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ON THE NORMS OF r-CIRCULANT MATRICES WITH
THE HYPER-FIBONACCI AND LUCAS NUMBERS

MUSTAFA BAHST AND SULEYMAN SOLAK

(Communicated by Neven Elezovi¢)

Abstract. In this paper, we study norms of circulant matrices F = Circ(Fo(k)7 F, l(k)7... ,Fn(f)l),
L= Circ(L(()k)7 L(lk),...7LE,k2 1) and r-circulant matrices F. = Circr(Fo(k), Fl(k)7...,Fn(f)l), L =
Circr(Lf)k), Lgk)7...,L,(1’? 1)» where F,l(k) and Lﬁ,k) denote the hyper-Fibonacci and hyper-Lucas

numbers, respectively.

1. Introduction

The circulant matrices and r-circulant matrices play important role in signal pro-
cessing, coding theory, image processing, linear forecast and so on. An n X n matrix
C, is called an r-circulant matrix if it is of the form

(€] ¢ €2 - Cp-2 Cp—1

ch—1 €0 €1 " Cp-3 Cp-2

Cr — rcp—p2 rcp—1 € -.. Cp—4 Cp-—3
rcy rcp rczy .-+ rcp—1 Cp

The matrix C, is determined by its first row elements and r, thus we denote C, =
Circr (cq,c1,---,¢n—1). When we take r = 1, the matrix C; = C is called a circulant
matrix. We denote C; = C =Circ(co,c1,...,c,—1). Circulant matrices are especially
tractable class of matrices since their inverses, conjugate transposes, sums and products
are also circulant. Moreover, circulant matrices are normal matrices [4]. Also, by
means of [4, 9], it is well known that the eigenvalues of C are

n—1
dn = Y cw (1)
-1 k=0

o<m<n
where w = e » and i = +/—1, and the corresponding eigenvectors are
m . 2m (n—1)m T
Xm :<1,w W ) . @)
o<m<n—1
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Recently, there have been many papers on the norms of special matrices with spe-
cial elements such as Fibonacci and Lucas numbers [1, 2, 8, 11, 14-18, 20]. Solak
[16, 17] has computed the spectral and Euclidean norms of circulant matrices with the
Fibonacci and Lucas numbers. Shen and Cen [15] have given upper and lower bounds
for the spectral norms of r-circulant matrices in the forms A = C, (Fy,Fy,...,F—1)
and B=C,(Ly,L1,...,L,—1). Yazlik and Taskara [20] have presented upper and lower
bounds for the spectral norm of an r-circulant matrix with the generalized k-Horadam
numbers. As for us, in this paper, we compute the spectral norms of circulant and
r-circulant matrices with the hyper-Fibonacci and hyper-Lucas numbers.

The main contents of this paper are organized as follows: In Section 2, we give
some preliminaries, definitions and lemmas related to our study. In Section 3, we
derive some bounds for the spectral norms of r-circulant matrices with the hyper-

Fibonacci and hyper-Lucas numbers of the forms F, = Circr(FO(k), Fl(k),...,Fn(f)l),

L= Circr(L(()k) L L™ ) and their Hadamard and Kronecker products. For this,

Ly, L
we firstly compute the spectral and Euclidean norms of circulant matrices of the forms

F = Circ(FO(k), Fl(k),...,F (k)l) and L = Circ(L(()k)7 LW LW ). Moreover, we give

n— 1 2 -1
some examples related to special cases of our results.

2. Preliminaries

The sequence of the Fibonacci numbers is one of the most well-known sequences,
and it has many applications to different fields such as mathematics, statistics and
physics. The Fibonacci numbers are defined by the second order linear recurrence rela-
tion: F,o1 =F,+F,_; (n>1), Fp =0 and F; = 1. Similarly, the Lucas numbers are
definedby L, ;1 =L,+L,—1 (n>1), Lo=2 and L; = 1. Fibonacci and Lucas num-
bers have generating functions and many generalizations [3, 5, 10, 12, 13, 19]. In [5],
Dil and Mezo introduced new concepts as hyper-Fibonacci numbers and hyper-Lucas
numbers. These concepts are defined as

FY =Y F*Y with B =F,, i =0and FY = 1 3)
5s=0
and ;
1 =31, with 1 =1, 1) =2, L =2k + 1. @)
5s=0

The hyper-Fibonacci and the hyper-Lucas numbers have the recurrence relations F,,(k) =
Fn(f)l +F,,(k71) and LS,k) = Lﬁlk_)l —l—L,(qk*l), respectively. Also, F,,(k) and Lﬁ,k) have the

following more explicit forms when k = 1,2,3.

24+ 7n+16

FV = Fra—1, K = Fry—n—3 and £ = F, 1o~ 120 2n+ NE)
2+ 11n+32

LV =Lip—1, LY =Lys—n—5 and LY = L6 mnr 2n+ - (©

Now we give some definitions and lemmas related to our study.
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DEFINITION 1. Let A = (g;j) be any m x n matrix. The Euclidean norm of A is

(E17)

DEFINITION 2. Let A = (a;j) be any m x n matrix. The spectral norm of A is

1Al =

IA]l, = | /maxA; (A7A),

where 2; (A”A) are eigenvalues of A”A and A is conjugate transpose of A.

There are two well known relations between Euclidean norm and spectral norm as
the following:

1Al < [lAll; < llAllg ()

\[
1Al < 1]l < vValAl, - (®)

DEFINITION 3. Let A = (a;;) and B = (b;;) be m x n matrices. Then their Ha-
damard product A o B is defined

AoB= [a,-jb,-j} .

DEFINITION 4. Let A = (a;;) and B = (b;;) be m xn and p x r matrices, respec-
tively. Then their Kronecker product A ® B is defined

ARB= [a,-jB} .
LEMMA 1. [7] Let A and B be two m x n matrices. Then we have
Ao Bll, < [|A]l, [|Bl|, -

LEMMA 2. [7] Let A and B be two m X n matrices. Then we have

|AcBll, <ri(A)ci(B)

where r| (A) = jnax / 2 |a,,| and c¢1(B) = Ef‘i‘n‘ / 2 |b,,|

LEMMA 3. [7] Let A and B be two m x n matrices. Then we have

1A @ Bll, = [[All 1Bl

LEMMA 4. [6] Let A be an n x n matrix with eigenvalues A, Az,...,A,. Then,
A is a normal matrix if and only if the eigenvalues of AHA are | M|, |Aa|? ..., | Al
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3. Main results

THEOREM 1. The spectral norm of the matrix F = Circ(FO(k), Fl(k)7 . ,F(k)l) is

k+1
IF |, = FY

Proof. Since the circulant matrix F is normal, its spectral norm is equal to its
spectral radius. Furthermore, by considering F is irreducible and its entries are non-
negative, we have that the spectral radius (or spectral norm) of the matrix F is equal to
its Perron root. We select an n-dimensional column vector v = (1,1,...,1)7, then

n—1
Fv= (ZFs(k)> V.
s=0

Obviously, 2 F ) is an eigenvalue of F associated with v and it is the Perron root of

F. Hence, by (3) we have

n—1 ")
IFll, = > K" =
s=0

This completes the proof. [

EXAMPLE 1. By using Theorem 1 and the equations in (5), we have

Foo—1, if k=0,
IF|l, = Fn+3—n—2 if k=1,
Fpis— M, if k=2.

COROLLARY 1. For the Euclidean norm of the matrix F = Circ(FO(k), Fl(k)

F (5)1 ), we have

n

yeeey

k+1 k+1
FSY < IFllp < vkt

Proof. The proofis trivial from Theorem 1 and the relation between spectral norm
and Euclidean norm in (8). [J

COROLLARY 2. For the sum of squares of hyper-Fibonacci numbers, we have

1 (k+1) )2 (k+1)
T ;)(a ) < F&D, 9)

Proof. This follows from the definition of Euclidean norm and Corollary 1. [
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THEOREM 2. The spectral norm of the matrix L = Circ(L(()k), Lgk), ... ,L(k)l) is

®
ILjl, = L%,

Proof. This theorem can be proved by using a similar method to method of the
proof of Theorem 1. But, we will use another method. Since L is a circulant matrix,
from (1) its eigenvalues are of the form

2 L 72mma '

Then for m = 0, by using (4) we have

Ao = ZL L, (10)

Also, we have

72mmr 727nmv

| Aol

1<m<n—1

n—1
<2
s=0

s

ZIL I—EL (an

By using Lemma 4 and the fact that the matrix L is a normal matrix, we have

ILIl, = max [|Ay] = max<|20 max |/lm> (12)
o<m<n—1

From (10), (11) and (12), we have

IL)l, = L%,

Thus the proof is completed. [

EXAMPLE 2. By using Theorem 2 and the equations in (6), we have

Lywi—1, if k=0,
ILll, =4 Luss—n—4,  if k=1,

2 .
Lyys— 220 if k=2,

COROLLARY 3. For the Euclidean norm of the matrix L = Circ(L(()k), L(lk), ey

Lilk_)l)7 we have

L(k+1 ||LH \/_L k+l )
Proof. The proofis trivial from Theorem 2 and the relation between spectral norm
and Euclidean norm in (8). [J
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COROLLARY 4. For the sum of squares of hyper-Lucas numbers, we have

1 (k+1) ! (k) 2 (k+1)
V/_ n—-1 SE < S ) X -1 (13)

Proof. This follows from the definition of Euclidean norm and Corollary 3. [

COROLLARY 5. The spectral norm of the Hadamard product of F = Circ(FO(k),
FO . FYY and L= cire@V, LV, . LW.) holds

n 1

k+1 k+1
IFoLl, < F&SVLEY.

Proof. The proof is trivial since ||[F oL, < ||F|,|L|l,. O

COROLLARY 6. The spectral norm of the Kronecker product of F = Circ(FO(k)7
v FOY and L= Cire(tl, LV, LY,) holds

)

F®

||F®L||2 _ F k+1)L(k+l)

n—1 -*

Proof. The proof is trivial since [|[FQL|, = ||F|,|IL|,. O

THEOREM 3. Let F, = Circr(FO(k), Fl(k), .. ,Fn(f)l) be an r-circulant matrix.
i) If |[r] > 1, then

1 (k+1)\2
R <Rl <1 (REY)
i) If |r| < 1, then

|7 k+1 (k+1)
R < IR, < VTR

Proof. Since the matrix F; is of the form

R U R ORa )

n—2 “n—1
B I CIN O )

n—1 70 1 n

e S AT o
e s N A

and from the definition of Euclidean norm, we have

|Flle = :E;(n—s) (Fv(k)>2+:§;s|r|2 (Fy(k)>2.
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i) Since |r| > 1, by (9) we have

n—1 2 n—1 2 n—1 2
k k k k+1
Fle> /3 (n—s) <F§ )) n Zs(FS( )) _ \/nz <F§ )) > F&D,
s=0 s=0 =0
From (7)
L (k+1
1]l > =R
Now, let the matrices B and C be as
oS TS PR B
Iy S BPRS B
B=1 : : : :
er(k) rF;k) rF4(k) rFO(k) 1
rFl(k) er(k) rF3(k) an(f)l rFO(k)
and
R YD
k) ok
1 Fo( ) Fl( b Fn(f)3 Fn(f)2
o . ) . : .
IS T R S o
111 1 FY

That is, F, = BoC. Then we obtain

n—1 2
= sy B8 =[Sl = P ()

and

m =Y 2
B 1<Ja§n\/2|c”} \/ ‘Cm‘ < )) )
Hence, from (9) and Lemma 2, we have
F 2
|Erll, < ri(B)er (B) < |rf <F<k+1)> .

Thus, we write

S|~
E
.\,:
—~
1
L
=T
N

699
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ii) Since |r| < 1, by (9) we have

n—1 n—1

IFllg =1/ Y, (n—s) (Fs(k)>2+2s\r\2 (Fs(k)>2

s=0 s=0

n—1 n—1

From (7)
1]l >

Now, let the matrices B and C be as

F R R
k
rEM 1
B= : :
ror .. Fék) 1
. r r r--- r Fo(k)
and

o gk Fz(k) Iz;n(f)2 Fn(f)1
RO RO R A,

C= : : : : :
Fz(k) F3(k) F4(k) Fo(k) Fl(k)
A A Y, R

That is, F, = BoC. Then we obtain

—max«/2|b,, —|—n—1—\/n—
1<i<n
n l
= max ’c,j
l<j<n — 0

Hence, from (9) and Lemma 2, we have

k
1F -l < 1 (B) ey (B) < Va—1F Y.

and

Thus, we write
Il gtk
n

Jeb

Thus, the proof is completed. [l

< B, < Vi—1ESY.
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EXAMPLE 3. By using Theorem 3 and the equations in (5), if || > 1, we have

1 .
W(Fnﬂ—l)g IE ], < || (B — 1)%, if k=0,

1 .
W(Fnﬁ—”—z)gHFr”z < (Fups—n—=2), if k=1,

1 n? 450410 n?+5n+10\"
%<Fn+5—f> <|Fl, < r |< s — f) , if k=2,

and if |r| < 1, we have

7]

%(Fn-&—l_ D <[F, <vn=1(Fy—1), if k=0,

Il

W(Fn%—n—z)g |Fll, S Vn—1(Fy3—n—2), if k=1,

r n?+5n+10 n*+5n+10\ .
U ( n+s—f) < Fr”zg\/n_l(Fn-&-S_f); if k=2.

NG
THEOREM 4. Let L, = Circr(L(()k), Lgk), e ,iji)l) be an r-circulant matrix.
D) If |r| > 1, then
1 (k+l (k+1)\2
b <l < (L)

i) If [r| < 1, then

7| LD

k+l
bt S <L)y < vaLtD.

Proof. Since the matrix L, is of the form

n—1
r Lnk)l L(()k) Lgk) L;(q—)3 Lﬁzk—)z
L= S
) P
2 P W

and from the definition of Euclidean norm, we have

L||E—\/2n—s k)+2sr\( 9y
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i) Since |r| > 1, by (13) and we have

L |5 > g(n_s) <L‘Ek)>2+§s (Lﬁk)>2 _ n% (ngk)>2 > D),

From (7)
I (k1
Ll > =1,
Now, let the matrices B and C be as
1 1 1 1 1
M1 11
B= : : :
IS I PP
R O S N SN
and
0L e, 1
K 5k 0k
il
c= : :
(k) 5 (k)
T TR PP F B
111 1LY

That is, L, = BoC. Then we obtain

4 2 n-l 2
= 1“2%\/2|le| j:Zl’bnj’ 2\/1+5221|r2 (Lgk))

and

e = s [S e =[S = 5 (1)

Hence, from (13) and Lemma 2, we have

2
Ll < (B)en (B) < I (L)

n—1
Thus, we write

n—1

1 (k+l (k+1)\2
b <l < (L)
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ii) Since |r| < 1, by (13) and we have

||LE—\/2 n—s) ")+zsr\( o)’
3 () (L9) 3 s (29
2\/520( )i (1) +_§0 i (1)
_Jal?S <L§k>)2 > 1 (L))

s=0
From (7)
|V\ (k+1
L, —L,
Lol >
Now, let the matrices B and C be as
111 11
rill 11
B= :
rrr---11
rrr---r
and © 00 0 ©
LO Ll L2 Ln—2 Ln—l
N
C=1] : = S
Lgk) W Lgk) L(()k) L(lk)
o il b o

That is, L, = BoC. Then we obtain

ri(B) = max , | Z |bi” =
B)=max /2 3 el \/
Hence, from (13) and Lemma 2, we have

ILAl, < 71 (B)er (B) < vaL .

and

Thus, we write

Ly )
L L, L .

Tl <l < VAL

U

This completes the proof.
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EXAMPLE 4. By using Theorem 4 and the equations in (6), if |r| > 1, we have

1 .
7 (Ln1 = 1) < |\Lolly < || (Lnr = 1), if k=0,
1 .
7 (Lnsz —n—4) < ||Lolly < || (Lnss —n—4), if k=1,
1 n? +9n+22 n2+9n+22\°
7 (Ln+5 - f> <Ll < Irf (Ln+5— ) L itk=2,

and if |r| < 1, we have

r .
P b= 1) < el < VAL = 1) i k=0
r .
|_\/ﬁ (L3 —n—4) <||L||, < V(s —n—4), if k=1,
W Ln+5_f < HLerg\/ﬁ Ln+5—f , if k=2.

COROLLARY 7. The spectral norm of the Hadamard product of F, = Circr(FO(k)7
FM . FW) and L, = Cirer(l, 1. LY,) holds

D) If |r| > 1, then

I1Fro Ll < |rf? <Fn(ﬁ1)>2 <L(k+1)>2.

n—1
i) If |r| < 1, then

|FroL|ly < v/n(n— DES VLD,

n—1

Proof. The proof is trivial since ||F. o L.||, < ||Fy|, ||ILr]l,. O

COROLLARY 8. The spectral norm of the Kronecker product of F, = Circr( Fo(k)7
F (f)l) and L, = Circr(L(()k), Lgk), . ,iji)l) holds

seeen

D) If |r| > 1, then

2 2
%F(k+1)L(k+l) <|IE® L, < |r|2 <Fn(ﬁl)> <L(k+1)> .

n—1 n—1 n—1

F®

i) If [r| < 1, then
2
,
LD < oL, < ale- DES VLD,

Proof. The proof is trivial since ||F. @ L, ||, = ||F+]|, [|ILr]l,. O
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