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Abstract. In this paper, we study norms of circulant matrices F = Circ(F(k)
0 , F(k)

1 , . . . ,F (k)
n−1) ,

L = Circ(L(k)
0 , L(k)

1 , . . . ,L(k)
n−1) and r -circulant matrices Fr = Circr(F(k)

0 , F(k)
1 , . . . ,F (k)

n−1) , Lr =

Circr(L(k)
0 , L(k)

1 , . . . ,L(k)
n−1) , where F(k)

n and L(k)
n denote the hyper-Fibonacci and hyper-Lucas

numbers, respectively.

1. Introduction

The circulant matrices and r -circulant matrices play important role in signal pro-
cessing, coding theory, image processing, linear forecast and so on. An n× n matrix
Cr is called an r -circulant matrix if it is of the form

Cr =

⎡
⎢⎢⎢⎢⎢⎣

c0 c1 c2 · · · cn−2 cn−1

rcn−1

rcn−2

c0

rcn−1

c1

c0

· · ·
. . .

cn−3

cn−4

cn−2

cn−3
...

...
...

...
...

rc1 rc2 rc3 · · · rcn−1 c0

⎤
⎥⎥⎥⎥⎥⎦ .

The matrix Cr is determined by its first row elements and r , thus we denote Cr =
Circr(c0,c1, . . . ,cn−1) . When we take r = 1, the matrix C1 = C is called a circulant
matrix. We denote C1 = C =Circ(c0,c1, . . . ,cn−1) . Circulant matrices are especially
tractable class of matrices since their inverses, conjugate transposes, sums and products
are also circulant. Moreover, circulant matrices are normal matrices [4]. Also, by
means of [4, 9], it is well known that the eigenvalues of C are

λm
0�m�n−1

=
n−1

∑
k=0

ckw
−mk (1)

where w = e
2πi
n and i =

√−1, and the corresponding eigenvectors are

xm
0�m�n−1

=
(
1,wm,w2m, ...,w(n−1)m

)T
. (2)
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Recently, there have been many papers on the norms of special matrices with spe-
cial elements such as Fibonacci and Lucas numbers [1, 2, 8, 11, 14–18, 20]. Solak
[16, 17] has computed the spectral and Euclidean norms of circulant matrices with the
Fibonacci and Lucas numbers. Shen and Cen [15] have given upper and lower bounds
for the spectral norms of r -circulant matrices in the forms A = Cr (F0,F1, . . . ,Fn−1)
and B =Cr (L0,L1, . . . ,Ln−1) . Yazlik and Taskara [20] have presented upper and lower
bounds for the spectral norm of an r -circulant matrix with the generalized k -Horadam
numbers. As for us, in this paper, we compute the spectral norms of circulant and
r -circulant matrices with the hyper-Fibonacci and hyper-Lucas numbers.

The main contents of this paper are organized as follows: In Section 2, we give
some preliminaries, definitions and lemmas related to our study. In Section 3, we
derive some bounds for the spectral norms of r -circulant matrices with the hyper-

Fibonacci and hyper-Lucas numbers of the forms Fr = Circr(F (k)
0 , F (k)

1 , . . . ,F (k)
n−1) ,

Lr = Circr(L(k)
0 ,L(k)

1 , . . . ,L(k)
n−1) and their Hadamard and Kronecker products. For this,

we firstly compute the spectral and Euclidean norms of circulant matrices of the forms

F = Circ(F (k)
0 , F(k)

1 , . . . ,F (k)
n−1) and L = Circ(L(k)

0 , L(k)
1 , . . . ,L(k)

n−1). Moreover, we give
some examples related to special cases of our results.

2. Preliminaries

The sequence of the Fibonacci numbers is one of the most well-known sequences,
and it has many applications to different fields such as mathematics, statistics and
physics. The Fibonacci numbers are defined by the second order linear recurrence rela-
tion: Fn+1 = Fn +Fn−1 (n � 1) , F0 = 0 and F1 = 1. Similarly, the Lucas numbers are
defined by Ln+1 = Ln +Ln−1 (n � 1) , L0 = 2 and L1 = 1. Fibonacci and Lucas num-
bers have generating functions and many generalizations [3, 5, 10, 12, 13, 19]. In [5],
Dil and Mezö introduced new concepts as hyper-Fibonacci numbers and hyper-Lucas
numbers. These concepts are defined as

F (k)
n =

n

∑
s=0

F(k−1)
s , with F (0)

n = Fn, F(k)
0 = 0 and F (k)

1 = 1 (3)

and

L(k)
n =

n

∑
s=0

L(k−1)
s , with L(0)

n = Ln, L(k)
0 = 2, L(k)

1 = 2k+1. (4)

The hyper-Fibonacci and the hyper-Lucas numbers have the recurrence relations F(k)
n =

F(k)
n−1 + F (k−1)

n and L(k)
n = L(k)

n−1 + L(k−1)
n , respectively. Also, F (k)

n and L(k)
n have the

following more explicit forms when k = 1,2,3.

F (1)
n = Fn+2−1, F (2)

n = Fn+4−n−3 and F (3)
n = Fn+6− n2 +7n+16

2
, (5)

L(1)
n = Ln+2−1, L(2)

n = Ln+4−n−5 and L(3)
n = Ln+6− n2 +11n+32

2
. (6)

Now we give some definitions and lemmas related to our study.
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DEFINITION 1. Let A = (ai j) be any m×n matrix. The Euclidean norm of A is

‖A‖E =

√√√√( m

∑
i=1

n

∑
j=1

∣∣ai j
∣∣2).

DEFINITION 2. Let A = (ai j) be any m×n matrix. The spectral norm of A is

‖A‖2 =
√

max
i

λi (AHA),

where λi
(
AHA

)
are eigenvalues of AHA and AH is conjugate transpose of A .

There are two well known relations between Euclidean norm and spectral norm as
the following:

1√
n
‖A‖E � ‖A‖2 � ‖A‖E (7)

‖A‖2 � ‖A‖E �
√

n‖A‖2 . (8)

DEFINITION 3. Let A = (ai j) and B = (bi j) be m× n matrices. Then their Ha-
damard product A ◦ B is defined

A◦B = [ai jbi j] .

DEFINITION 4. Let A = (ai j) and B = (bi j) be m×n and p×r matrices, respec-
tively. Then their Kronecker product A ⊗ B is defined

A⊗B = [ai jB] .

LEMMA 1. [7] Let A and B be two m×n matrices. Then we have

‖A◦B‖2 � ‖A‖2 ‖B‖2 .

LEMMA 2. [7] Let A and B be two m×n matrices. Then we have

‖A◦B‖2 � r1 (A)c1 (B)

where r1 (A) = max
1�i�m

√
n
∑
j=1

∣∣ai j
∣∣2 and c1 (B) = max

1� j�n

√
m
∑
i=1

∣∣bi j
∣∣2.

LEMMA 3. [7] Let A and B be two m×n matrices. Then we have

‖A⊗B‖2 = ‖A‖2 ‖B‖2 .

LEMMA 4. [6] Let A be an n× n matrix with eigenvalues λ1,λ2, . . . ,λn . Then,
A is a normal matrix if and only if the eigenvalues of AHA are |λ1|2 , |λ2|2 , . . . , |λn|2 .
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3. Main results

THEOREM 1. The spectral norm of the matrix F = Circ(F (k)
0 , F(k)

1 , . . . ,F (k)
n−1) is

‖F‖2 = F(k+1)
n−1 .

Proof. Since the circulant matrix F is normal, its spectral norm is equal to its
spectral radius. Furthermore, by considering F is irreducible and its entries are non-
negative, we have that the spectral radius (or spectral norm) of the matrix F is equal to
its Perron root. We select an n -dimensional column vector v = (1,1, . . . ,1)T , then

Fv =

(
n−1

∑
s=0

F (k)
s

)
v.

Obviously,
n−1
∑

s=0
F (k)

s is an eigenvalue of F associated with v and it is the Perron root of

F. Hence, by (3) we have

‖F‖2 =
n−1

∑
s=0

F(k)
s = F (k+1)

n−1 .

This completes the proof. �

EXAMPLE 1. By using Theorem 1 and the equations in (5), we have

‖F‖2 =

⎧⎨
⎩

Fn+1−1, if k = 0,
Fn+3−n−2, if k = 1,

Fn+5− n2+5n+10
2 , if k = 2.

COROLLARY 1. For the Euclidean norm of the matrix F = Circ(F (k)
0 , F(k)

1 , . . . ,

F(k)
n−1), we have

F (k+1)
n−1 � ‖F‖E �

√
nF (k+1)

n−1 .

Proof. The proof is trivial from Theorem 1 and the relation between spectral norm
and Euclidean norm in (8). �

COROLLARY 2. For the sum of squares of hyper-Fibonacci numbers, we have

1√
n
F (k+1)

n−1 �
√

n−1

∑
s=0

(
F (k)

s

)2
� F(k+1)

n−1 . (9)

Proof. This follows from the definition of Euclidean norm and Corollary 1. �
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THEOREM 2. The spectral norm of the matrix L = Circ(L(k)
0 , L(k)

1 , . . . ,L(k)
n−1) is

‖L‖2 = L(k+1)
n−1 .

Proof. This theorem can be proved by using a similar method to method of the
proof of Theorem 1. But, we will use another method. Since L is a circulant matrix,
from (1) its eigenvalues are of the form

λm
0�m�n−1

=
n−1

∑
s=0

L(k)
s e

−2πims
n .

Then for m = 0, by using (4) we have

λ0 =
n−1

∑
s=0

L(k)
s = L(k+1)

n−1 . (10)

Also, we have

|λm|
1�m�n−1

=

∣∣∣∣∣
n−1

∑
s=0

L(k)
s e

−2πims
n

∣∣∣∣∣�
n−1

∑
s=0

∣∣∣L(k)
s

∣∣∣ ∣∣∣e−2πims
n

∣∣∣� n−1

∑
s=0

∣∣∣L(k)
s

∣∣∣= n−1

∑
s=0

L(k)
s . (11)

By using Lemma 4 and the fact that the matrix L is a normal matrix, we have

‖L‖2 = max
0�m�n−1

|λm| = max

(
|λ0| , max

1�m�n−1
|λm|

)
. (12)

From (10), (11) and (12), we have

‖L‖2 = L(k+1)
n−1 .

Thus the proof is completed. �

EXAMPLE 2. By using Theorem 2 and the equations in (6), we have

‖L‖2 =

⎧⎨
⎩

Ln+1−1, if k = 0,
Ln+3−n−4, if k = 1,

Ln+5− n2+9n+22
2 , if k = 2.

COROLLARY 3. For the Euclidean norm of the matrix L = Circ(L(k)
0 , L(k)

1 , . . . ,

L(k)
n−1), we have

L(k+1)
n−1 � ‖L‖E �

√
nL(k+1)

n−1 .

Proof. The proof is trivial from Theorem 2 and the relation between spectral norm
and Euclidean norm in (8). �
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COROLLARY 4. For the sum of squares of hyper-Lucas numbers, we have

1√
n
L(k+1)

n−1 �
√

n−1

∑
s=0

(
L(k)

s

)2
� L(k+1)

n−1 . (13)

Proof. This follows from the definition of Euclidean norm and Corollary 3. �

COROLLARY 5. The spectral norm of the Hadamard product of F = Circ(F (k)
0 ,

F(k)
1 , . . . ,F(k)

n−1) and L = Circ(L(k)
0 , L(k)

1 , . . . ,L(k)
n−1) holds

‖F ◦L‖2 � F(k+1)
n−1 L(k+1)

n−1 .

Proof. The proof is trivial since ‖F ◦L‖2 � ‖F‖2 ‖L‖2 . �

COROLLARY 6. The spectral norm of the Kronecker product of F = Circ(F (k)
0 ,

F(k)
1 , . . . ,F(k)

n−1) and L = Circ(L(k)
0 , L(k)

1 , . . . ,L(k)
n−1) holds

‖F ⊗L‖2 = F (k+1)
n−1 L(k+1)

n−1 .

Proof. The proof is trivial since ‖F ⊗L‖2 = ‖F‖2 ‖L‖2 . �

THEOREM 3. Let Fr = Circr(F (k)
0 , F (k)

1 , . . . ,F (k)
n−1) be an r -circulant matrix.

i) If |r| � 1 , then

1√
n
F (k+1)

n−1 � ‖Fr‖2 � |r|
(
F (k+1)

n−1

)2

ii) If |r| < 1 , then

|r|√
n
F (k+1)

n−1 � ‖Fr‖2 �
√

n−1F (k+1)
n−1 .

Proof. Since the matrix Fr is of the form

Fr =

⎡
⎢⎢⎢⎢⎢⎢⎣

F(k)
0 F(k)

1 F(k)
2 · · · F (k)

n−2 F(k)
n−1

rF (k)
n−1 F(k)

0 F(k)
1 · · · F (k)

n−3 F(k)
n−2

...
...

...
...

...

rF (k)
2 rF(k)

3 rF (k)
4 · · · F (k)

0 F(k)
1

rF (k)
1 rF(k)

2 rF (k)
3 · · · rF (k)

n−1 F(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and from the definition of Euclidean norm, we have

‖Fr‖E =

√
n−1

∑
s=0

(n− s)
(
F (k)

s

)2
+

n−1

∑
s=0

s |r|2
(
F(k)

s

)2
.
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i) Since |r| � 1, by (9) we have

‖Fr‖E �
√

n−1

∑
s=0

(n− s)
(
F(k)

s

)2
+

n−1

∑
s=0

s
(
F(k)

s

)2
=

√
n

n−1

∑
s=0

(
F(k)

s

)2
� F(k+1)

n−1 .

From (7)

‖Fr‖2 � 1√
n
F (k+1)

n−1 .

Now, let the matrices B and C be as

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

rF (k)
0 1 1 · · · 1 1

rF (k)
n−1 rF (k)

0 1 · · · 1 1
...

...
...

...
...

rF (k)
2 rF (k)

3 rF (k)
4 · · · rF (k)

0 1

rF (k)
1 rF (k)

2 rF (k)
3 · · · rF (k)

n−1 rF (k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

F(k)
0 F (k)

1 F (k)
2 · · · F (k)

n−2 F(k)
n−1

1 F (k)
0 F (k)

1 · · · F (k)
n−3 F(k)

n−2
...

...
...

...
...

1 1 1 · · · F (k)
0 F(k)

1

1 1 1 · · · 1 F(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

That is, Fr = B◦C. Then we obtain

r1 (B) = max
1�i�n

√
n

∑
j=1

∣∣bi j
∣∣2 =

√
n

∑
j=1

∣∣bn j
∣∣2 =

√
|r|2

n−1

∑
s=0

(
F(k)

s

)2

and

c1 (B) = max
1� j�n

√
n

∑
i=1

∣∣ci j
∣∣2 =

√
n

∑
i=1

|cin|2 =

√
n−1

∑
s=0

(
F (k)

s

)2
.

Hence, from (9) and Lemma 2, we have

‖Fr‖2 � r1 (B)c1 (B) � |r|
(
F(k+1)

n−1

)2
.

Thus, we write
1√
n
F(k+1)

n−1 � ‖Fr‖2 � |r|
(
F(k+1)

n−1

)2
.
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ii) Since |r| < 1, by (9) we have

‖Fr‖E =

√
n−1

∑
s=0

(n− s)
(
F (k)

s

)2
+

n−1

∑
s=0

s |r|2
(
F(k)

s

)2

�
√

n−1

∑
s=0

(n− s) |r|2
(
F (k)

s

)2
+

n−1

∑
s=0

s |r|2
(
F (k)

s

)2

= |r|
√

n
n−1

∑
s=0

(
F (k)

s

)2
� |r|F (k+1)

n−1 .

From (7)

‖Fr‖2 � |r|√
n
F (k+1)

n−1 .

Now, let the matrices B and C be as

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

F(k)
0 1 1 · · · 1 1

r F (k)
0 1 · · · 1 1

...
...

...
...

...

r r r · · · F(k)
0 1

r r r · · · r F(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

F(k)
0 F (k)

1 F (k)
2 · · · F (k)

n−2 F(k)
n−1

F(k)
n−1 F (k)

0 F (k)
1 · · · F (k)

n−3 F(k)
n−2

...
...

...
...

...

F(k)
2 F (k)

3 F (k)
4 · · · F (k)

0 F(k)
1

F(k)
1 F (k)

2 F (k)
3 · · · F (k)

n−1 F(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

That is, Fr = B◦C. Then we obtain

r1 (B) = max
1�i�n

√
n

∑
j=1

∣∣bi j
∣∣2 =

√
F (k)

0 +n−1 =
√

n−1

and

c1 (B) = max
1� j�n

√
n

∑
i=1

∣∣ci j
∣∣2 =

√
n−1

∑
s=0

(
F(k)

s

)2
.

Hence, from (9) and Lemma 2, we have

‖Fr‖2 � r1 (B)c1 (B) �
√

n−1F (k+1)
n−1 .

Thus, we write
|r|√
n
F (k+1)

n−1 � ‖Fr‖2 �
√

n−1F (k+1)
n−1 .

Thus, the proof is completed. �
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EXAMPLE 3. By using Theorem 3 and the equations in (5), if |r| � 1, we have

1√
n

(Fn+1−1) � ‖Fr‖2 � |r| (Fn+1−1)2 , if k = 0,

1√
n

(Fn+3−n−2) � ‖Fr‖2 � |r| (Fn+3−n−2)2 , if k = 1,

1√
n

(
Fn+5− n2 +5n+10

2

)
� ‖Fr‖2 � |r|

(
Fn+5− n2 +5n+10

2

)2

, if k = 2,

and if |r| < 1, we have

|r|√
n

(Fn+1−1) � ‖Fr‖2 �
√

n−1(Fn+1−1) , if k = 0,

|r|√
n

(Fn+3−n−2) � ‖Fr‖2 �
√

n−1(Fn+3−n−2), if k = 1,

|r|√
n

(
Fn+5− n2 +5n+10

2

)
� ‖Fr‖2 �

√
n−1

(
Fn+5− n2 +5n+10

2

)
, if k = 2.

THEOREM 4. Let Lr = Circr(L(k)
0 , L(k)

1 , . . . ,L(k)
n−1) be an r -circulant matrix.

i) If |r| � 1 , then

1√
n
L(k+1)

n−1 � ‖Lr‖2 � |r|
(
L(k+1)

n−1

)2
.

ii) If |r| < 1 , then

|r|√
n
L(k+1)

n−1 � ‖Lr‖2 �
√

nL(k+1)
n−1 .

Proof. Since the matrix Lr is of the form

Lr =

⎡
⎢⎢⎢⎢⎢⎢⎣

L(k)
0 L(k)

1 L(k)
2 · · · L(k)

n−2 L(k)
n−1

rL(k)
n−1 L(k)

0 L(k)
1 · · · L(k)

n−3 L(k)
n−2

...
...

...
...

...

rL(k)
2 rL(k)

3 rL(k)
4 · · · L(k)

0 L(k)
1

rL(k)
1 rL(k)

2 rL(k)
3 · · · rL(k)

n−1 L(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and from the definition of Euclidean norm, we have

‖Lr‖E =

√
n−1

∑
s=0

(n− s)
(
L(k)

s

)2
+

n−1

∑
s=0

s |r|2
(
L(k)

s

)2
.
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i) Since |r| � 1, by (13) and we have

‖Lr‖E �
√

n−1

∑
s=0

(n− s)
(
L(k)

s

)2
+

n−1

∑
s=0

s
(
L(k)

s

)2
=

√
n

n−1

∑
s=0

(
L(k)

s

)2
� L(k+1)

n−1 .

From (7)

‖Lr‖2 � 1√
n
L(k+1)

n−1 .

Now, let the matrices B and C be as

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1

rL(k)
n−1 1 1 · · · 1 1
...

...
...

...
...

rL(k)
2 rL(k)

3 rL(k)
4 · · · 1 1

rL(k)
1 rL(k)

2 rL(k)
3 · · · rL(k)

n−1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

L(k)
0 L(k)

1 L(k)
2 · · · L(k)

n−2 L(k)
n−1

1 L(k)
0 L(k)

1 · · · L(k)
n−3 L(k)

n−2
...

...
...

...
...

1 1 1 · · · L(k)
0 L(k)

1

1 1 1 · · · 1 L(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

That is, Lr = B◦C. Then we obtain

r1 (B) = max
1�i�n

√
n

∑
j=1

∣∣bi j
∣∣2 =

√
n

∑
j=1

∣∣bn j
∣∣2 =

√
1+

n−1

∑
s=1

|r|2
(
L(k)

s

)2

� |r|
√

n−1

∑
s=0

(
L(k)

s

)2

and

c1 (B) = max
1� j�n

√
n

∑
i=1

∣∣ci j
∣∣2 =

√
n

∑
i=1

|cin|2 =

√
n−1

∑
s=0

(
L(k)

s

)2
.

Hence, from (13) and Lemma 2, we have

‖Lr‖2 � r1 (B)c1 (B) � |r|
(
L(k+1)

n−1

)2
.

Thus, we write
1√
n
L(k+1)

n−1 � ‖Lr‖2 � |r|
(
L(k+1)

n−1

)2
.
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ii) Since |r| < 1, by (13) and we have

‖Lr‖E =

√
n−1

∑
s=0

(n− s)
(
L(k)

s

)2
+

n−1

∑
s=0

s |r|2
(
L(k)

s

)2

�
√

n−1

∑
s=0

(n− s) |r|2
(
L(k)

s

)2
+

n−1

∑
s=0

s |r|2
(
L(k)

s

)2

=

√
n |r|2

n−1

∑
s=0

(
L(k)

s

)2
� |r|

(
L(k+1)

n−1

)
.

From (7)

‖Lr‖2 � |r|√
n
L(k+1)

n−1 .

Now, let the matrices B and C be as

B =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1
r 1 1 · · · 1 1
...

...
...

...
...

r r r · · · 1 1
r r r · · · r 1

⎤
⎥⎥⎥⎥⎥⎦

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

L(k)
0 L(k)

1 L(k)
2 · · · L(k)

n−2 L(k)
n−1

L(k)
n−1 L(k)

0 L(k)
1 · · · L(k)

n−3 L(k)
n−2

...
...

...
...

...

L(k)
2 L(k)

3 L(k)
4 · · · L(k)

0 L(k)
1

L(k)
1 L(k)

2 L(k)
3 · · · L(k)

n−1 L(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

That is, Lr = B◦C. Then we obtain

r1 (B) = max
1�i�n

√
n

∑
j=1

∣∣bi j
∣∣2 =

√
n

and

c1 (B) = max
1� j�n

√
n

∑
i=1

∣∣ci j
∣∣2 =

√
n−1

∑
s=0

(
L(k)

s

)2
.

Hence, from (13) and Lemma 2, we have

‖Lr‖2 � r1 (B)c1 (B) �
√

nL(k+1)
n−1 .

Thus, we write
|r|√
n
L(k+1)

n−1 � ‖Lr‖2 �
√

nL(k+1)
n−1 .

This completes the proof. �
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EXAMPLE 4. By using Theorem 4 and the equations in (6), if |r| � 1, we have

1√
n

(Ln+1−1) � ‖Lr‖2 � |r| (Ln+1−1)2 , if k = 0,

1√
n

(Ln+3−n−4) � ‖Lr‖2 � |r| (Ln+3−n−4)2 , if k = 1,

1√
n

(
Ln+5− n2 +9n+22

2

)
� ‖Lr‖2 � |r|

(
Ln+5− n2 +9n+22

2

)2

, if k = 2,

and if |r| < 1, we have

|r|√
n

(Ln+1−1) � ‖Lr‖2 �
√

n(Ln+1 −1), if k = 0,

|r|√
n

(Ln+3−n−4) � ‖Lr‖2 �
√

n(Ln+3 −n−4), if k = 1,

|r|√
n

(
Ln+5− n2 +9n+22

2

)
� ‖Lr‖2 �

√
n

(
Ln+5− n2 +9n+22

2

)
, if k = 2.

COROLLARY 7. The spectral norm of the Hadamard product of Fr = Circr(F (k)
0 ,

F(k)
1 , . . . ,F(k)

n−1) and Lr = Circr(L(k)
0 , L(k)

1 , . . . ,L(k)
n−1) holds

i) If |r| � 1 , then

‖Fr ◦Lr‖2 � |r|2
(
F (k+1)

n−1

)2(
L(k+1)

n−1

)2
.

ii) If |r| < 1 , then

‖Fr ◦Lr‖2 �
√

n(n−1)F (k+1)
n−1 L(k+1)

n−1 .

Proof. The proof is trivial since ‖Fr ◦Lr‖2 � ‖Fr‖2 ‖Lr‖2 . �

COROLLARY 8. The spectral norm of the Kronecker product of Fr = Circr(F (k)
0 ,

F(k)
1 , . . . ,F(k)

n−1) and Lr = Circr(L(k)
0 , L(k)

1 , . . . ,L(k)
n−1) holds

i) If |r| � 1 , then

1
n
F (k+1)

n−1 L(k+1)
n−1 � ‖Fr ⊗Lr‖2 � |r|2

(
F(k+1)

n−1

)2(
L(k+1)

n−1

)2
.

ii) If |r| < 1 , then

|r|2
n

L(k+1)
n−1 F (k+1)

n−1 � ‖Fr ⊗Lr‖2 �
√

n(n−1)F (k+1)
n−1 L(k+1)

n−1 .

Proof. The proof is trivial since ‖Fr ⊗Lr‖2 = ‖Fr‖2 ‖Lr‖2 . �
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