequality if and only if K and L are dilates. �

Particularly, taking q = n− p− i > 0 in Theorem 5.1, we obtain that

COROLLARY 5.1. Let K,L ∈ S n
o , λ , μ � 0 (not both zero), p � 1 and i, j are

real numbers. Then for i < n− p, j � n− p,

W̃j(Ip,i(λK+̃n−p−iμL))
p

n− j � λW̃j(Ip,iK)
p

n− j + μW̃j(Ip,iL)
p

n− j . (42)

For i < n− p, n− p < j < n, the inequality (42) is the reverse. In both cases, the
equality holds if and only if K and L are dilates.

Together with Theorem 5.1 and Lemma 5.1, we can get the following an isolated
form of inequality (42).

THEOREM 5.2. Let K,L∈S n
o , α ∈ [0,1] , p � 1 and i, j are real numbers. Then

for i < n− p, j � n− p,

W̃j(Ip,i(K+̃n−p−iL))
p

n− j

� W̃j(Ip,i(α ·K+̃n−p−i(1−α) ·L))
p

n− j +W̃j(Ip,i((1−α) ·K+̃n−p−iα ·L))
p

n− j

� W̃j(Ip,iK)
p

n− j +W̃j(Ip,iL)
p

n− j , (43)

with equality if and only if K and L are dilates. For i < n− p, n− p < j < n, the
inequality (43) is the reverse.

Proof. For all α ∈ [0,1] , let M = α ·K+̃n−p−i(1−α)·L , N = (1−α)·K+̃n−p−iα ·
L . Since K,L ∈ S n

o , then M,N ∈ S n
o . By the formula (15), (40) and Definition 2.1,

we have

W̃j(Ip,i(K+̃n−p−iL)) =
1
n

∫
Sn−1

ρ(Ip,i(K+̃n−p−iL),u)n− jdS(u)

=
1
n

∫
Sn−1

(
ρIp,iK(u)p + ρIp,iL(u)p

) n− j
p

dS(u)

=
1
n

∫
Sn−1

[(
αρIp,iK(u)p +(1−α)ρIp,iL(u)p

)
+
(
(1−α)ρIp,iK(u)p + αρIp,iL(u)p

)] n− j
p

dS(u)

=
1
n

∫
Sn−1

[
ρ p(Ip,i(α ·K+̃n−p−i(1−α) ·L),u)

+ρ p(Ip,i((1−α) ·K+̃n−p−iα ·L),u)
] n− j

p

dS(u)

=
1
n

∫
Sn−1

ρ(Ip,i(M+̃n−p−iN),u)n− jdS(u)

= W̃j(Ip,i(M+̃n−p−iN)).
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According to Corollary 5.1, for i < n− p , j � n− p , we obtain that

W̃j(Ip,i(K+̃n−p−iL)) = W̃j(Ip,i(M+̃n−p−iN)) � W̃j(Ip,iM)
p

n− j +W̃j(Ip,iN)
p

n− j , (44)

with equality if and only if M and N are dilates. The inequality (44) is just the left part
in Theorem 5.2.

Since M and N are dilates each other if and only if ρn−p−i
M (u) = cρn−p−i

N (u) (c >

0) for all u ∈ Sn−1 . Therefore, for u ∈ Sn−1 , by Definition 2.1 we get αρn−p−i
K (u)+

(1−α)ρn−p−i
L (u)= c[(1−α)ρn−p−i

K (u)+αρn−p−i
L (u)] , namely, (α +cα−c)ρn−p−i

K (u)
= (cα +α −1)ρn−p−i

L (u) . Thus M and N are dilates if and only if K and L are dilates.
The equality of the left side inequality holds in Theorem 5.2 if and only if K and L are
dilates.

On the other hand, according to the inequality in Corollary 5.1, for i < n− p ,
j � n− p , then

W̃j(Ip,iM)
p

n− j = W̃j(Ip,i(α ·K+̃n−p−i(1−α)L))
p

n− j

� αW̃j(Ip,iK)
p

n− j +(1−α)W̃j(Ip,iK)
p

n− j , (45)

and

W̃j(Ip,iN)
p

n− j = W̃j(Ip,i((1−α) ·K+̃n−p−iαL))
p

n− j

� (1−α)W̃j(Ip,iK)
p

n− j + αW̃j(Ip,iK)
p

n− j , (46)

with equality if and only if K and L are dilates.
Compare with the above inequalities (45) and (46), we obtain that

W̃j(Ip,iM)
p

n− j +W̃j(Ip,iN)
p

n− j � W̃j(Ip,iK)
p

n− j +W̃j(Ip,iL)
p

n− j , (47)

with equality if and only if K and L are dilates. The inequality (47) is just the right
inequality in Theorem 5.2.

Similarly, using the above method of proof, we will be easy to prove that for
i < n− p , n− p < j < n , the inequality in Theorem 5.2 is the reverse. The proof of
Theorem 5.2 is completed. �

Taking i = 0 and j = 0 in Theorem 5.2, we immediately get that

COROLLARY 5.2. Let K,L ∈ S n
o , 1 � p < n, and α ∈ [0,1] . Then

V (Ip(K+̃n−pL))
p
n � V (Ip(α ·K+̃n−p(1−α) ·L))

p
n +V(Ip((1−α) ·K+̃n−pα ·L))

p
n

� V (IpK)
p
n +V(IpL)

p
n , (48)

with equality if and only if K and L are dilates.

Finally, we will establish a dual Brunn-Minkowski inequality of Lp -mixed inter-
section body associated with Lp -mixed harmonic Blaschke plus.
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THEOREM 5.3. Let K,L ∈ S n
o , p � 1 , and i < n is real numbers. Then for

p � n− i ,

W̃i(Ip,i(K+̇pL))
p

n−i

W̃i(K+̇pL)
� W̃i(Ip,iK)

p
n−i

W̃i(K)
+

W̃i(Ip,iL)
p

n−i

W̃i(L)
. (49)

If p > n− i , The inequality (49) is the reverse. For p �= n− i the equality holds in
inequalities if and only if K and L are dilates.

Proof. From the equation (21), (22) in Definition 2.3 and the formula of dual
quermassintegrals W̃i(K) , immediately yields ξ = W̃i(K+̇pL) . Therefore, by (22) we
have

ρ(K+̇pL,u)n+p−i

W̃i(K+̇pL)
=

ρ(K,u)n+p−i

W̃i(K)
+

ρ(L,u)n+p−i

W̃i(L)
. (50)

By Definition 1.1 and (50), we have

ρ(Ip,i(K+̇pL),u)p

W̃i(K+̇pL)
=

1

(n−1)ωn−1W̃i(K+̇pL)

∫
Sn−1∩u⊥

ρn−p−i
K+̇pL

(u)dSn−2(u)

=
1

(n−1)ωn−1W̃i(K)

∫
Sn−1∩u⊥

ρn−p−i
K (u)dSn−2(u)

+
1

(n−1)ωn−1W̃i(L)

∫
Sn−1∩u⊥

ρn−p−i
L (u)dSn−2(u)

=
ρ(Ip,i(K,u)p

W̃i(K)
+

ρ(Ip,i(L,u)p

W̃i(L)
. (51)

Therefore, for p � n− i , i < n , by the formula (15), (51) and Minkowski inequality
(38), we can get

W̃i(Ip,i(K+̇pL))
p

n−i

W̃i(K+̇pL)
=

1

W̃i(K+̇pL)

(
1
n

∫
Sn−1

ρ(Ip,i(K+̇pL),u)n−idS(u)
) p

n−i

=
(

1
n

∫
Sn−1

(ρ(Ip,i(K+̇pL),u)p

W̃i(K+̇pL)

) n−i
p

dS(u)
) p

n−i

=
(

1
n

∫
Sn−1

(ρ(Ip,iK,u)p

W̃i(K)
+

ρ(Ip,iL,u)p

W̃i(L)

) n−i
p

dS(u)
) p

n−i

�
(

1
n

∫
Sn−1

ρ(Ip,iK,u)

W̃i(K)
n−i
p

n−i

dS(u)
) p

n−i

+
(

1
n

∫
Sn−1

ρ(Ip,iL,u)

W̃i(L)
n−i
p

n−i

dS(u)
) p

n−i

=
W̃i(Ip,iK)

p
n−i

W̃i(K)
+

W̃i(Ip,iL)
p

n−i

W̃i(L)
.
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From the conditions of equality holds in Minkowski inequality (38), we know that
equality holds in inequality (49) if and only if

ρ(Ip,iK,u)p

W̃i(K)
= λ

ρ(Ip,iL,u)p

W̃i(L)
,

where λ > 0 is a constant. Namely

ρ(Ip,iK,u)
ρ(Ip,iL,u)

=
(

λW̃i(K)
W̃i(L)

) 1
p

.

This shows that equality holds in inequality (49) if and only if Ip,iK and Ip,iL are
dilates each other. Let Ip,iK = μIp,iL , together with the concept of dual Lp -mixed
quermassintegrals, for any Q ∈ S n

o , we have

W̃p,i(Q, Ip,iK) = W̃p,i(Q,μIp,iL) = μ pW̃p,i(Q, Ip,iL).

From Proposition 3.2, the integral expression (18) of dual Lp -mixed quermassintegrals,
and definition of the radial function, for any Q ∈S n

o , the above equation can be turned
into

W̃p,i(K, Ip,iQ) = μ pW̃p,i(L, Ip,iQ) = W̃p,i(μ
p

n−i−p L, Ip,iQ).

According to Lemma 2.3, we get K = μ
p

n−i−p L , this means that K and L are dilates.
Similarly, for p > n− i , we can prove the inequality (49) is reversed. �
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