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Abstract. In this paper, we establish new Opial-type inequalities for general kernels. We prove
the converse of our general result and related extreme case. As applications of our main results
we extract the results of [12]. We provide the related applications for Widder’s derivative and
linear differential operator. At the end, we give the discrete analogue corresponding to our main
results.

1. Introduction

Mathematical inequalities which involve derivatives and integrals of functions is
of great interest. Opial’s inequality [17] is of great importance in mathematics with
respect to the applications in theory of differential equations and difference equations.
Many mathematicians gave the improvements and generalizations in last few decades
to add the considerable contribution in the literature and it has attracted a great deal of
attention in the recent literature (see, for instance, [1], [2], [3], [6], [8], [13], [18]).

Let us recall that the original Opial’s inequality [17] (see also [16, p. 114]) states
the following:

THEOREM 1.1. Let a > 0 . If f ∈C1[0,a] with f (0) = f (a) = 0 and f (t) > 0 on
(0,a) , then

a∫
0

| f (t) f
′
(t)|dt � a

4

a∫
0

( f
′
(t))2dt.

The constant a
4 is the best possible.

Agarwal, Alzer and Pang [2, 3, 5] study the Opial-type inequalities involving or-
dinary derivatives and their applications in differential equations and difference equa-
tions. Here our main purpose is to give the Opial-type inequalities for general kernels.
We also provide connection between our results in this paper with [12]. We provide the
fractional versions of known Opial-type inequalities and they will include three main
types of fractional derivatives: Riemann-Liouville, Caputo and Canavati type.
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By Cn[a,b] we denote the space of all functions on [a,b] which have continuous
derivatives up to order n , and AC[a,b] is the space of all absolutely continuous func-
tions on [a,b] . By ACn[a,b] we denote the space of all functions f ∈Cn−1[a,b] with
f (n−1) ∈ AC[a,b] .

By Lp[a,b] , 1 � p < ∞ , we denote the space of all Lebesgue measurable functions
f for which | f p| is Lebesgue integrable on [a,b] , and by L∞[a,b] the set of all functions
measurable and essentially bounded on [a,b] . Clearly, L∞[a,b]⊂ Lp[a,b] for all p � 1.

We say that a function g : [a,b] → R belongs to the class U( f ,k) if it admits the
representation

|g(t)| �
t∫

a

k(t,τ) | f (τ)|dτ,

where f is a continuous function and k is an arbitrary non-negative kernel such that
f (t) > 0 implies g(τ) > 0 for every t ∈ [a,b] . We also assume that all integrals under
consideration exist and that they are finite.

The paper is organized in the following way: In Section 2, we prove the Opial-type
inequalities involving two functions for general kernel with related extreme case. Also
we prove the converse of our main result. In Section 3, we give an application of our
main results and we will extract results of [12] from our main results with general ker-
nels as applications of fractional derivative. In Section 4, we give results for Widder’s
derivatives. Section 5 is dedicated to results for linear differential operators. At the end,
we conclude this paper by providing the discrete analogue of results given in Section 2.

2. Main results

The proofs of our results are similar to the proofs in [12] but for completeness of
results and for the reader’s convenience we will also give short version of proofs which
resulted new inequalities for general kernels.

Our first main result is given in the following theorem.

THEOREM 2.1. Let g1 ∈ U( f1,k), g2 ∈ U( f2,k). Let ϕ > 0, w � 0 be mea-
surable functions on [a,x], and k be a non-negative measurable kernel. Let r > 1,
r > q > 0 and p � 0. Let f1, f2 ∈ Lr[a,b]. Then the following inequality holds:

x∫
a

w(t)(|g1(t)|p| f2(t)|q + |g2(t)|p| f1(t)|q)dt � 21− q
r

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

×
⎛⎝ x∫

a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

ϕ(τ) [| f1(τ)|r + | f2(τ)|r] dτ

⎞⎠
p+q
r

, (2.1)

where

h(t) = w(t)

⎡⎣ t∫
a

k(t,τ)
r

r−1 ϕ(τ)
1

1−r dτ

⎤⎦
p(r−1)

r

[ϕ(t)]−
q
r , (2.2)
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and

d p
q

=
{

21− p
q , 0 � p � q;

1, p � q.

Proof. Since g1 ∈U( f1,k), ϕ(τ)> 0, and using the Hölder inequality for { r
r−1 ,r},

we get that

|g1(t)| �

⎛⎝ t∫
a

k(t,τ)
r

r−1 ϕ(τ)
1

1−r dτ

⎞⎠
r−1
r
⎛⎝ t∫

a

ϕ(τ) | f1(τ)|r dτ

⎞⎠
1
r

� [P(t)]
r−1
r [G(t)]

1
r . (2.3)

Let

F(t) =
t∫

a

ϕ(τ) | f2(τ)|r dτ. (2.4)

Then
| f2(t)|q = [ϕ(t)]−

q
r [F

′
(t)]

q
r . (2.5)

Now (2.3) and (2.5) implies that for w � 0,

w(t)|g1(t)|p| f2(t)|q � h(t)[G(t)]
p
r [F

′
(t)]

q
r ,

where

h(t) = w(t)[P(t)]
p(r−1)

r [ϕ(t)]−
q
r . (2.6)

Now integrating over [a,x] and using Hölder’s inequality for { r
r−q , r

q}, we obtain

x∫
a

w(t)|g1(t)|p| f2(t)|qdt �

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

[G(t)]
p
q F

′
(t)dt

⎞⎠
q
r

. (2.7)

Similarly we can write

x∫
a

w(t)|g2(t)|p| f1(t)|qdt �

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

[F(t)]
p
q G

′
(t)dt

⎞⎠
q
r

. (2.8)

Now we need the simple inequalities to complete our result:

cε(A+B)ε � Aε +Bε � dε(A+B)ε , (A,B � 0), (2.9)

where

cε =
{

1, 0 � ε � 1;
21−ε , ε � 1,

and dε =
{

21−ε , 0 � ε � 1;
1, ε � 1.
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Therefore from (2.7), (2.8) and (2.9), with r > q, we conclude that

x∫
a

w(t)[|g1(t)|p| f2(t)|q + |g2(t)|p| f1(t)|q]dt

� 21− q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

[G(t)]
p
q F

′
(t)+ [F(t)]

p
q G

′
(t)dt

⎞⎠
q
r

. (2.10)

Since G(a) = F(a) = 0, then with (2.9) follows that

x∫
a

[
[G(t)]

p
q F

′
(t)+ [F(t)]

p
q G

′
(t)
]
dt � q

p+q
(d p

q
−2−

p
q )[G(x)+F(x)]

p
q +1. (2.11)

Using (2.11) in (2.10) , we can obtain (2.1). �

The upcoming theorem is the extreme case of the Theorem 2.1.

THEOREM 2.2. Let gi ∈U( f1,ki), g̃i ∈U( f2,ki), (i = 1,2). Let w � 0 be mea-
surable function on [a,x] and p,q1,q2 � 0 and f1, f2 ∈ Ł∞[a,b] . Then the following
inequality holds:

x∫
a

w(t) [|g1(t)|q1 |g̃2(t)|q2 | f1(t)|p + |g2(t)|q2 |g̃1(t)|q1 | f2(t)|p]dt

� ‖w‖∞

x∫
a

⎛⎝ t∫
a

k1(t,τ)dτ

⎞⎠q1
⎛⎝ t∫

a

k2(t,τ)dτ

⎞⎠q2

dt

× 1
2

[
‖ f1‖2(q1+p)

∞ +‖ f1‖2q2
∞ +‖ f2‖2q2

∞ +‖ f2‖2(q1+p)
∞

]
. (2.12)

Proof. Since gi ∈U( f1,ki), and qi � 0 for (i = 1,2), we have

|gi(t)|qi �

⎛⎝ t∫
a

ki(t,τ)dτ

⎞⎠qi

‖ f1‖qi
∞ .

By analogy we get

|g̃i(t)|qi �

⎛⎝ t∫
a

ki(t,τ)dτ

⎞⎠qi

‖ f2‖qi
∞ .

Hence

|g1(t)|q1 |g̃2(t)|q2 | f1(t)|p �

⎛⎝ t∫
a

k1(t,τ)dτ

⎞⎠q1
⎛⎝ t∫

a

k2(t,τ)dτ

⎞⎠q2

‖ f1‖q1+p
∞ ‖ f2‖q2

∞ .

(2.13)
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Likewise we can write

|g2(t)|q2 |g̃1(t)|q1 | f2(t)|p �

⎛⎝ t∫
a

k2(t,τ)dτ

⎞⎠q2
⎛⎝ t∫

a

k1(t,τ)dτ

⎞⎠q1

‖ f1‖q2
∞ ‖ f2‖q1+p

∞ .

(2.14)
From (2.13) and (2.14), we have the inequality (2.12). �

Now we present a counterpart of the Theorem 2.1 for the case r < 0. Conditions
on r and q allow us to apply reverse Hölder’s inequalities, first with parameters { r

r−1 ∈
(0,1),r < 0}, then with { r

r−q ∈ (0,1), r
q < 0}.

THEOREM 2.3. Let gi ∈ U( fi,k), (i = 1,2). Let ϕ > 0, w � 0 be measurable
functions on [a,x] and k be a non-negative measurable kernel. Let r < 0, q > 0 and
p � 0. Let f1, f2 ∈ Lr[a,b], each of which is of fixed sign a.e. on [a,b], with 1

f1
, 1

f2
∈

Lr[a,b]. Then

x∫
a

w(t)(|g1(t)|p| f2(t)|q + |g2(t)|p| f1(t)|q)dt � 21− q
r

(
q

p+q

) q
r (

c p
q
−2−

p
q

) q
r

×
⎛⎝ x∫

a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

ϕ(τ) [| f1(τ)|r + | f2(τ)|r] dτ

⎞⎠
p+q
r

, (2.15)

where h is defined by (2.2).

Proof. Since g1 ∈U( f1,k) and t ∈ [a,x] for fixed sign of f1 on [a,b], ϕ(τ) > 0
and using reverse Hölder’s inequality for { r

r−1 ,r} we have

|g1(t)| �

⎛⎝ t∫
a

k(t,τ)
r

r−1 ϕ(τ)
1

1−r dτ

⎞⎠
r−1
r
⎛⎝ t∫

a

ϕ(τ) | f1(τ)|r dτ

⎞⎠
1
r

= [P(t)]
r−1
r [G(t)]

1
r .

Let F be defined by (2.4) . Then

w(t)|g1(t)|p| f2(t)|q � h(t)[G(t)]
p
r [F

′
(t)]

q
r

where h is defined by (2.6). Now integrating over [a,x] and again using reverse Hölder’s
inequality for { r

r−q , r
q} , we obtain

x∫
a

w(t)|g1(t)|p| f2(t)|qdt �

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

[G(t)]
p
q F

′
(t)dt

⎞⎠
q
r

, (2.16)
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and

x∫
a

w(t)|g2(t)|p| f1(t)|qdt �

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

[F(t)]
p
q G

′
(t)dt

⎞⎠
q
r

. (2.17)

For negative power we use the following inequality

Aδ +Bδ � 21−δ (A+B)δ , (δ < 0; A,B � 0) (2.18)

Therefore from (2.16), (2.17) and (2.18), with q
r < 0, we conclude that

x∫
a

w(t)[|g1(t)|p| f2(t)|q + |g2(t)|p| f1(t)|q]dt

� 21− q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

[G(t)]
p
q F

′
(t)+ [F(t)]

p
q G

′
(t)dt

⎞⎠
q
r

. (2.19)

For p
q > 0, we use (2.9) with G(a) = F(a) = 0, we have

x∫
a

[
[G(t)]

p
q F

′
(t)+ [F(t)]

p
q G

′
(t)
]
dt � q

p+q

(
c p

q
−2−

p
q

)
[G(x)+F(x)]

p
q +1. (2.20)

Using (2.20) in (2.19) , we get (2.15). �

3. Applications for fractional derivatives

First we survey some facts about fractional derivatives needed in this paper. For
more details see the monographs [14, Chapter 2] and [19, Chapter 1]. We start with
the application of our main results for Riemann-Liouville fractional derivative, Caputo
fractional derivative and Canavati fractional derivative. Also we will show that the
results in this paper are the generalization of the results given in [12].

Let x ∈ [a,b] , α > 0, n = [α] + 1 ( [·] is the integral part) and Γ is the gamma
function Γ(α) =

∫ ∞
0 e−t tα−1 dt . For f ∈ L1[a,b] the Riemann-Liouville fractional in-

tegral Jα f of order α is defined by

Jα f (x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f (t)dt .

For f : [a,b] → R the Riemann-Liouville fractional derivative Dα f of order α is de-
fined by

Dα f (x) =
1

Γ(n−α)
dn

dxn

∫ x

a
(x− t)n−α−1 f (t)dt =

dn

dxn Jn−α f (x) .
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In addition, we stipulate J0 f := f =: D0 f and J−α f := Dα f if α > 0.
Next, define n as

n = [α]+1 , for α �∈ N0; n = α , for α ∈ N0 . (3.1)

For n given by (3.1) and f ∈ ACn[a,b] the Caputo fractional derivative CDα f of order
α is defined by

CDα f (x) =
1

Γ(n−α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt = Jn−α f (n)(x).

A third fractional derivative, the Canavati fractional derivative CDα f of order α , is

defined for f ∈Cα [a,b] =
{

f ∈Cn−1[a,b] : Jn−α f (n−1) ∈C1[a,b]
}

by

CDα f (x) =
1

Γ(n−α)
d
dx

∫ x

a
(x− t)n−α−1 f (n−1)(t)dt =

d
dx

Jn−α f (n−1)(x) .

If α ∈ N then Dα f = CDα f = CDα f = f (α) , the ordinary α -order derivatives.
The next theorem is composition identity for the Riemann-Liouville fractional

derivatives. For details see [11].

THEOREM 3.1. Let α > β � 0 , n = [α]+ 1 , m = [β ]+ 1 and let f ∈ ACn[a,b]
be such that Dα f ,Dβ f ∈ L1[a,b] .

(i) If α −β �∈N and f is such that Dα−k f (a) = 0 for k = 1, . . . ,n and Dβ−k f (a) =
0 for k = 1, . . . ,m, then

Dβ f (x) =
1

Γ(α −β )

∫ x

a
(x− t)α−β−1Dα f (t)dt , x ∈ [a,b] . (3.2)

(ii) If α −β = l ∈ N and f is such that Dα−k f (a) = 0 for k = 1, . . . , l , then (3.2)
holds.

COROLLARY 3.2. [11, Corollary 1] Let α > β � 0 , n = [α]+ 1 , m = [β ]+ 1 .
Composition identity (3.2) is valid if one of the following conditions holds:

(i) f ∈ Jα (L1[a,b]) = { f : f = Jα ϕ ,ϕ ∈ L1[a,b]} .

(ii) Jn−α f ∈ ACn[a,b] and Dα−k f (a) = 0 for k = 1, . . .n.

(iii) Dα−1 f ∈ AC[a,b] , Dα−k f ∈C[a,b] and Dα−k f (a) = 0 for k = 1, . . .n.

(iv) f ∈ ACn[a,b] , Dα f ,Dβ f ∈ L1[a,b] , α −β /∈ N , Dα−k f (a) = 0 for k = 1, . . . ,n
and Dβ−k f (a) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[a,b] , Dα f ,Dβ f ∈ L1[a,b] , α − β = l ∈ N , Dα−k f (a) = 0 for k =
1, . . . , l .
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(vi) f ∈ ACn[a,b] , Dα f ,Dβ f ∈ L1[a,b] and f (k)(a) = 0 for k = 0, . . . ,n−2 .

(vii) f ∈ ACn[a,b] , Dα f ,Dβ f ∈ L1[a,b] , α /∈ N and Dα−1 f is bounded in a neigh-
borhood of t = a.

In upcoming remarks we extract the results of [12] from our general results.

REMARK 3.3. Let α > β � 0. Suppose that one of the conditions (i)-(vii) of
the Corollary 3.2 holds for {α,β , f} and {α,β ,g} . Let ϕ and w � 0 be measurable
function [a,x]. Let r > 1, r > q > 0 and p � 0. Let Dα f ,Dαg ∈ Lr[a,b]. Then by
replacing g1 by Dβ g, f1 by Dαg, g2 by Dβ f , f2 by Dα f , with the kernel

k(t,τ) =

{
(t−τ)α−β−1

Γ(α−β ) , a � τ � t;

0, t < τ � b,
(3.3)

in Theorem 2.1, we obtain the Theorem 2.1 of [12].

REMARK 3.4. Let α > β1 , β2 � 0. Suppose that one of the conditions (i) to
(iiv) of the Corollary 3.2 holds for {α,βi, f} and {α,βi,g}, (i = 1,2). Let ϕ and
w � 0 be measurable function [a,x]. Let p, q1 q2 � 0. Let Dα f ,Dαg ∈ Lr[a,b]. Then
by replacing g1 by Dβ1 f , g̃2 by Dβ2g, f1 by Dα f , g2 by Dβ2 f , g̃1 by Dβ1g, f2 by
Dαg with the kernel

ki(t,τ) =

{
(t−τ)α−βi−1

Γ(α−βi)
, a � τ � t;

0, t < τ � b,
(3.4)

for (i = 1,2) in Theorem 2.2, we obtain the [12, Theorem 2.2].

REMARK 3.5. Let α > β � 0. Suppose that one of the conditions (i) to (iiv) of
the Corollary 3.2 holds for {α,β , f} and {α,β ,g} . Let ϕ and w � 0 be measurable
function [a,x]. Let r < 0, q > 0 and p � 0. Let Dα f ,Dαg∈ Lr[a,b]. Then by replacing
g1 by Dβ g, f1 by Dαg, g2 by Dβ f , f2 by Dα f , and taking the kernel k(t,τ) defined
by (3.3) in Theorem 2.3, we obtain the Theorem 2.3 of [12].

The upcoming theorem is composition identity for the Caputo fractional deriva-
tives. For details see [10, Theorem 2.1].

THEOREM 3.6. Let α > β � 0 with n and m are defined by (3.1) . Let f ∈
ACn[a,b] be such that f (i)(a) = 0 for i = m,m + 1, . . . ,n − 1 . Let CDα f ,CDβ f ∈
L1[a,b] . Then

CDβ f (x) =
1

Γ(α −β )

∫ x

a
(x− t)α−β−1CDα f (t)dt , x ∈ [a,b] .

REMARK 3.7. Let α > β � 0 with n and m are defined by (3.1) . Let f ,g ∈
ACn[a,b] be such that f (i)(a) = g(i)(a) = 0 for i = m, . . . ,n−1. Let ϕ > 0 and ω � 0
be measurable functions on [a,x] . Let r > 1, r > q > 0 and p � 0. Let CDα f ,CDαg ∈
Lr[a,b] . Then by replacing g1 by CDβ g, f1 by CDαg, g2 by CDβ f , f2 by CDα f with
the kernel defined by (3.3) in Theorem 2.1, we obtain the Theorem 2.4 of [12].
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REMARK 3.8. Let α > β1,β2 � 0 with n , m1 and m2 given by (3.1) . Let m =
min{m1,m2} and f ,g∈ACn[a,b] be such that f (i)(a)= g(i)(a)= 0 for i =m, . . . ,n−1.
Let w � 0 be measurable function on [a,x] . Let p,q1,q2 � 0 and let CDα f ,CDαg ∈
L∞[a,b] . Then by replacing g1 by CDβ1 f , g̃2 by CDβ2g, f1 by CDα f , g2 by CDβ2 f ,
g̃1 by CDβ1g, f2 by CDαg with the kernel defined by (3.4) in Theorem 2.2, we obtain
the Theorem 2.5 of [12].

REMARK 3.9. Let α > β � 0 with n and m given by (3.1) . Let f ,g ∈ ACn[a,b]
be such that f (i)(a) = g(i)(a) = 0 for i = m, . . . ,n− 1. Let ϕ > 0 and ω � 0 be
measurable functions on [a,x] . Let r < 0, q > 0 and p � 0. Let CDα f ,CDαg∈ Lr[a,b] ,
each of which is of fixed sign a.e. on [a,b] with 1/CDα f ,1/CDαg ∈ Lr[a,b] . Then by
replacing g1 by CDβ g, f1 by CDαg, g2 by CDβ f , f2 by CDα f , and the kernel k(t,τ)
defined by (3.3) in Theorem 2.3, we obtain Theorem 2.6 of [12].

The following theorem gives the conditions in the composition rule for Canavati
fractional derivatives. For details see [9, Theorem 2.1].

THEOREM 3.10. Let α > β > 0 , n = [α]+1 , m = [β ]+1 . Let f ∈Cα [a,b] be
such that f (i)(a) = 0 for i = m−1,m, . . . ,n−2 . Then f ∈Cβ [a,b] and

CDβ f (x) =
1

Γ(α −β )

∫ x

a
(x− t)α−β−1CDα f (t)dt , x ∈ [a,b] .

REMARK 3.11. Let α > β � 0, n = [α]+1 and m = [β ]+1. Let f ,g ∈Cα [a,b]
be such that f (i)(a) = g(i)(a) = 0 for i = m− 1, . . . ,n− 2. Let ϕ > 0 and ω � 0 be

measurable functions on [a,x] . Let r > 1, r > q > 0 and p � 0. Let CDα f ,CDαg ∈
Lr[a,b] . Then by replacing g1 by CDβ g, f1 by CDαg, g2 by CDβ f , f2 by CDα f , and
the kernel k(t,τ) defined by (3.3) , we obtain Theorem 2.7 of [12].

REMARK 3.12. Let α > β1,β2 � 0, n = [α]+1 and m = min{[β1]+1, [β2]+1} .
Let f ,g∈Cα [a,b] be such that f (i)(a) = g(i)(a) = 0 for i = m−1, . . . ,n−2. Let w � 0

be measurable function on [a,x] . Let p,q1,q2 � 0 and let CDα f ,CDαg∈ L∞[a,b] . Then

by replacing g1 by CDβ1 f , g̃2 by CDβ2g, f1 by CDα f , g2 by CDβ2 f , g̃1 by CDβ1g, f2
by CDαg and the kernel k(t,τ) defined by (3.4) , we obtain Theorem 2.8 of [12].

REMARK 3.13. Let α > β � 0, n = [α]+1 and m = [β ]+1. Let f ,g ∈Cα [a,b]
be such that f (i)(a) = g(i)(a) = 0 for i = m− 1, . . . ,n− 2. Let ϕ > 0 and ω � 0 be

measurable functions on [a,x] . Let r < 0, q > 0 and p � 0. Let CDα f ,CDαg∈ Lr[a,b] ,
each of which is of fixed sign a.e. on [a,b] with 1/CDα f ,1/CDαg ∈ Lr[a,b] . Then by

replacing g1 by CDβ g, f1 by CDαg, g2 by CDβ f , f2 by CDα f , and the kernel k(t,τ)
defined by (3.3) in Theorem 2.3, we obtain Theorem 2.9 of [12].
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4. Applications for Widder’s derivatives

Here we give the application of our main results for Widder’s derivative. First it
is necessary to give some important details about Widder’s derivatives (see [20]). Let
f ,u0,u1, ...,un ∈Cn+1([a,b]) , n � 0, and the Wronskians

Wi(x) := W [u0(x),u1(x), ...,ui(x)] =

∣∣∣∣∣∣∣∣∣∣∣∣

u0(x) · · · ui(x)
u′0(x) · · · u′i(x)
· · ·
· · ·
· · ·

u(i)
0 (x) · · · u(i)

i (x)

∣∣∣∣∣∣∣∣∣∣∣∣
,

i = 0,1, ...,n. Here W0(x) = u0(x). Assume Wi(x) > 0 over [a,b] , i = 0,1, ...,n. For
i � 0, the differential operator of order i (Widder’s derivative):

Li f (x) :=
W [u0(x),u1(x), ...,ui−1(x), f (x)]

Wi−1(x)
,

i = 1, ...,n+1;L0 f (x) := f (x) for all x ∈ [a,b]. Consider also

gi(x,t) :=
1

Wi(t)

∣∣∣∣∣∣∣∣∣∣∣∣

u0(t) · · · ui(t)
u′0(t) · · · u′i(t)
· · ·
· · ·
· · ·

u(i)
0 (x) · · · u(i)

i (x)

∣∣∣∣∣∣∣∣∣∣∣∣
,

i = 1,2, ...,n; g0(x, t) := u0(x)
u0(t)

for all x,t ∈ [a,b].

EXAMPLE 4.1. [20] Sets of the form {u0,u1,u2, ...,un} are {1,x,x2, ...,xn},
{1,sinx,cosx,−sin2x,cos2x, ...,(−1)n−1 sinnx,(−1)n−1 cosnx}, etc.

We also mention the generalized Widder-Talylor’s formula, see [20] (see also [7]).

THEOREM 4.2. Let the functions f ,u0,u1, ...,un ∈Cn+1([a,b]), and the Wronki-
ans W0(x),W1(x), ...,Wn(x) > 0 on [a,b],x ∈ [a,b]. Then for t ∈ [a,b] we have

f (x) = f (t)
u0(x)
u0(t)

+L1 f (t)g1(x,t)+ ...+Ln f (t)gn(x,t)+Rn(x)

where

Rn(x) :=
x∫

t

gn(x,t)Ln+1 f (t)dt.
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For example (see [20]) one could take u0(x) = c > 0. If ui(x) = xi , i = 0,1, ...,n,
defined on [a,b], then

Li f (t) = f (i)(t) and gi(x,t) =
(x− t)i

i!
, t ∈ [a,b].

We need

COROLLARY 4.3. By additionally assuming for fixed x0 ∈ [a,b] that Li f (x0) = 0 ,
i = 0,1, ...,n, we get that

f (x) :=
x∫

x0

gn(x,t)Ln+1 f (t)dt, f or all x ∈ [a,b]. (4.1)

Now we give the application for the Widder’s derivative in upcoming theorem.

THEOREM 4.4. Let the functions f ,g,u0,u1, ...,un ∈Cn+1([a,b]), and the Wron-
kians W0(x),W1(x), ...,Wn(x) > 0 on [a,b] , x ∈ [a,b]. Suppose that that the (4.1) holds
for the functions f and g. Let r > 1, r > q > 0 and p � 0. Let Ln+1 f ,Ln+1g∈ Lr[a,b],
Li f (a) = 0, and Lig(a) = 0 (i = 0,1, ...,n). Then

x∫
a

w(t)(| f (t)|p|Ln+1g(t)|q + |g(t)|p|Ln+1 f (t)|q)dt � 21− q
r

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

×
⎛⎝ x∫

a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

ϕ(τ) [|Ln+1 f (τ)|r + |Ln+1g(τ)|r] dτ

⎞⎠
p+q
r

, (4.2)

where h is defined by (2.2).

Proof. Applying Theorem 2.1 with g1 = f , f2 = Ln+1g , g2 = g, f1 = Ln+1 f and
k(t,τ) = gn(t,τ), we get the inequality (4.2). �

EXAMPLE 4.5. If we take u0(x) = c > 0 and un(x) = xn , n = 0,1,2, ...,n defined

on [a,b], then Ln f (t) = f (n)(t) and gn(t,τ) = (t−τ)n
n! , τ ∈ [a,b], and the inequality

(4.2) becomes

x∫
a

w(t)(| f (t)|p|g(n+1)(t)|q + |g(t)|p| f (n+1)(t)|q)dt � 21− q
r

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

×
⎛⎝ x∫

a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

ϕ(τ)
[∣∣∣ f (n+1)(τ)

∣∣∣r +
∣∣∣g(n+1)(τ)

∣∣∣r] dτ

⎞⎠
p+q
r

,

where h is defined by (2.2).
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The upcoming theorem is the converse of the Theorem 4.4.

THEOREM 4.6. Suppose that that the (4.1) holds for the functions f and g. Let
r < 0, q > 0 and p � 0. Let f1, f2 ∈ Lr[a,b]. Then

x∫
a

w(t)(| f (t)|p|Ln+1g(t)|q + |g(t)|p|Ln+1 f (t)|q)dt � 21− q
r

(
q

p+q

) q
r (

c p
q
−2−

p
q

) q
r

×
⎛⎝ x∫

a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

ϕ(τ) [|Ln+1 f (τ)|r + |Ln+1g(τ)|r] dτ

⎞⎠
p+q
r

,

where h is defined by (2.2).

Proof. The proof is similar to the proof of Theorem 4.4. �

5. Applications for linear differential operator

The following hypotheses are assumed throughout this section: Let I be a closed
interval in R, a a fixed point in I , let Φ be a continuous function nonnegative on I× I ,
and let y, h ∈ C(I) . We assume that the following condition involving Φ, h and y is
satisfied (for details see [15]):

|y(x)| �
∣∣∣∣∣∣

x∫
a

Φ(x,t)|h(t)|dt

∣∣∣∣∣∣ , x ∈ I. (5.1)

Some typical example of (5.1) is given below.

EXAMPLE 5.1. Let K be a continuous function on I× I and let y be defined by

y(x) =
s∫

a

K(s,t)h(t)dt, s ∈ I.

Then (5.1) holds with Φ(s,t) = |K(s,t)|. A useful modification of this example – easier
to attain in practice – is obtained when a function z ∈C(I) defined by

z(s) =
s∫

a

K(s,t)h(t)dt

satisfies a inequality |z(t)| � |y(t)|. Again (5.1) holds with Φ(s,t) = |K(s,t)|.
In [6], the results yields the Opial-type inequalities for linear differential operator

(see [1], [2], [8]).
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EXAMPLE 5.2. Let

L =
n−1

∑
j=0

a j(t)Dj +Dn, t ∈ I,

be the linear differential operator with a j ∈ C(I), let h ∈ C(I). Let y1(x), ...yn(x) be
the set of lineary independent solution of Ly = 0 and here is the associated Green’s
function for L is

G(x,t) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)
y′1(t) · · · y′n(t)
· · ·
· · ·
· · ·

y(n−2)
1 (t) · y(n−2)

n (t)
y1(x) · · · yn(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)
y′1(t) · · · y′n(t)
· · ·
· · ·
· · ·

y(n−2)
1 (t) · y(n−2)

n (t)
y1(t) · · · yn(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which is continuous function on I2. It is known that

y(x) =
x∫

a

G(x,t)h(t)dt

is the unique solution to the initial value problem

Ly = h, y( j)(a) = 0, j = 0,1, ...,n−1.

Then (5.1) is satisfied for y and h with with Φ(x,t) = |G(x,t)|.

THEOREM 5.3. Let yi ∈ U(hi,G) (i = 1,2). Let ϕ > 0, w � 0 be measurable
functions on [a,x]. Let r > 1, r > q > 0 and p � 0. Let h1,h2 ∈ Lr[a,b]. Then

x∫
a

w(t)(|y1(t)|p|h2(t)|q + |y2(t)|p|h1(t)|q)dt � 21− q
r

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

×
⎛⎝ x∫

a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

ϕ(τ)
[∣∣∣h1(τ)

∣∣∣r +
∣∣∣h2(τ)

∣∣∣r] dτ

⎞⎠
p+q
r

, (5.2)

where h is defined by (2.2).
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Proof. Applying Theorem2.1 with g1 = y1, f2 = h2,g2 = y2, f1 = h1 and k(t,τ) =
G(t,τ) , we get the inequality (5.2). �

THEOREM 5.4. Let yi ∈ U(hi,G) (i = 1,2). Let ϕ > 0, w � 0 be measurable
functions on [a,x]. Let r < 0, q > 0 and p � 0. Let h1,h2 ∈ Lr[a,b]. Then

x∫
a

w(t)(|y1(t)|p|h2(t)|q + |y2(t)|p|h1(t)|q)dt � 21− q
r

(
q

p+q

) q
r (

c p
q
−2−

p
q

) q
r

×
⎛⎝ x∫

a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

ϕ(τ)
[∣∣∣h1(τ)

∣∣∣r +
∣∣∣h2(τ)

∣∣∣r] dτ

⎞⎠
p+q
r

.

where h is defined by (2.2).

Proof. The proof is similar to the proof of Theorem 5.3. �

6. Discrete analogues to main results

This section deals with discrete analogues of main results in Section 2.

THEOREM 6.1. For any i = 1,2 and α,β = 0,1, · · · ,m− 1 , let kαβ > 0 and
ai

α ,bi
β be real numbers such that

|ai
α | �

α−1

∑
β=0

kαβ |bi
β |.

Then for any constants p � 0,q > 0,r > max{1,q}, φα ,φβ > 0 and for any ωα � 0 ,
we have

m−1

∑
α=0

ωα
(|a1

α |p|b2
α |q + |a2

α |p|b1
α |q
)

� 21− q
r (d p

q
+1)

q
r C

q
r
mX

p+q
r

m

(
m−1

∑
α=0

h
r

r−q
α

) r−q
r

, (6.1)

where

C1 = 0,

Cα =
q

p+q

(
1

p+q

) p
q

(1−Cα−1)
− p

q ,α = 2,3,4 · · · ,m,

Xm =
m−1

∑
β=0

φβ |b1
β |r +

m−1

∑
β=0

φβ |b2
β |r,

hα = ωα(Pα)
p(r−1)

r (φα)−
q
r ,

Pα =
α−1

∑
β=0

k
r

r−1
αβ φ− 1

r−1
β . (6.2)
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Proof. For i = 1,2, α = 0,1, · · · ,m− 1, φβ > 0, and using Hölder’s inequality
for { r

r−1 ,r} and i = 1, we obtain

|a1
α | �

(
α−1

∑
β=0

k
r

r−1
αβ φ

− 1
r−1

β

) r−1
r
(

α−1

∑
β=0

φβ |b1
β |r
) 1

r

� [Pα ]
r−1
r [Gα ]

1
r . (6.3)

Let

Fα =
α−1

∑
β=0

φβ |b2
β |r, (6.4)

then
�Fα = Fα+1−Fα = φα |b2

α |r.
This implies

|b2
α |q = φ− q

r
α (�Fα)

q
r . (6.5)

Now from inequality (6.3) for p � 0, and applying Hölder’s inequality for { r
r−q , r

q},
we get

m−1

∑
α=0

ωα |a1
α |p|b2

α |q �
(

m−1

∑
α=0

h
r

r−q
α

) r−q
r
(

m−1

∑
α=0

G
p
q
α �Fα

) q
r

. (6.6)

Similarly, we can write

m−1

∑
α=0

ωα |a2
α |p|b1

α |q �
(

m−1

∑
α=0

h
r

r−q
α

) r−q
r
(

m−1

∑
α=0

F
p
q

α �Gα

) q
r

. (6.7)

Adding inequalities (6.6) and (6.7), and using inequalities given in (2.9) we get

m−1

∑
α=0

ωα
[|a1

α |p|b2
α |q + |a2

α |p|b1
α |q
]

� 21− q
r

(
m−1

∑
α=0

h
r

r−q
α

) r−q
r
[

m−1

∑
α=0

G
p
q
α �Fα +

m−1

∑
α=0

F
p
q

α �Gα

] q
r

. (6.8)

Now we take

m−1

∑
α=0

G
p
q
α �Fα +

m−1

∑
α=0

F
p
q

α �Gα

� d p
q

m−1

∑
α=0

(Gα +Fα)
p
q (�Gα +�Fα)−

m−1

∑
α=0

(G
p
q
α �Gα +F

p
q

α �Fα)

� Cm

(
d p

q
(Gm +Fm)

p
q +1 +

(
G

p
q +1
m +F

p
q +1

m

))
(By Lemma 2 in [4])

� CmX
p
q +1

m

(
d p

q
+1
)

. (6.9)
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Now using inequality (6.9) in (6.8), we obtain (6.1). �

The upcoming theorem is the extreme case of Theorem 6.1.

THEOREM 6.2. For any i = 1,2 and α,β = 0,1, · · · ,m− 1 , let kαβ > 0 and
ai

α ,bi
β and ãi

α be real numbers such that

|ai
α | �

α−1

∑
β=0

ki
αβ |b1

β |, and |ãi
α | �

α−1

∑
β=0

ki
αβ |b2

β |.

Then for any constants p,qi � 0, ωα � 0 , we have the following inequality:

m−1

∑
α=0

ωα

[
|a1

α |q1 |ã2
α |q2 |b1

α |p + |a2
α |q2 |ã1

α |q1 |b2
α |p
]

� 1
2
‖ω‖∞

m−1

∑
α=0

(
α−1

∑
β=0

k1
αβ

)q1

×
(

α−1

∑
β=0

k2
αβ

)q2 [
‖b1‖2(q1+p)

∞ +‖b2‖2q2
∞ +‖b1‖2q2

∞ +‖b2‖2(p+q1)
∞

]
. (6.10)

Proof. For any i = 1,2 and α,β = 0,1, · · · ,m−1, we have

|ai
α |qi �

(
α−1

∑
β=0

ki
αβ

)qi

‖b1‖qi
∞ .

By analogy we have

|ãi
α |qi �

(
α−1

∑
β=0

ki
αβ

)qi

‖b2‖qi
∞ .

Hence

|a1
α |q1 |ã2

α |q2 |b1
α |p �

(
α−1

∑
β=0

k1
αβ

)q1
(

α−1

∑
β=0

k2
αβ

)q2

‖b1‖q1
∞ ‖b2‖q2

∞ ‖b1‖p
∞. (6.11)

Likewise

|a2
α |q2 |ã1

α |q1 |b2
α |p �

(
α−1

∑
β=0

k1
αβ

)q1
(

α−1

∑
β=0

k2
αβ

)q2

‖b1‖q2
∞ ‖b2‖q1

∞ ‖b2‖p
∞. (6.12)

Adding inequalities given in (6.11) and (6.12), and after short calculations we can ob-
tain (6.10). �

The upcoming theorem is the converse of the Theorem 6.1.
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THEOREM 6.3. For any i = 1,2 and α,β = 0,1, · · · ,m− 1 , let kαβ > 0 and
ai

α ,bi
β be real numbers such that

ai
α �

α−1

∑
β=0

kαβ |bβ |.

Then for any constants p,q > 0,r < 0, and for any ωα � 0 we have

m−1

∑
α=0

ωα
(|a1

α |p|b2
α |q + |a2

α |p|b1
α |q
)

� 21− q
r (d p

q
+1)

q
r C

q
r
mX

p+q
q

m

(
m−1

∑
α=0

h
r

r−q
α

) r−q
r

, (6.13)

where, Cα ,Xm,hα are given in (6.2) .

Proof. Since φβ > 0, for i = 1,2, α = 0,1, · · · ,m− 1 and for fixed sign of b1
β ,

φ(β ) > 0 and using reverse Hölder’s inequality for { r
r−1 ,r} and for i = 1, we obtain

|a(1)
α | �

(
α−1

∑
β=0

k
r

r−1
αβ φ

− 1
r−1

β

) r−1
r
(

α−1

∑
β=0

φβ |b1
β |r
) 1

r

� (Pα)
r−1
r (Gα )

1
r . (6.14)

Then we have

m−1

∑
α=0

ωα |a1
α |p|b2

α |q �
m−1

∑
α=0

hαG
p
r
α �F

q
r

α . (6.15)

Applying reverse Hölder’s inequality for { r
r−q , r

q}, we get

m−1

∑
α=0

ωα |a1
α |p|b2

α |q �
(

m−1

∑
α=0

h
r

r−q
α

) r−q
r
(

m−1

∑
α=0

G
p
q
α �Fα

) q
r

. (6.16)

Similarly, we can write

m−1

∑
α=0

ωα |a2
α |p|b1

α |q �
(

m−1

∑
α=0

h
r

r−q
α

) r−q
r
(

m−1

∑
α=0

F
p
q

α �Gα

) q
r

. (6.17)

Adding inequalities given in (6.16) and (6.17), and using the inequalities given in (2.9),
we have

m−1

∑
α=0

ωα
[|a1

α |p|b2
α |q + |a2

α |p|b1
α |q
]

� 21− q
r

(
m−1

∑
α=0

h
r

r−q
α

) r−q
r
[

m−1

∑
α=0

G
p
q
α �Fα +

m−1

∑
α=0

F
p
q

α �Gα

] q
r

. (6.18)
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From the inequality (6.9) and for q
r < 0, we have

(
m−1

∑
α=0

G
p
q
α �Fα +

m−1

∑
α=0

F
p
q

α �Gα

) q
r

� C
q
r
mX

p+q
r

m

(
d p

q
+1
) q

r
. (6.19)

Using inequality (6.19) in (6.18), we obtain (6.13). �
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