ON THE NORMS OF r-CIRCULANT MATRICES WITH THE HYPER-FIBONACCI AND LUCAS NUMBERS

Mustafa Bahşī and Süleyman Solak

(Communicated by Neven Elezović)

Abstract. In this paper, we study norms of circulant matrices $F=\operatorname{Circ}\left(F_{0}^{(k)}, F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right)$, $L=\operatorname{Circ}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$ and r-circulant matrices $F_{r}=\operatorname{Circr}\left(F_{0}^{(k)}, F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right), L_{r}=$ $\operatorname{Circr}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$, where $F_{n}^{(k)}$ and $L_{n}^{(k)}$ denote the hyper-Fibonacci and hyper-Lucas numbers, respectively.

1. Introduction

The circulant matrices and r-circulant matrices play important role in signal processing, coding theory, image processing, linear forecast and so on. An $n \times n$ matrix C_{r} is called an r-circulant matrix if it is of the form

$$
C_{r}=\left[\begin{array}{cccccc}
c_{0} & c_{1} & c_{2} & \cdots & c_{n-2} & c_{n-1} \\
r c_{n-1} & c_{0} & c_{1} & \cdots & c_{n-3} & c_{n-2} \\
r c_{n-2} & r c_{n-1} & c_{0} & \cdots & c_{n-4} & c_{n-3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
r c_{1} & r c_{2} & r c_{3} & \cdots & r c_{n-1} & c_{0}
\end{array}\right] .
$$

The matrix C_{r} is determined by its first row elements and r, thus we denote $C_{r}=$ $\operatorname{Circr}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$. When we take $r=1$, the matrix $C_{1}=C$ is called a circulant matrix. We denote $C_{1}=C=\operatorname{Circ}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$. Circulant matrices are especially tractable class of matrices since their inverses, conjugate transposes, sums and products are also circulant. Moreover, circulant matrices are normal matrices [4]. Also, by means of $[4,9]$, it is well known that the eigenvalues of C are

$$
\begin{equation*}
\underset{0 \leqslant m \leqslant n-1}{\lambda_{m}}=\sum_{k=0}^{n-1} c_{k} w^{-m k} \tag{1}
\end{equation*}
$$

where $w=e^{\frac{2 \pi i}{n}}$ and $i=\sqrt{-1}$, and the corresponding eigenvectors are

$$
\begin{equation*}
\underset{0 \leqslant m \leqslant n-1}{x_{m}}=\left(1, w^{m}, w^{2 m}, \ldots, w^{(n-1) m}\right)^{T} \tag{2}
\end{equation*}
$$

Mathematics subject classification (2010): 15A60, 15B05, 15B36, 11B39.
Keywords and phrases: Circulant matrix, r-circulant matrix, hyper-Fibonacci numbers, hyper-Lucas numbers, Euclidean norm, spectral norm.

Recently, there have been many papers on the norms of special matrices with special elements such as Fibonacci and Lucas numbers [1, 2, 8, 11, 14-18, 20]. Solak $[16,17]$ has computed the spectral and Euclidean norms of circulant matrices with the Fibonacci and Lucas numbers. Shen and Cen [15] have given upper and lower bounds for the spectral norms of r-circulant matrices in the forms $A=C_{r}\left(F_{0}, F_{1}, \ldots, F_{n-1}\right)$ and $B=C_{r}\left(L_{0}, L_{1}, \ldots, L_{n-1}\right)$. Yazlik and Taskara [20] have presented upper and lower bounds for the spectral norm of an r-circulant matrix with the generalized k-Horadam numbers. As for us, in this paper, we compute the spectral norms of circulant and r-circulant matrices with the hyper-Fibonacci and hyper-Lucas numbers.

The main contents of this paper are organized as follows: In Section 2, we give some preliminaries, definitions and lemmas related to our study. In Section 3, we derive some bounds for the spectral norms of r-circulant matrices with the hyperFibonacci and hyper-Lucas numbers of the forms $F_{r}=\operatorname{Circr}\left(F_{0}^{(k)}, F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right)$, $L_{r}=\operatorname{Circr}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$ and their Hadamard and Kronecker products. For this, we firstly compute the spectral and Euclidean norms of circulant matrices of the forms $F=\operatorname{Circ}\left(F_{0}^{(k)}, F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right)$ and $L=\operatorname{Circ}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$. Moreover, we give some examples related to special cases of our results.

2. Preliminaries

The sequence of the Fibonacci numbers is one of the most well-known sequences, and it has many applications to different fields such as mathematics, statistics and physics. The Fibonacci numbers are defined by the second order linear recurrence relation: $F_{n+1}=F_{n}+F_{n-1}(n \geqslant 1), F_{0}=0$ and $F_{1}=1$. Similarly, the Lucas numbers are defined by $L_{n+1}=L_{n}+L_{n-1} \quad(n \geqslant 1), L_{0}=2$ and $L_{1}=1$. Fibonacci and Lucas numbers have generating functions and many generalizations [3, 5, 10, 12, 13, 19]. In [5], Dil and Mezö introduced new concepts as hyper-Fibonacci numbers and hyper-Lucas numbers. These concepts are defined as

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{s=0}^{n} F_{s}^{(k-1)}, \text { with } F_{n}^{(0)}=F_{n}, F_{0}^{(k)}=0 \text { and } F_{1}^{(k)}=1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}^{(k)}=\sum_{s=0}^{n} L_{s}^{(k-1)}, \text { with } L_{n}^{(0)}=L_{n}, L_{0}^{(k)}=2, L_{1}^{(k)}=2 k+1 \tag{4}
\end{equation*}
$$

The hyper-Fibonacci and the hyper-Lucas numbers have the recurrence relations $F_{n}^{(k)}=$ $F_{n-1}^{(k)}+F_{n}^{(k-1)}$ and $L_{n}^{(k)}=L_{n-1}^{(k)}+L_{n}^{(k-1)}$, respectively. Also, $F_{n}^{(k)}$ and $L_{n}^{(k)}$ have the following more explicit forms when $k=1,2,3$.

$$
\begin{align*}
& F_{n}^{(1)}=F_{n+2}-1, \quad F_{n}^{(2)}=F_{n+4}-n-3 \text { and } F_{n}^{(3)}=F_{n+6}-\frac{n^{2}+7 n+16}{2} \tag{5}\\
& L_{n}^{(1)}=L_{n+2}-1, \quad L_{n}^{(2)}=L_{n+4}-n-5 \text { and } L_{n}^{(3)}=L_{n+6}-\frac{n^{2}+11 n+32}{2} \tag{6}
\end{align*}
$$

Now we give some definitions and lemmas related to our study.

DEfinition 1. Let $A=\left(a_{i j}\right)$ be any $m \times n$ matrix. The Euclidean norm of A is

$$
\|A\|_{E}=\sqrt{\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)}
$$

DEFINITION 2. Let $A=\left(a_{i j}\right)$ be any $m \times n$ matrix. The spectral norm of A is

$$
\|A\|_{2}=\sqrt{\max _{i} \lambda_{i}\left(A^{H} A\right)}
$$

where $\lambda_{i}\left(A^{H} A\right)$ are eigenvalues of $A^{H} A$ and A^{H} is conjugate transpose of A.
There are two well known relations between Euclidean norm and spectral norm as the following:

$$
\begin{align*}
& \frac{1}{\sqrt{n}}\|A\|_{E} \leqslant\|A\|_{2} \leqslant\|A\|_{E} \tag{7}\\
& \|A\|_{2} \leqslant\|A\|_{E} \leqslant \sqrt{n}\|A\|_{2} \tag{8}
\end{align*}
$$

Definition 3. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ matrices. Then their Hadamard product $\mathrm{A} \circ \mathrm{B}$ is defined

$$
A \circ B=\left[a_{i j} b_{i j}\right] .
$$

DEFINITION 4. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ and $p \times r$ matrices, respectively. Then their Kronecker product $\mathrm{A} \otimes \mathrm{B}$ is defined

$$
A \otimes B=\left[a_{i j} B\right] .
$$

Lemma 1. [7] Let A and B be two $m \times n$ matrices. Then we have

$$
\|A \circ B\|_{2} \leqslant\|A\|_{2}\|B\|_{2}
$$

Lemma 2. [7] Let A and B be two $m \times n$ matrices. Then we have

$$
\|A \circ B\|_{2} \leqslant r_{1}(A) c_{1}(B)
$$

where $r_{1}(A)=\max _{1 \leqslant i \leqslant m} \sqrt{\sum_{j=1}^{n}\left|a_{i j}\right|^{2}}$ and $c_{1}(B)=\max _{1 \leqslant j \leqslant n} \sqrt{\sum_{i=1}^{m}\left|b_{i j}\right|^{2}}$.
Lemma 3. [7] Let A and B be two $m \times n$ matrices. Then we have

$$
\|A \otimes B\|_{2}=\|A\|_{2}\|B\|_{2} .
$$

LEmmA 4. [6] Let A be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Then, A is a normal matrix if and only if the eigenvalues of $A^{H} A$ are $\left|\lambda_{1}\right|^{2},\left|\lambda_{2}\right|^{2}, \ldots,\left|\lambda_{n}\right|^{2}$.

3. Main results

THEOREM 1. The spectral norm of the matrix $F=\operatorname{Circ}\left(F_{0}^{(k)}, F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right)$ is

$$
\|F\|_{2}=F_{n-1}^{(k+1)}
$$

Proof. Since the circulant matrix F is normal, its spectral norm is equal to its spectral radius. Furthermore, by considering F is irreducible and its entries are nonnegative, we have that the spectral radius (or spectral norm) of the matrix F is equal to its Perron root. We select an n-dimensional column vector $v=(1,1, \ldots, 1)^{T}$, then

$$
F v=\left(\sum_{s=0}^{n-1} F_{s}^{(k)}\right) v
$$

Obviously, $\sum_{s=0}^{n-1} F_{S}^{(k)}$ is an eigenvalue of F associated with v and it is the Perron root of F. Hence, by (3) we have

$$
\|F\|_{2}=\sum_{s=0}^{n-1} F_{s}^{(k)}=F_{n-1}^{(k+1)} .
$$

This completes the proof.
Example 1. By using Theorem 1 and the equations in (5), we have

$$
\|F\|_{2}= \begin{cases}F_{n+1}-1, & \text { if } k=0 \\ F_{n+3}-n-2, & \text { if } k=1 \\ F_{n+5}-\frac{n^{2}+5 n+10}{2}, & \text { if } k=2\end{cases}
$$

Corollary 1. For the Euclidean norm of the matrix $F=\operatorname{Circ}\left(F_{0}^{(k)}, F_{1}^{(k)}, \ldots\right.$, $F_{n-1}^{(k)}$, we have

$$
F_{n-1}^{(k+1)} \leqslant\|F\|_{E} \leqslant \sqrt{n} F_{n-1}^{(k+1)}
$$

Proof. The proof is trivial from Theorem 1 and the relation between spectral norm and Euclidean norm in (8).

COROLLARY 2. For the sum of squares of hyper-Fibonacci numbers, we have

$$
\begin{equation*}
\frac{1}{\sqrt{n}} F_{n-1}^{(k+1)} \leqslant \sqrt{\sum_{s=0}^{n-1}\left(F_{s}^{(k)}\right)^{2}} \leqslant F_{n-1}^{(k+1)} \tag{9}
\end{equation*}
$$

Proof. This follows from the definition of Euclidean norm and Corollary 1.

THEOREM 2. The spectral norm of the matrix $L=\operatorname{Circ}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$ is

$$
\|L\|_{2}=L_{n-1}^{(k+1)}
$$

Proof. This theorem can be proved by using a similar method to method of the proof of Theorem 1. But, we will use another method. Since L is a circulant matrix, from (1) its eigenvalues are of the form

$$
\underset{0 \leqslant m \leqslant n-1}{\lambda_{m}}=\sum_{s=0}^{n-1} L_{S}^{(k)} e^{\frac{-2 \pi i m s}{n}} .
$$

Then for $m=0$, by using (4) we have

$$
\begin{equation*}
\lambda_{0}=\sum_{s=0}^{n-1} L_{s}^{(k)}=L_{n-1}^{(k+1)} \tag{10}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\underset{1 \leqslant m \leqslant n-1}{\left|\lambda_{m}\right|}\left|\sum_{s=0}^{n-1} L_{s}^{(k)} e^{\frac{-2 \pi i m s}{n}}\right| \leqslant \sum_{s=0}^{n-1}\left|L_{s}^{(k)}\right|\left|e^{\frac{-2 \pi i m s}{n}}\right| \leqslant \sum_{s=0}^{n-1}\left|L_{s}^{(k)}\right|=\sum_{s=0}^{n-1} L_{s}^{(k)} \tag{11}
\end{equation*}
$$

By using Lemma 4 and the fact that the matrix L is a normal matrix, we have

$$
\begin{equation*}
\|L\|_{2}=\max _{0 \leqslant m \leqslant n-1}\left|\lambda_{m}\right|=\max \left(\left|\lambda_{0}\right|, \max _{1 \leqslant m \leqslant n-1}\left|\lambda_{m}\right|\right) \tag{12}
\end{equation*}
$$

From (10), (11) and (12), we have

$$
\|L\|_{2}=L_{n-1}^{(k+1)}
$$

Thus the proof is completed.
Example 2. By using Theorem 2 and the equations in (6), we have

$$
\|L\|_{2}= \begin{cases}L_{n+1}-1, & \text { if } k=0 \\ L_{n+3}-n-4, & \text { if } k=1 \\ L_{n+5}-\frac{n^{2}+9 n+22}{2}, & \text { if } k=2\end{cases}
$$

COROLLARY 3. For the Euclidean norm of the matrix $L=\operatorname{Circ}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots\right.$, $\left.L_{n-1}^{(k)}\right)$, we have

$$
L_{n-1}^{(k+1)} \leqslant\|L\|_{E} \leqslant \sqrt{n} L_{n-1}^{(k+1)}
$$

Proof. The proof is trivial from Theorem 2 and the relation between spectral norm and Euclidean norm in (8).

COROLLARY 4. For the sum of squares of hyper-Lucas numbers, we have

$$
\begin{equation*}
\frac{1}{\sqrt{n}} L_{n-1}^{(k+1)} \leqslant \sqrt{\sum_{s=0}^{n-1}\left(L_{s}^{(k)}\right)^{2}} \leqslant L_{n-1}^{(k+1)} \tag{13}
\end{equation*}
$$

Proof. This follows from the definition of Euclidean norm and Corollary 3.
COROLLARY 5. The spectral norm of the Hadamard product of $F=\operatorname{Circ}\left(F_{0}^{(k)}\right.$, $\left.F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right)$ and $L=\operatorname{Circ}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$ holds

$$
\|F \circ L\|_{2} \leqslant F_{n-1}^{(k+1)} L_{n-1}^{(k+1)}
$$

Proof. The proof is trivial since $\|F \circ L\|_{2} \leqslant\|F\|_{2}\|L\|_{2}$.
COROLLARY 6. The spectral norm of the Kronecker product of $F=\operatorname{Circ}\left(F_{0}^{(k)}\right.$, $\left.F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right)$ and $L=\operatorname{Circ}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$ holds

$$
\|F \otimes L\|_{2}=F_{n-1}^{(k+1)} L_{n-1}^{(k+1)}
$$

Proof. The proof is trivial since $\|F \otimes L\|_{2}=\|F\|_{2}\|L\|_{2}$.
THEOREM 3. Let $F_{r}=\operatorname{Circr}\left(F_{0}^{(k)}, F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right)$ be an r-circulant matrix.
i) If $|r| \geqslant 1$, then

$$
\frac{1}{\sqrt{n}} F_{n-1}^{(k+1)} \leqslant\left\|F_{r}\right\|_{2} \leqslant|r|\left(F_{n-1}^{(k+1)}\right)^{2}
$$

ii) If $|r|<1$, then

$$
\frac{|r|}{\sqrt{n}} F_{n-1}^{(k+1)} \leqslant\left\|F_{r}\right\|_{2} \leqslant \sqrt{n-1} F_{n-1}^{(k+1)} .
$$

Proof. Since the matrix F_{r} is of the form

$$
F_{r}=\left[\begin{array}{cccccc}
F_{0}^{(k)} & F_{1}^{(k)} & F_{2}^{(k)} & \cdots & F_{n-2}^{(k)} & F_{n-1}^{(k)} \\
r F_{n-1}^{(k)} & F_{0}^{(k)} & F_{1}^{(k)} & \cdots & F_{n-3}^{(k)} & F_{n-2}^{(k)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
r F_{2}^{(k)} & r F_{3}^{(k)} & r F_{4}^{(k)} & \cdots & F_{0}^{(k)} & F_{1}^{(k)} \\
r F_{1}^{(k)} & r F_{2}^{(k)} & r F_{3}^{(k)} & \cdots & r F_{n-1}^{(k)} & F_{0}^{(k)}
\end{array}\right]
$$

and from the definition of Euclidean norm, we have

$$
\left\|F_{r}\right\|_{E}=\sqrt{\sum_{s=0}^{n-1}(n-s)\left(F_{s}^{(k)}\right)^{2}+\sum_{s=0}^{n-1} s|r|^{2}\left(F_{s}^{(k)}\right)^{2}}
$$

i) Since $|r| \geqslant 1$, by (9) we have

$$
\left\|F_{r}\right\|_{E} \geqslant \sqrt{\sum_{s=0}^{n-1}(n-s)\left(F_{s}^{(k)}\right)^{2}+\sum_{s=0}^{n-1} s\left(F_{s}^{(k)}\right)^{2}}=\sqrt{n \sum_{s=0}^{n-1}\left(F_{s}^{(k)}\right)^{2}} \geqslant F_{n-1}^{(k+1)}
$$

From (7)

$$
\left\|F_{r}\right\|_{2} \geqslant \frac{1}{\sqrt{n}} F_{n-1}^{(k+1)}
$$

Now, let the matrices B and C be as

$$
B=\left[\begin{array}{cccccc}
r F_{0}^{(k)} & 1 & 1 & \cdots & 1 & 1 \\
r F_{n-1}^{(k)} & r F_{0}^{(k)} & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
r F_{2}^{(k)} & r F_{3}^{(k)} & r F_{4}^{(k)} & \cdots & r F_{0}^{(k)} & 1 \\
r F_{1}^{(k)} & r F_{2}^{(k)} & r F_{3}^{(k)} & \cdots & r F_{n-1}^{(k)} r F_{0}^{(k)}
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{cccccc}
F_{0}^{(k)} & F_{1}^{(k)} & F_{2}^{(k)} & \cdots & F_{n-2}^{(k)} & F_{n-1}^{(k)} \\
1 & F_{0}^{(k)} & F_{1}^{(k)} & \cdots & F_{n-3}^{(k)} & F_{n-2}^{(k)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & 1 & 1 & \cdots & F_{0}^{(k)} & F_{1}^{(k)} \\
1 & 1 & 1 & \cdots & 1 & F_{0}^{(k)}
\end{array}\right] .
$$

That is, $F_{r}=B \circ C$. Then we obtain

$$
r_{1}(B)=\max _{1 \leqslant i \leqslant n} \sqrt{\sum_{j=1}^{n}\left|b_{i j}\right|^{2}}=\sqrt{\sum_{j=1}^{n}\left|b_{n j}\right|^{2}}=\sqrt{|r|^{2} \sum_{s=0}^{n-1}\left(F_{s}^{(k)}\right)^{2}}
$$

and

$$
c_{1}(B)=\max _{1 \leqslant j \leqslant n} \sqrt{\sum_{i=1}^{n}\left|c_{i j}\right|^{2}}=\sqrt{\sum_{i=1}^{n}\left|c_{i n}\right|^{2}}=\sqrt{\sum_{s=0}^{n-1}\left(F_{s}^{(k)}\right)^{2}} .
$$

Hence, from (9) and Lemma 2, we have

$$
\left\|F_{r}\right\|_{2} \leqslant r_{1}(B) c_{1}(B) \leqslant|r|\left(F_{n-1}^{(k+1)}\right)^{2}
$$

Thus, we write

$$
\frac{1}{\sqrt{n}} F_{n-1}^{(k+1)} \leqslant\left\|F_{r}\right\|_{2} \leqslant|r|\left(F_{n-1}^{(k+1)}\right)^{2} .
$$

ii) Since $|r|<1$, by (9) we have

$$
\begin{aligned}
\left\|F_{r}\right\|_{E} & =\sqrt{\sum_{s=0}^{n-1}(n-s)\left(F_{S}^{(k)}\right)^{2}+\sum_{s=0}^{n-1} s|r|^{2}\left(F_{s}^{(k)}\right)^{2}} \\
& \geqslant \sqrt{\sum_{s=0}^{n-1}(n-s)|r|^{2}\left(F_{s}^{(k)}\right)^{2}+\sum_{s=0}^{n-1} s|r|^{2}\left(F_{s}^{(k)}\right)^{2}} \\
& =|r| \sqrt{n \sum_{s=0}^{n-1}\left(F_{s}^{(k)}\right)^{2}} \geqslant|r| F_{n-1}^{(k+1)}
\end{aligned}
$$

From (7)

$$
\left\|F_{r}\right\|_{2} \geqslant \frac{|r|}{\sqrt{n}} F_{n-1}^{(k+1)}
$$

Now, let the matrices B and C be as

$$
B=\left[\begin{array}{ccccc}
F_{0}^{(k)} & 1 & 1 & \cdots & 1 \\
r & F_{0}^{(k)} & 1 & \cdots & 1 \\
1 \\
\vdots & \vdots & \vdots & & \vdots \\
r & r & r & \cdots & F_{0}^{(k)} \\
1 \\
r & r & r & \cdots & r
\end{array} F_{0}^{(k)}\right]
$$

and

$$
C=\left[\begin{array}{cccccc}
F_{0}^{(k)} & F_{1}^{(k)} & F_{2}^{(k)} & \cdots & F_{n-2}^{(k)} & F_{n-1}^{(k)} \\
F_{n-1}^{(k)} & F_{0}^{(k)} & F_{1}^{(k)} & \cdots & F_{n-3}^{(k)} & F_{n-2}^{(k)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
F_{2}^{(k)} & F_{3}^{(k)} & F_{4}^{(k)} & \cdots & F_{0}^{(k)} & F_{1}^{(k)} \\
F_{1}^{(k)} & F_{2}^{(k)} & F_{3}^{(k)} & \cdots & F_{n-1}^{(k)} & F_{0}^{(k)}
\end{array}\right] .
$$

That is, $F_{r}=B \circ C$. Then we obtain

$$
r_{1}(B)=\max _{1 \leqslant i \leqslant n} \sqrt{\sum_{j=1}^{n}\left|b_{i j}\right|^{2}}=\sqrt{F_{0}^{(k)}+n-1}=\sqrt{n-1}
$$

and

$$
c_{1}(B)=\max _{1 \leqslant j \leqslant n} \sqrt{\sum_{i=1}^{n}\left|c_{i j}\right|^{2}}=\sqrt{\sum_{s=0}^{n-1}\left(F_{s}^{(k)}\right)^{2}} .
$$

Hence, from (9) and Lemma 2, we have

$$
\left\|F_{r}\right\|_{2} \leqslant r_{1}(B) c_{1}(B) \leqslant \sqrt{n-1} F_{n-1}^{(k+1)}
$$

Thus, we write

$$
\frac{|r|}{\sqrt{n}} F_{n-1}^{(k+1)} \leqslant\left\|F_{r}\right\|_{2} \leqslant \sqrt{n-1} F_{n-1}^{(k+1)}
$$

Thus, the proof is completed.

Example 3. By using Theorem 3 and the equations in (5), if $|r| \geqslant 1$, we have

$$
\begin{aligned}
\frac{1}{\sqrt{n}}\left(F_{n+1}-1\right) & \leqslant\left\|F_{r}\right\|_{2} \leqslant|r|\left(F_{n+1}-1\right)^{2}, \text { if } k=0 \\
\frac{1}{\sqrt{n}}\left(F_{n+3}-n-2\right) & \leqslant\left\|F_{r}\right\|_{2} \leqslant|r|\left(F_{n+3}-n-2\right)^{2}, \text { if } k=1 \\
\frac{1}{\sqrt{n}}\left(F_{n+5}-\frac{n^{2}+5 n+10}{2}\right) & \leqslant\left\|F_{r}\right\|_{2} \leqslant|r|\left(F_{n+5}-\frac{n^{2}+5 n+10}{2}\right)^{2}, \text { if } k=2
\end{aligned}
$$

and if $|r|<1$, we have

$$
\begin{gathered}
\frac{|r|}{\sqrt{n}}\left(F_{n+1}-1\right) \leqslant\left\|F_{r}\right\|_{2} \leqslant \sqrt{n-1}\left(F_{n+1}-1\right), \text { if } k=0, \\
\frac{|r|}{\sqrt{n}}\left(F_{n+3}-n-2\right) \leqslant\left\|F_{r}\right\|_{2} \leqslant \sqrt{n-1}\left(F_{n+3}-n-2\right), \text { if } k=1, \\
\frac{|r|}{\sqrt{n}}\left(F_{n+5}-\frac{n^{2}+5 n+10}{2}\right) \leqslant\left\|F_{r}\right\|_{2} \leqslant \sqrt{n-1}\left(F_{n+5}-\frac{n^{2}+5 n+10}{2}\right), \text { if } k=2 .
\end{gathered}
$$

THEOREM 4. Let $L_{r}=\operatorname{Circr}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$ be an r-circulant matrix.
i) If $|r| \geqslant 1$, then

$$
\frac{1}{\sqrt{n}} L_{n-1}^{(k+1)} \leqslant\left\|L_{r}\right\|_{2} \leqslant|r|\left(L_{n-1}^{(k+1)}\right)^{2}
$$

ii) If $|r|<1$, then

$$
\frac{|r|}{\sqrt{n}} L_{n-1}^{(k+1)} \leqslant\left\|L_{r}\right\|_{2} \leqslant \sqrt{n} L_{n-1}^{(k+1)}
$$

Proof. Since the matrix L_{r} is of the form

$$
L_{r}=\left[\begin{array}{cccccc}
L_{0}^{(k)} & L_{1}^{(k)} & L_{2}^{(k)} & \cdots & L_{n-2}^{(k)} & L_{n-1}^{(k)} \\
r L_{n-1}^{(k)} & L_{0}^{(k)} & L_{1}^{(k)} & \cdots & L_{n-3}^{(k)} & L_{n-2}^{(k)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
r L_{2}^{(k)} & r L_{3}^{(k)} & r L_{4}^{(k)} & \cdots & L_{0}^{(k)} & L_{1}^{(k)} \\
r L_{1}^{(k)} & r L_{2}^{(k)} & r L_{3}^{(k)} & \cdots & r L_{n-1}^{(k)} & L_{0}^{(k)}
\end{array}\right]
$$

and from the definition of Euclidean norm, we have

$$
\left\|L_{r}\right\|_{E}=\sqrt{\sum_{s=0}^{n-1}(n-s)\left(L_{s}^{(k)}\right)^{2}+\sum_{s=0}^{n-1} s|r|^{2}\left(L_{s}^{(k)}\right)^{2}}
$$

i) Since $|r| \geqslant 1$, by (13) and we have

$$
\left\|L_{r}\right\|_{E} \geqslant \sqrt{\sum_{s=0}^{n-1}(n-s)\left(L_{s}^{(k)}\right)^{2}+\sum_{s=0}^{n-1} s\left(L_{s}^{(k)}\right)^{2}}=\sqrt{n \sum_{s=0}^{n-1}\left(L_{s}^{(k)}\right)^{2}} \geqslant L_{n-1}^{(k+1)}
$$

From (7)

$$
\left\|L_{r}\right\|_{2} \geqslant \frac{1}{\sqrt{n}} L_{n-1}^{(k+1)}
$$

Now, let the matrices B and C be as

$$
B=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
r L_{n-1}^{(k)} & 1 & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
r L_{2}^{(k)} & r L_{3}^{(k)} & r L_{4}^{(k)} & \cdots & 1 & 1 \\
r L_{1}^{(k)} & r L_{2}^{(k)} & r L_{3}^{(k)} & \cdots & r L_{n-1}^{(k)} & 1
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{cccccc}
L_{0}^{(k)} & L_{1}^{(k)} & L_{2}^{(k)} & \cdots & L_{n-2}^{(k)} & L_{n-1}^{(k)} \\
1 & L_{0}^{(k)} & L_{1}^{(k)} & \cdots & L_{n-3}^{(k)} & L_{n-2}^{(k)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & 1 & 1 & \cdots & L_{0}^{(k)} & L_{1}^{(k)} \\
1 & 1 & 1 & \cdots & 1 & L_{0}^{(k)}
\end{array}\right]
$$

That is, $L_{r}=B \circ C$. Then we obtain

$$
\begin{aligned}
r_{1}(B) & =\max _{1 \leqslant i \leqslant n} \sqrt{\sum_{j=1}^{n}\left|b_{i j}\right|^{2}}=\sqrt{\sum_{j=1}^{n}\left|b_{n j}\right|^{2}}=\sqrt{1+\sum_{s=1}^{n-1}|r|^{2}\left(L_{s}^{(k)}\right)^{2}} \\
& \leqslant|r| \sqrt{\sum_{s=0}^{n-1}\left(L_{s}^{(k)}\right)^{2}}
\end{aligned}
$$

and

$$
c_{1}(B)=\max _{1 \leqslant j \leqslant n} \sqrt{\sum_{i=1}^{n}\left|c_{i j}\right|^{2}}=\sqrt{\sum_{i=1}^{n}\left|c_{i n}\right|^{2}}=\sqrt{\sum_{s=0}^{n-1}\left(L_{s}^{(k)}\right)^{2}} .
$$

Hence, from (13) and Lemma 2, we have

$$
\left\|L_{r}\right\|_{2} \leqslant r_{1}(B) c_{1}(B) \leqslant|r|\left(L_{n-1}^{(k+1)}\right)^{2}
$$

Thus, we write

$$
\frac{1}{\sqrt{n}} L_{n-1}^{(k+1)} \leqslant\left\|L_{r}\right\|_{2} \leqslant|r|\left(L_{n-1}^{(k+1)}\right)^{2}
$$

ii) Since $|r|<1$, by (13) and we have

$$
\begin{aligned}
\left\|L_{r}\right\|_{E} & =\sqrt{\sum_{s=0}^{n-1}(n-s)\left(L_{s}^{(k)}\right)^{2}+\sum_{s=0}^{n-1} s|r|^{2}\left(L_{s}^{(k)}\right)^{2}} \\
& \geqslant \sqrt{\sum_{s=0}^{n-1}(n-s)|r|^{2}\left(L_{s}^{(k)}\right)^{2}+\sum_{s=0}^{n-1} s|r|^{2}\left(L_{s}^{(k)}\right)^{2}} \\
& =\sqrt{n|r|^{2} \sum_{s=0}^{n-1}\left(L_{s}^{(k)}\right)^{2}} \geqslant|r|\left(L_{n-1}^{(k+1)}\right) .
\end{aligned}
$$

From (7)

$$
\left\|L_{r}\right\|_{2} \geqslant \frac{|r|}{\sqrt{n}} L_{n-1}^{(k+1)}
$$

Now, let the matrices B and C be as

$$
B=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
r & 1 & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & & & \vdots \\
r & r & r & \cdots & 1 & 1 \\
r & r & r & \cdots & r & 1
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{cccccc}
L_{0}^{(k)} & L_{1}^{(k)} & L_{2}^{(k)} & \cdots & L_{n-2}^{(k)} & L_{n-1}^{(k)} \\
L_{n-1}^{(k)} & L_{0}^{(k)} & L_{1}^{(k)} & \cdots & L_{n-3}^{(k)} & L_{n-2}^{(k)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
L_{2}^{(k)} & L_{3}^{(k)} & L_{4}^{(k)} & \cdots & L_{0}^{(k)} & L_{1}^{(k)} \\
L_{1}^{(k)} & L_{2}^{(k)} & L_{3}^{(k)} & \cdots & L_{n-1}^{(k)} & L_{0}^{(k)}
\end{array}\right] .
$$

That is, $L_{r}=B \circ C$. Then we obtain

$$
r_{1}(B)=\max _{1 \leqslant i \leqslant n} \sqrt{\sum_{j=1}^{n}\left|b_{i j}\right|^{2}}=\sqrt{n}
$$

and

$$
c_{1}(B)=\max _{1 \leqslant j \leqslant n} \sqrt{\sum_{i=1}^{n}\left|c_{i j}\right|^{2}}=\sqrt{\sum_{s=0}^{n-1}\left(L_{s}^{(k)}\right)^{2}} .
$$

Hence, from (13) and Lemma 2, we have

$$
\left\|L_{r}\right\|_{2} \leqslant r_{1}(B) c_{1}(B) \leqslant \sqrt{n} L_{n-1}^{(k+1)}
$$

Thus, we write

$$
\frac{|r|}{\sqrt{n}} L_{n-1}^{(k+1)} \leqslant\left\|L_{r}\right\|_{2} \leqslant \sqrt{n} L_{n-1}^{(k+1)}
$$

This completes the proof.

EXAMPLE 4. By using Theorem 4 and the equations in (6), if $|r| \geqslant 1$, we have

$$
\begin{aligned}
& \frac{1}{\sqrt{n}}\left(L_{n+1}-1\right) \leqslant\left\|L_{r}\right\|_{2} \leqslant|r|\left(L_{n+1}-1\right)^{2}, \text { if } k=0, \\
& \frac{1}{\sqrt{n}}\left(L_{n+3}-n-4\right) \leqslant\left\|L_{r}\right\|_{2} \leqslant|r|\left(L_{n+3}-n-4\right)^{2}, \text { if } k=1 \text {, } \\
& \frac{1}{\sqrt{n}}\left(L_{n+5}-\frac{n^{2}+9 n+22}{2}\right) \leqslant\left\|L_{r}\right\|_{2} \leqslant|r|\left(L_{n+5}-\frac{n^{2}+9 n+22}{2}\right)^{2}, \text { if } k=2,
\end{aligned}
$$

and if $|r|<1$, we have

$$
\begin{aligned}
& \frac{|r|}{\sqrt{n}}\left(L_{n+1}-1\right) \leqslant\left\|L_{r}\right\|_{2} \leqslant \sqrt{n}\left(L_{n+1}-1\right), \text { if } k=0, \\
& \frac{|r|}{\sqrt{n}}\left(L_{n+3}-n-4\right) \leqslant\left\|L_{r}\right\|_{2} \leqslant \sqrt{n}\left(L_{n+3}-n-4\right), \text { if } k=1 \text {, } \\
& \frac{|r|}{\sqrt{n}}\left(L_{n+5}-\frac{n^{2}+9 n+22}{2}\right) \leqslant\left\|L_{r}\right\|_{2} \leqslant \sqrt{n}\left(L_{n+5}-\frac{n^{2}+9 n+22}{2}\right), \text { if } k=2 .
\end{aligned}
$$

Corollary 7. The spectral norm of the Hadamard product of $F_{r}=\operatorname{Circr}\left(F_{0}^{(k)}\right.$, $\left.F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right)$ and $L_{r}=\operatorname{Circr}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$ holds
i) If $|r| \geqslant 1$, then

$$
\left\|F_{r} \circ L_{r}\right\|_{2} \leqslant|r|^{2}\left(F_{n-1}^{(k+1)}\right)^{2}\left(L_{n-1}^{(k+1)}\right)^{2} .
$$

ii) If $|r|<1$, then

$$
\left\|F_{r} \circ L_{r}\right\|_{2} \leqslant \sqrt{n(n-1)} F_{n-1}^{(k+1)} L_{n-1}^{(k+1)}
$$

Proof. The proof is trivial since $\left\|F_{r} \circ L_{r}\right\|_{2} \leqslant\left\|F_{r}\right\|_{2}\left\|L_{r}\right\|_{2}$.
COROLLARY 8. The spectral norm of the Kronecker product of $F_{r}=\operatorname{Circr}\left(F_{0}^{(k)}\right.$, $\left.F_{1}^{(k)}, \ldots, F_{n-1}^{(k)}\right)$ and $L_{r}=\operatorname{Circr}\left(L_{0}^{(k)}, L_{1}^{(k)}, \ldots, L_{n-1}^{(k)}\right)$ holds
i) If $|r| \geqslant 1$, then

$$
\frac{1}{n} F_{n-1}^{(k+1)} L_{n-1}^{(k+1)} \leqslant\left\|F_{r} \otimes L_{r}\right\|_{2} \leqslant|r|^{2}\left(F_{n-1}^{(k+1)}\right)^{2}\left(L_{n-1}^{(k+1)}\right)^{2}
$$

ii) If $|r|<1$, then

$$
\frac{|r|^{2}}{n} L_{n-1}^{(k+1)} F_{n-1}^{(k+1)} \leqslant\left\|F_{r} \otimes L_{r}\right\|_{2} \leqslant \sqrt{n(n-1)} F_{n-1}^{(k+1)} L_{n-1}^{(k+1)}
$$

Proof. The proof is trivial since $\left\|F_{r} \otimes L_{r}\right\|_{2}=\left\|F_{r}\right\|_{2}\left\|L_{r}\right\|_{2}$.

REFERENCES

[1] M. Akbulak and D. Bozkurt, On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics 37 (2008), pp. 89-95.
[2] M. Bahsi and S. Solak, On the circulant matrices with arithmetic sequence, Int. J. Cont. Math. Sciences 5 (25), (2010), pp. 1213-1222.
[3] N.-N. CaO And F-Z. ZHaO, Some Properties of Hyperfibonacci and Hyperlucas Numbers, Journal of Integer Sequences 13 (2010), Article 10.0.8.
[4] P. J. Davis, Circulant Matrices, Wiley, New York, Chichester, Brisbane, 1979.
[5] A. Dil and I. Mezö, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comp. 206 (2008), pp. 942-951.
[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[7] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[8] A. İPek, On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries, Appl. Math. Comp. 217 (2011), pp. 6011-6012.
[9] H. Karner, J. Schneid, and C. W. Ueberhuber, Spectral Decomposition of Real Circulant Matrices, Linear Algebra and Its Appl. 367 (2003), pp. 301-311.
[10] E. Kiliç And D. TAŞCI, On the generalized order k-Fibonacci and Lucas numbers, Rocky Mountain J. Math. 36 (6) (2006), pp. 1915-1926.
[11] E. G. Kocer, Circulant, negacyclic and semicirculant matrices with the modified Pell, Jacobsthal and Jacobsthal-Lucas numbers, Hacettepe Journal of Mathematics and Statistics 36 (2) (2007), pp. 133-142.
[12] I. MezÖ, Several Generating Functions for Second-Order Recurrence Sequences, Journal of Integer Sequences 12 (2009), Article 09.3.7.
[13] A. A. Öcal, N. TUĞLu, and E. Altinişik, On the representation of k-generalized Fibonacci and Lucas numbers, Appl. Math. Comp. 170 (2005), pp. 584-596.
[14] S. SHEN, AND J. CEN, On the norms of circulant matrices with the (k, h)-Fibonacci and (k, h)-Lucas numbers, Int. J. Cont. Math. Sciences 6 (2011), pp. 887-894.
[15] S. SHEN, AND J. CEN, On the bounds for the norms of r-circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comp. 216 (2010), pp. 2891-2897.
[16] S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comp. 160 (2005), pp. 125-132.
[17] S. Solak, Erratum to "On the Norms of Circulant Matrices with the Fibonacci and Lucas Numbers, [Appl. Math. Comp. 160, (2005), 125-132], Appl. Math. Comp. 190 (2007), pp. 1855-1856.
[18] S. Solak and M. Bahşi, On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics 42 (1) (2013), pp. 15-19.
[19] D. TAŞCi And E. Kiliç, On the order $-k$ generalized Lucas numbers, Appl. Math. Comp. 155 (2004), pp. 637-641.
[20] Y. YaZlik and N. Taskara, On the norms of an r-circulant matrix with the generalized k Horadam numbers, Journal of Inequalities and Applications (2013), 2013:394.

Mustafa Bahssi Aksaray University, Education Faculty Aksaray-Turkey
e-mail: mhvbahsi@yahoo.com
Süleyman Solak
N. E. University, A. K. Education Faculty 42090, Meram, Konya-Turkey e-mail: ssolak42@yahoo.com

[^0]
[^0]: Journal of Mathematical Inequalities
 www.ele-math.com
 jmi@ele-math.com

