\textbf{L}_p-\textit{mixed projection bodies and L}_p-\textit{mixed quermassintegrals}

\textbf{Weidong Wang and Xiaoyan Wan}

\textit{(Communicated by L. Yang)}

Abstract. In this paper, we research the \textit{L}_p-\textit{mixed projection bodies by the L}_p-\textit{mixed quermassintegrals. First, we give an equivalent conclusion of L}_p-\textit{mixed projection bodies. Further, the Shephard type problem for the L}_p-\textit{mixed projection bodies are shown.}

1. Introduction

Let \(K \subset \mathbb{R}^n \) denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean space \(\mathbb{R}^n \). For the set of convex bodies containing the origin in their interiors and the class of origin-symmetric convex bodies, write \(K_o^n \) and \(K_s^n \), respectively. Let \(S^{n-1} \) denote the unit sphere in \(\mathbb{R}^n \), denote by \(V(K) \) the \(n \)-dimensional volume of body \(K \). For the standard unit ball \(B \) in \(\mathbb{R}^n \), denote \(\omega_n = V(B) \).

If \(K \in \mathbb{K}^n \), then its support function, \(h_K(h(K, \cdot)) \), is defined by (see [5])

\[
 h(K, x) = \max\{x \cdot y : y \in K\}, \quad x \in \mathbb{R}^n,
\]

where \(x \cdot y \) denotes the standard inner product of \(x \) and \(y \).

For each \(K \in \mathbb{K}^n \), the projection body, \(\Pi K \), of \(K \) is an origin-symmetric convex body whose support function is defined by (see [5, 27])

\[
 h_{\Pi K}(u) = \frac{1}{2} \int_{S^{n-1}} |u \cdot v| \, dS(K, v)
\]

for all \(u \in S^{n-1} \), where \(S(K, \cdot) \) is the surface area measure of \(K \) on \(S^{n-1} \). The projection body is a very important object in the Brunn-Minkowski theory. During past four decades, a number of important results regarding classical projection bodies were obtained (see [1, 2, 3, 5, 6, 9, 10, 12, 14, 15, 16, 21, 23, 24, 26, 27, 34]).

The notion of the projection body was extended to mixed projection body by Lutwak (see [12, 14]). For each \(K \in \mathbb{K}^n \), the mixed projection body, \(\Pi_i K \) \((i = 0, 1, \ldots, n - 1) \), of \(K \) is origin-symmetric convex body whose support function is defined by

\[
 h_{\Pi_i K}(u) = \frac{1}{2} \int_{S^{n-1}} |u \cdot v| \, dS_i(K, v)
\]

Keywords and phrases: \textit{L}_p-\textit{mixed projection body, L}_p-\textit{mixed quermassintegrals, Shephard problem.}

Research is supported in part by the Natural Science Foundation of China (Grant No. 11371224).
for all $u \in S^{n-1}$, where $S_i(K, \cdot)$ $(i = 0, 1, \cdots, n - 1)$ is the mixed surface area measure of K on S^{n-1}. Obviously, $\Pi_0 K = \Pi K$.

The projection bodies were extended to L_p-space by Lutwak, Yang and Zhang. They (see [18]) introduced the notion of L_p -projection body as follows: For $K \in \mathcal{K}_o^n$, and real number $p \geq 1$, the L_p -projection body, $\Pi_p K$, of K is origin-symmetric convex body whose support function is given by

$$h_{\Pi_p K}(u) = \frac{1}{(n+p)c_{n,p} \omega_n} \int_{S^{n-1}} |u \cdot v|^p dS_p(K, v) \quad (1.2)$$

for all $u \in S^{n-1}$, where

$$c_{n,p} = \omega_{n+p} / \omega_2 \omega_{n-1} \omega_{p-1}.$$

The positive Borel measure $S_p(K, \cdot)$ on S^{n-1} is called the L_p -surface area measure of K, and has Radon-Nikodym derivative

$$\frac{dS_p(K, \cdot)}{dS(K, \cdot)} = h(K, \cdot)^{1-p}.$$

The unusual normalization of definition (1.2) is chosen so that for the unit ball B, we have $\Pi_p B = B$. In particular, for $p = 1$, $\Pi_1 K$ is the classical projection body ΠK of K under the normalization of (1.2), and $\Pi B = B$, rather than the $\omega_{n-1} B$ (see [18]).

L_p -projection bodies extended the classical projection bodies from the Brunn-Minkowski theory to the L_p -Brunn-Minkowski theory. The studies of L_p -projection bodies have received considerable attention, except see [18], for example also see [7, 8, 11, 19, 20, 25, 28, 29, 30, 31, 32, 33].

Similar to the definition of L_p -projection body, Wang and Leng in [29] gave the definition of L_p -mixed projection body as follows: For each $K \in \mathcal{K}_o^n$, real $p \geq 1$ and $i = 0, 1, \cdots, n - 1$, the L_p -mixed projection body, $\Pi_{p,i} K$, of K is origin-symmetric convex body whose support function is defined by

$$h_{\Pi_{p,i} K}(u) = \frac{1}{(n+p)c_{n,p} \omega_n} \int_{S^{n-1}} |u \cdot v|^p dS_{p,i}(K, v) \quad (1.3)$$

for all $u \in S^{n-1}$. Here the positive Borel measure $S_{p,i}(K, \cdot)$ $(i = 0, 1, \cdots, n - 1)$ on S^{n-1} is called the L_p -mixed surface area measure of K which was introduced by Lutwak (see [17]). It turns out that the measure $S_{p,i}(K, \cdot)$ is absolutely continuous with respect to $S_i(K, \cdot)$, and has Radon-Nikodym derivative

$$\frac{dS_{p,i}(K, \cdot)}{dS_i(K, \cdot)} = h^{1-p}(K, \cdot). \quad (1.4)$$

The case $i = 0$, $S_{p,0}(K, \cdot)$ is just L_p -surface area measure $S_p(K, \cdot)$. The unusual normalization of definition (1.3) is chosen so that for the unit ball B, we have $\Pi_{p,i} B = B$. Note that for $p = 1$, $\Pi_{1,i} K$ is the classical mixed projection body $\Pi_i K$ of K under the normalization of (1.3).

From (1.3), if $i = 0$, then $\Pi_{p,0} K = \Pi_p K$. This means that L_p -mixed projection body is an extension of L_p -projection body in the L_p -Brunn-Minkowski theory.
According to (1.3) and (1.4), we easily know that for \(\lambda > 0 \) and \(n - i \neq p \geq 1 \),
\[
\Pi_{p,i} \lambda K = \lambda^{\frac{n-i-p}{p}} \Pi_{p,i} K.
\] (1.5)

In this paper, we continuously research the \(L_p \)-mixed projection bodies. First, associated with \(L_p \)-mixed quermassintegrals (see [17]), we give an equivalent conclusion of the \(L_p \)-mixed projection bodies as follows:

THEOREM 1.1. If \(K, L \in \mathcal{K}_n \), \(p \geq 1 \) and \(i = 0, 1, \cdots, n - 1 \), then
\[
\Pi_{p,i} K = \Pi_{p,i} L \iff W_{p,i}(K, Q) = W_{p,i}(L, Q),
\] (1.6)
for any \(Q \in \mathcal{K}_n \).

Here \(W_{p,i}(M, N) \) \((i = 0, 1, \cdots, n - 1) \) denotes the \(L_p \)-mixed quermassintegrals of \(M \) and \(N \), \(W_{p,0}(M, N) \) is just the \(L_p \)-mixed volume \(V_p(M, N) \) (see [17]). Let \(i = 0 \) in Theorem 1.1, we immediately obtain the following equivalent conclusion of the \(L_p \)-projection bodies.

COROLLARY 1.1. If \(K, L \in \mathcal{K}_n \), \(p \geq 1 \), then
\[
\Pi_{p} K = \Pi_{p} L \iff V_p(K, Q) = V_p(L, Q),
\] for any \(Q \in \mathcal{K}_n \).

Further, we study the Shephard type problems for the \(L_p \)-mixed projection bodies. Recall that Wang and Leng (see [29]) gave an affirmation of the Shephard type problems for the \(L_p \)-mixed projection bodies as follows:

THEOREM 1.A. Let \(K, L \in \mathcal{K}_n \), \(i = 0, 1, \cdots, n - 1 \) and \(n - i \neq p \geq 1 \). If \(L \) is an \(L_p \)-mixed projection body and \(\Pi_{p,i} K \subseteq \Pi_{p,i} L \), then for \(0 \leq i < n - p \),
\[
W_i(K) \leq W_i(L);
\]
for \(n - p < i < n \),
\[
W_i(K) \geq W_i(L);
\]
with equality if and only if \(K = L \).

Here \(W_i(Q) \) denotes the quermassintegrals of \(Q \in \mathcal{K}_n \).

Using the \(L_p \)-mixed quermassintegrals, we give a general form of Theorem 1.A as follows:

THEOREM 1.2. Let \(K, L \in \mathcal{K}_n \), \(i = 0, 1, \cdots, n - 1 \) and \(n - i \neq p \geq 1 \). If
\[
\Pi_{p,i} K \subseteq \Pi_{p,i} L,
\]
then for any \(L_p \)-mixed projection body \(Q \),
\[
W_{p,i}(K, Q) \leq W_{p,i}(L, Q),
\] (1.7)
with equality if and only if \(K = L \).

Moreover, as the application of Theorem 1.1, we also obtain an improved version of Theorem 1.A.
THEOREM 1.3. Let $K \in \mathcal{K}_o^n$, $L \in \mathcal{K}_o^n$, $i = 0, 1, \cdots, n-1$ and $n - i \neq p > 1$. If $\Pi_{p,i}K = \Pi_{p,i}L$, then for $0 \leq i < n - p$,

$$W_i(K) \leq W_i(L);$$

(1.8)

for $n - p < i < n$,

$$W_i(K) \geq W_i(L).$$

(1.9)

Equality hold in (1.8) and (1.9) if and only if $K = L$.

In this paper, the proof of Theorem 1.1 is given in the Section 3; Theorems 1.2–1.3 are proven in the Section 4.

2. L_p-mixed quermassintegrals

For $K, L \in \mathcal{K}_o^n$ and $\varepsilon > 0$, the Minkowski combination, $K + \varepsilon L \in \mathcal{K}_o^n$, of K and L is defined by (see [5])

$$h(K + \varepsilon L, \cdot) = h(K, \cdot) + \varepsilon h(L, \cdot).$$

For $p \geq 1$, $K, L \in \mathcal{K}_o^n$ and $\varepsilon > 0$, the Firey L_p-combination (also called the L_p-Minkowski combination), $K +_{p \varepsilon} L \in \mathcal{K}_o^n$, of K and L is defined by (see [4, 17])

$$h(K +_{p \varepsilon} L, \cdot)^p = h(K, \cdot)^p + \varepsilon h(L, \cdot)^p,$$

(2.1)

where “\cdot” in $\varepsilon \cdot L$ denotes the Firey scalar multiplication.

If $K \in \mathcal{K}_o^n$, the quermassintegrals, $W_i(K)$ ($i = 0, 1, \cdots, n$), of K is defined by (see [13])

$$W_i(K) = \frac{1}{n} \int_{S^{n-1}} h_K(v) dS_i(K, v).$$

(2.2)

Here $S_i(K, \cdot)$ is the mixed surface area measure of K, if $i = 0$, then $S_0(K, \cdot)$ is the surface area measure $S(K, \cdot)$ of K (see [13]).

From definition (2.2), we easily see that

$$W_0(K) = \frac{1}{n} \int_{S^{n-1}} h_K(v) dS(K, v) = V(K).$$

(2.3)

Associated with the Firey L_p-combination, Lutwak (see [17]) defined the L_p-mixed quermassintegrals (who are called mixed p-quermassintegrals) as follows: For $K, L \in \mathcal{K}_o^n$, and real $p \geq 1$, the L_p-mixed quermassintegral $W_{p,i}(K, L)$ ($i = 0, 1, \cdots, n-1$) is defined by

$$\frac{n - i}{p} W_{p,i}(K, L) = \lim_{\varepsilon \rightarrow 0^+} \frac{W_i(K +_{p \varepsilon} L) - W_i(K)}{\varepsilon}.$$

Obviously, for $p = 1$, $W_{1,i}(K, L) = W_i(K, L)$ (see [17]). If $i = 0$, by (2.3) then the L_p-mixed quermassintegrals $W_{p,0}(K, L)$ is just the L_p-mixed volume $V_p(K, L)$, namely

$$W_{p,0}(K, L) = V_p(K, L).$$
In [17], Lutwak showed that for each $K \in \mathcal{K}_o^n$, $p \geq 1$, $i = 0, 1, \cdots, n-1$, there exist positive Borel measures $S_{p,i}(K, \cdot)$ on \mathbb{S}^{n-1}, such that the L_p-mixed quermassintegrals $W_{p,i}(K,L)$ has the following integral representation

$$W_{p,i}(K,L) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_L^p(v) dSp_i(K,v)$$

(2.4)

for all $L \in \mathcal{K}_o^n$. Here $S_{p,i}(K, \cdot)$ is the L_p-mixed surface area measure of K. From (2.4), the integral representation of L_p-mixed volume $V_p(K,L)$ is given by

$$V_p(K,L) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_L^p(v) dSp(K,v).$$

(2.5)

From (2.2) and (2.4), we immediately have that for each $K \in \mathcal{K}_o^n$ and $p \geq 1$,

$$W_{p,i}(K,K) = W_i(K).$$

(2.6)

The Minkowski inequality for the L_p-mixed quermassintegrals $W_{p,i}$ can be stated that (see [17]):

Theorem 2.A. For $K, L \in \mathcal{K}_o^n$, and $p > 1$, $i = 0, 1, \cdots, n-1$, then

$$W_{p,i}(K,L)^{n-i} \geq W_i(K)^{n-i} - p W_i(L)^p,$$

(2.7)

with equality if and only if K and L are dilates.

An immediate consequence of inequality (2.7) is that (see [17])

Theorem 2.B. For $K, L \in \mathcal{K}_o^n$, $n-i \neq 0$ and $i = 0, 1, \cdots, n-1$, if for any $Q \in \mathcal{K}_o^n$,

$$W_{p,i}(K,Q) = W_{p,i}(L,Q) \quad \text{or} \quad W_{p,i}(Q,K) = W_{p,i}(Q,L),$$

then $K = L$.

3. An equivalent conclusion of L_p-mixed projection bodies

In this section, we will give an equivalent conclusion of L_p-mixed projection bodies, i.e., we give the proof of Theorem 1.1.

Proof of Theorem 1.1. From (1.3), we have for all $u \in \mathbb{S}^{n-1}$,

$$h_{\Pi_{p,i}K}^p(u) = \frac{1}{(n+p)c_{n,p}\omega_n} \int_{\mathbb{S}^{n-1}} |u \cdot v|^p dS_{p,i}(K,v)$$

$$= \frac{1}{(n+p)c_{n,p}\omega_n} \int_{\mathbb{S}^{n-1}} |u \cdot (-v)|^p dS_{p,i}(K,-v)$$

$$= \frac{1}{(n+p)c_{n,p}\omega_n} \int_{\mathbb{S}^{n-1}} |u \cdot v|^p dS_{p,i}(-K,v) = h_{\Pi_{p,i}(-K)}^p(u).$$

This yields

$$\Pi_{p,i}K = \Pi_{p,i}(-K).$$

(3.1)
Using (3.1), we know for all $u \in S^{n-1}$,
\[
h_{\Pi_{p,i}K}^p(u) = \frac{1}{2} h_{\Pi_{p,i}K}^p(u) + \frac{1}{2} h_{\Pi_{p,i}(-K)}^p(u)
= \frac{1}{2(n+p)c_{n,p} \omega_n} \int_{S^{n-1}} |u \cdot v|^p |dS_{p,i}(K,v) + dS_{p,i}(-K,v)|
= \frac{1}{2(n+p)c_{n,p} \omega_n} \int_{S^{n-1}} |u \cdot v|^p |dS_{p,i}(K,v) + dS_{p,i}(K,-v)|.
\]
(3.2)

Thus, if $\Pi_{p,i}K = \Pi_{p,i}L$, by (3.2) then for all $u \in S^{n-1}$,
\[
\int_{S^{n-1}} |u \cdot v|^p [dS_{p,i}(K,v) + dS_{p,i}(K,-v) - dS_{p,i}(L,v) - dS_{p,i}(L,-v)] = 0.
\]

Let
\[
\mu(v) = S_{p,i}(K,v) + S_{p,i}(K,-v) - S_{p,i}(L,v) - S_{p,i}(L,-v),
\]
we see that $\mu(v)$ is finite even Borel measure and
\[
\int_{S^{n-1}} |u \cdot v|^p d\mu(v) = 0
\]
for all $u \in S^{n-1}$. Hence $\mu(v) = 0$, i.e.
\[
S_{p,i}(K,v) + S_{p,i}(K,-v) = S_{p,i}(L,v) + S_{p,i}(L,-v)
\]
(3.3)
for all $v \in S^{n-1}$.

But $Q \in \mathcal{K}_s^n$ gives $h_Q(v) = h_{-Q}(v) = h_{-Q}(-v)$ for all $v \in S^{n-1}$, thus by (2.4) we get
\[
W_{p,i}(K,Q) = \frac{1}{n} \int_{S^{n-1}} h_Q^p(v) dS_{p,i}(K,v)
\]
and
\[
W_{p,i}(K,Q) = \frac{1}{n} \int_{S^{n-1}} h_Q^p(-v) dS_{p,i}(K,-v)
= \frac{1}{n} \int_{S^{n-1}} h_Q^p(v) dS_{p,i}(K,-v).
\]
Therefore, combining with (3.3), we have that for $Q \in \mathcal{K}_s^n$,
\[
W_{p,i}(K,Q) = \frac{1}{2n} \int_{S^{n-1}} h_Q^p(v)[dS_{p,i}(K,v) + dS_{p,i}(K,-v)]
= \frac{1}{2n} \int_{S^{n-1}} h_Q^p(v)[dS_{p,i}(L,v) + dS_{p,i}(L,-v)] = W_{p,i}(L,Q).
\]

Conversely, for $Q \in \mathcal{K}_s^n$, let $Q = [-u,u]$ for all $u \in S^{n-1}$, then for all $v \in S^{n-1}$, $h_Q(v) = |u \cdot v|$. Thus
\[
W_{p,i}(K,Q) = \frac{1}{n} \int_{S^{n-1}} h_Q^p(v) dS_{p,i}(K,v)
= \frac{1}{n} \int_{S^{n-1}} |u \cdot v|^p dS_{p,i}(K,v)
= \frac{1}{n} (n+p)c_{n,p} \omega_n h_{\Pi_{p,i}K}^p(u).
\]
From this, if for any \(Q \in \mathcal{K}_s^n \),

\[
W_{p,i}(K, Q) = W_{p,i}(L, Q),
\]
then for all \(u \in S^{n-1} \),

\[
h_{\Pi_{p,i}K}^p(u) = h_{\Pi_{p,i}L}^p(u).
\]
This gives \(\Pi_{p,i}K = \Pi_{p,i}L \). \(\square \)

As an application of Theorems 1.1, we get the following interesting fact.

THEOREM 3.1. Let \(i = 0,1,\ldots,n-1 \) and \(n-i \neq p > 1 \). If \(K,L \in \mathcal{K}_s^n \) and \(\Pi_{p,i}K = \Pi_{p,i}L \), then \(K = L \).

Proof. Using Theorem 1.1, if \(\Pi_{p,i}K = \Pi_{p,i}L \), then for any \(Q \in \mathcal{K}_s^n \),

\[
W_{p,i}(K, Q) = W_{p,i}(L, Q).
\]
Since \(K,L \in \mathcal{K}_s^n \), thus using Theorem 2.B, we obtain \(K = L \). \(\square \)

4. The Shephard type problems

The Shephard problems for projection bodies were shown in [5]. Ryabogin and Zvavitch in [25] gave the Shephard type problems of \(L_p \)-projection bodies. Recently, Wang and Wan in [33] researched the Shephard type problems for general \(L_p \)-projection bodies. Here we will give the Shephard type problems for the \(L_p \)-mixed projection bodies which are stated by Theorems 1.2–1.3.

LEMMA 4.1. If \(K,L \in \mathcal{K}_o^n \), \(p \geq 1 \) and \(i,j = 0,1,\ldots,n-1 \), then

\[
W_{p,i}(K, \Pi_{p,j}L) = W_{p,j}(L, \Pi_{p,i}K). \tag{4.1}
\]

Proof. Using formula (2.4) and definition (1.3), we have that

\[
W_{p,i}(K, \Pi_{p,j}L) = \frac{1}{n} \int_{S^{n-1}} h_{\Pi_{p,j}L}^p(u) dS_{p,i}(K, u)
\]
\[
= \frac{1}{n} \int_{S^{n-1}} \frac{1}{(n+p)c_{n,p} \omega_n} \int_{S^{n-1}} |u \cdot v|^p dS_{p,j}(L, v) dS_{p,i}(K, u)
\]
\[
= \frac{1}{n} \int_{S^{n-1}} h_{\Pi_{p,i}K}^p(v) dS_{p,j}(L, v)
\]
\[
= W_{p,j}(L, \Pi_{p,i}K). \quad \square
\]

Proof of Theorem 1.2. Since \(\Pi_{p,j}K \subseteq \Pi_{p,i}L \), thus by (2.4) we know for any \(M \in \mathcal{K}_o^n \),

\[
W_{p,j}(M, \Pi_{p,i}K) \leq W_{p,j}(M, \Pi_{p,i}L),
\]
this together with (4.1), then

\[W_{p,i}(K, \Pi_{p,j}M) \leq W_{p,i}(L, \Pi_{p,j}M). \]

Hence, for any \(L_p \)-mixed projection body \(Q \), taking \(Q = \Pi_{p,j}M \), we get

\[W_{p,i}(K, Q) \leq W_{p,i}(L, Q), \]

this is (1.7). According to Theorem 2.B, we see that equality holds in (1.7) if and only if \(K = L \) for \(n - i \neq p \), this equality condition implies \(\Pi_{p,i}K = \Pi_{p,i}L \). □

Let \(Q = L \) in Theorem 1.2, and together with the Minkowski’s inequality (2.7) of the \(L_p \)-mixed quermassintegrals, we easily get Theorem 1.A.

Using (4.1), we can prove a reversed form of Theorem 1.2 as follows:

Theorem 4.1. Let \(K, L \in \mathcal{K}_o^n \), \(i, j = 0, 1, \ldots, n-1 \) and \(n - i \neq p > 1 \). If for any \(L_p \)-mixed projection body \(Q \),

\[W_{p,i}(K, Q) \leq W_{p,i}(L, Q), \]

(4.2)

then

\[W_j(\Pi_{p,i}K) \leq W_j(\Pi_{p,i}L). \]

(4.3)

Equality hold in (4.2) and (4.3) if and only if \(K = L \).

Proof. Since for any \(L_p \)-mixed projection body \(Q \),

\[W_{p,i}(K, Q) \leq W_{p,i}(L, Q), \]

thus let \(Q = \Pi_{p,j}M \) (\(j = 0, 1, \ldots, n-1 \)) for any \(M \in \mathcal{K}_o^n \), we have

\[W_{p,i}(K, \Pi_{p,j}M) \leq W_{p,i}(L, \Pi_{p,j}M), \]

this together with (4.1), then

\[W_{p,j}(M, \Pi_{p,i}K) \leq W_{p,j}(M, \Pi_{p,i}L). \]

Taking \(M = \Pi_{p,i}L \) in above inequality and using inequality (2.7), we get

\[W_j(\Pi_{p,i}L) \geq W_{p,j}(\Pi_{p,i}L, \Pi_{p,i}K) \geq W_j(\Pi_{p,i}L)^{\frac{n-p-j}{n-j}} W_j(\Pi_{p,i}K)^{\frac{p}{n-j}}. \]

(4.4)

According to the equality condition of inequality (2.7), we see that equality holds in second inequality of (4.4) if and only if \(\Pi_{p,j}K \) and \(\Pi_{p,i}L \) are dilates. From (4.4), we give (4.3).

By Theorem 2.B we know that equality holds in (4.2) if and only if \(K = L \) for \(n - i \neq p \), this means that equality holds in first inequality of (4.4) if and only if \(K = L \). But \(K = L \) implies \(\Pi_{p,i}K \) and \(\Pi_{p,i}L \) are dilates, hence equality hold in (4.2) and (4.3) if and only if \(K = L \). □
Proof of Theorem 1.3. Since \(\Pi_{p,i}K = \Pi_{p,i}L \), thus, by Theorem 1.1 we know for any \(Q \in \mathcal{K}_s^n \),

\[
W_{p,i}(K, Q) = W_{p,i}(L, Q).
\] (4.5)

But \(L \in \mathcal{K}_s^n \), then let \(Q = L \) in (4.5), and use (2.6) and inequality (2.7), we have

\[
W_i(L) = W_{p,i}(K, L) \geq W_i(K)^{\frac{n-i-p}{n-i}} W_i(L)^{\frac{p}{n-i}},
\] (4.6)

i.e.,

\[
W_i(K)^{\frac{n-i-p}{n-i}} \leq W_i(L)^{\frac{n-i-p}{n-i}}.
\]

Thus for \(0 \leq i < n - p \),

\[
W_i(K) \leq W_i(L);
\]

for \(n - p < i < n \),

\[
W_i(K) \geq W_i(L).
\]

This give (1.8) and (1.9).

According to the equality condition of inequality (2.7), we see that equality holds in (4.6) if and only if \(K \) and \(L \) are dilates. Therefore, let \(K = \lambda L \), by \(\Pi_{p,i}K = \Pi_{p,i}L \) and (1.5) we see \(\lambda = 1 \), i.e., \(K = L \). Hence, equality hold in (1.8) and (1.9) if and only if \(K = L \). \(\square \)

Acknowledgements. The authors wish to thank the referees for their very valuable comments and suggestions on the original version of this paper.

REFERENCES

(Received July 20, 2013)

Weidong Wang
Department of Mathematics
China Three Gorges University
Yichang, 443002, China
e-mail: wdwxh722@163.com

Xiaoyan Wan
Department of Mathematics
China Three Gorges University
Yichang, 443002, China
e-mail: wdwxh722@163.com