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OPTIMAL INEQUALITIES FOR THE CONVEX

COMBINATION OF ERROR FUNCTION

WEIFENG XIA AND YUMING CHU

(Communicated by S. Koumandos)

Abstract. For λ ∈ (0,1) and x,y > 0 we obtain the best possible constants p and r , such that

erf(Mp(x,y;λ)) � λ erf(x)+(1−λ) erf(y) � erf(Mr(x,y;λ))

where erf(x) = 2√
π

∫ x
0 e−t2dt and Mp(x,y;λ) = (λxp + (1− λ)yp)1/p(p �= 0) , M0(x,y;λ) =

xλ y1−λ are error function and weighted power mean, respectively. Furthermore, using these
results, we generalized and complement an inequality due to Alzer.

1. Introduction

For x ∈ R , the error function erf(x) is defined as

erf(x) =
2√
π

∫ x

0
e−t2dt.

This function, also known as probability integral, has numbers applications in statistics,
probability theory, and partial differential equations. It’s well-known that the error
function is odd, strictly increasing on (−∞,+∞) , and strictly concave on [0,+∞) with
limx→+∞ erf(x) = 1. For the n− th derivation we have the representation

dn

dxn erf(x) = (−1)n−1 2√
π

e−x2
Hn−1(x),

where Hn(x) = (−1)nex2 dn

dxn (e−x2
) is a Hermite polynomial.

The error function can be expanded as a power series in the following two ways
[35]:

erf(x) =
2√
π

+∞

∑
n=0

(−1)n

n!(2n+1)
x2n+1 = e−x2

+∞

∑
n=0

1

Γ(n+ 3
2 )

x2n+1.
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It also can be expressed in terms of incomplete gamma function and a confluent
hypergeometric function:

erf(x) =
sgn(x)√

π
γ
(

1
2
,x2

)
=

2x√
π 1F1

(
1
2
;
3
2
;−x2

)
.

In the recently past, the error function have been the subject of intensive research.
In particular, many properties and inequalities for error function can be found in the
literature [1, 7, 12, 18, 22, 23, 25, 30, 31, 33, 34, 37, 39, 40, 41]. In [4, 16, 19, 21, 27],
the authors study the properties of complementary error function. The expressions
in series, rational chebyshev approximates and derivation properties of inverse error
function are given in [5, 6, 9, 10, 11, 20]. Rational approximates for error function
can be found in [8, 15, 17, 26, 42]. In [24, 28, 36, 38] the authors concerned with the
computation of complex error function. It might be surprising that the error function
has application in heat conduction [13, 29].

In [14], Chu obtained the following sharp inequalities:√
1− e−ax2 � erf(x) �

√
1− e−bx2

hold for all x � 0 with the best possible constants a = 1 and b = 4
π .

Mitrinović [32] proved the elegant inequality:

erf(x)+ erf(y) � erf(x+ y)+ erf(x) erf(y)

holds for all x,y > 0.
The following two best possible inequalities were obtained by Alzer [2]:

erf(1) <
erf(x+ erf(y))
erf(y+ erf(x))

<
2√
π

and

0 <
erf(x erf(y))
erf(y erf(x))

� 1.

For λ ∈ (0,1) , we denote A(x,y;λ )= λx+(1−λ )y , G(x,y;λ )= xλ y1−λ , H(x,y;λ )=
xy

λ y+(1−λ )x and Mr(x,y;λ ) = (λxr + (1− λ )yr)1/r(r �= 0) , M0(x,y;λ ) = xλ y1−λ are
weighted arithmetic mean, weighted geometric mean, weighted harmonic mean and
weighted power mean of two positive numbers x and y with x �= y . It is well-known
that

H(x,y;λ ) = M−1(x,y;λ ) < G(x,y;λ ) = M0(x,y;λ ) < A(x,y;λ ) = M1(x,y;λ ).

Very recently, Alzer proved the following Theorem 1.1 in [3].

THEOREM 1.1. Let λ ∈ (0, 1
2 ) be a real number, then

c1(λ ) erf(H(x,y;λ )) � λ erf(x)+ (1−λ ) erf(y) � c2(λ ) erf(H(x,y;λ )) (1.1)

hold for all x � 1 and y � 1 with the best possible factors

c1(λ ) =
λ +(1−λ ) erf(1)

erf(1/(1−λ ))
and c2(λ ) = 1.
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It is natural to ask that if (1.1) holds for 0 < x,y < 1. Moreover we ask: what are
the best possible constants p and r such that the inequalities

erf(Mp(x,y;λ )) � λ erf(x)+ (1−λ ) erf(y) � erf(Mr(x,y;λ ))

hold for all x,y � 1 (or 0 < x,y < 1). In what follows, we answer those questions.

2. Lemmas

In the section we present some lemmas, which will used in the proof of our main
results.

LEMMA 2.1. Let r �= 0 and w(x) = erf(x
1
r ) , one has

(1) If r � −1 , then w(x) is strictly convex on [1,+∞);
(2) If −1 < r < 0 , then w(x) is strictly concave on (0,1];
(3) If 0 < r < 1 , then w(x) is strictly concave on [1,+∞);
(4) If r � 1 , then w(x) is strictly concave on (0,+∞) .

Proof. Elementary computation leads to

w′(x) =
2√
π

1
r
x

1
r −1e−x

2
r (2.1)

and

w′′(x) =
2√
π

1
r2 x

1
r −2e−x

2
r [1− r−2x

2
r ]. (2.2)

Therefore, Lemma 2.1 follows from (2.2). �

LEMMA 2.2. Let u(x) = erf(ex) , then u(x) is strictly concave on [0,+∞) .

Proof. Simple computation yields

u′(x) =
2√
π

ex−e2x
> 0 (2.3)

and

u′′(x) =
2√
π

(1−2e2x)ex−e2x
< 0 (2.4)

for x � 0.
Therefore, (2.4) leads to u(x) is strictly concave on [0,+∞) . �

LEMMA 2.3. Let 0 < λ < 1 , r � −1(r �= 0) and ψ(x) = xr−1(λxr +1−λ )
1
r −1

×ex2−(λ xr+1−λ )
2
r , then ψ(x) is strictly increasing in [1,+∞) .
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Proof. By logarithmic differentiation,

ψ ′(x)
ψ(x)

=
1

x(λxr +1−λ )
ψ1(x) (2.5)

where ψ1(x) = (r−1)(1−λ )+2x2(λxr +1−λ )−2λxr(λxr +1−λ )
2
r .

Case 1. If −1 � r < 0, Let

ψ11(x) = (r−1)(1−λ )+2(1−λ )x2(λxr +1−λ )

and
ψ12(x) = 2λx2(λxr +1−λ )−2λxr(λxr +1−λ )

2
r ,

then
ψ1(x) = ψ11(x)+ ψ12(x). (2.6)

Since
ψ11(1) = (1−λ )(1+ r) � 0, (2.7)

ψ ′
11(x) = 2(1−λ )x[λ (2+ r)xr +2(1−λ )] > 0 (2.8)

and
ψ12(x) = 2λx2(λxr +1−λ )[1− (λ +(1−λ )x−r)

2−r
r ] > 0 (2.9)

for x � 1.
From (2.6)–(2.9) we clearly see that ψ1(x) > 0 for x ∈ (1,+∞) and −1 � r < 0.

Therefore, ψ(x) is strictly increasing in [1,+∞) for −1 � r < 0.

Case 2. If 0 < r < 2, then (2.7)–(2.9) hold again, so, ψ(x) is strictly increasing
in [1,+∞) for 0 < r < 2.

Case 3. If r � 2, we let ψ2(x) = log[2x2(λxr + 1− λ )]− log[2λxr(λxr + 1−
λ )

2
r ] . Then

lim
x→+∞

ψ2(x) = −2
r

logλ > 0 (2.10)

and

ψ ′
2(x) =

(2− r)(1−λ )
x(λxr +1−λ )

� 0. (2.11)

It follows from (2.10) and (2.11) that ψ2(x) > 0 for all x ∈ [1,+∞) and r � 2.
Hence, (2.5) lead to ψ(x) is strictly increasing in [1,+∞) for r � 2. �

LEMMA 2.4. For 0 < λ < 1 , r � −1(r �= 0) and x � 1 , we have

c1(λ ,r) � λ erf(x)+ (1−λ ) erf(1)

erf((λxr +1−λ )
1
r )

(2.12)

and

c1(λ ,r) � λ erf(1)+ (1−λ ) erf(x)

erf((λ +(1−λ )xr)
1
r )

(2.13)
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where

c1(λ ,r) =

{ λ+(1−λ ) erf(1)

erf((1−λ )
1
r )

, −1 � r < 0,

λ +(1−λ ) erf(1), r > 0.

Proof. It is not difficult to verify that 0 < c1(λ ,r) < 1 for 0 < λ < 1 and r �−1.
Since the proof of (2.13) is similarly with (2.12), so we only prove (2.12).

Firstly, we prove that

λ +(1−λ ) erf(1)

erf((1−λ )
1
r )

� λ erf(x)+ (1−λ ) erf(1)

erf((λxr +1−λ )
1
r )

holds for −1 � r < 0 and x � 1.
Let G(x)= erf((1−λ )

1
r )[λ erf(x)+(1−λ ) erf(1)]− [λ +(1−λ ) erf(1)] erf((λxr +

1−λ )
1
r ) and G1(x) =

√
π

2λ ex2
G′(x) , then one has

G(1) = [erf((1−λ )
1
r )− (λ +(1−λ ) erf(1))] erf(1) > 0, (2.14)

lim
x→+∞

G(x) = 0, (2.15)

G1(x) = erf((1−λ )
1
r )− [λ +(1−λ ) erf(1)]xr−1(λxr +1−λ )

1
r −1ex2−(λ xr+1−λ )

2
r ,

(2.16)

G1(1) = erf((1−λ )
1
r )− [λ +(1−λ ) erf(1)] > 0 (2.17)

and
lim

x→+∞
G1(x) = −∞. (2.18)

Therefore, Lemma 2.3 and (2.16) imply that G1(x) is strictly decreasing in [1,+∞) ,
thus from (2.17) and (2.18) we conclude that there exists x1 ∈ (1,+∞) , such that
G1(x) > 0 for x ∈ (1,x1) and G1(x) < 0 for x ∈ (x1,+∞) . So, G(x) is strictly in-
creasing in [1,x1] and strictly decreasing in [x1,+∞) .

It follows from (2.14) and (2.15) together with the piecewise monotonicity of G(x)
that G(x) > 0 for x ∈ [1,+∞) and −1 � r < 0.

Next, we prove that

λ +(1−λ ) erf(1) � λ erf(x)+ (1−λ ) erf(1)

erf((λxr +1−λ )
1
r )

holds for x � 1 and r > 0.
Let H(x) = λ erf(x) + (1− λ ) erf(1)− [λ + (1− λ ) erf(1)] erf((λxr + 1− λ )

1
r )

and H1(x) =
√

π
2λ ex2

H ′(x) , then we have

H(1) = (1−λ )(1− erf(1)) erf(1) > 0, (2.19)

lim
x→+∞

H(x) = 0, (2.20)
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H1(x) = 1− [λ +(1−λ ) erf(1)]xr−1(λxr +1−λ )
1
r −1ex2−(λ xr+1−λ )

2
r , (2.21)

H1(1) = (1−λ )(1− erf(1)) > 0 (2.22)

and
lim

x→+∞
H1(x) = −∞. (2.23)

Hence, Lemma 2.3 and (2.21) imply that H1(x) is strictly decreasing in [1,+∞) . It
follows from the monotonicity of H1(x) and (2.22) together with (2.23) that there exists
x2 ∈ (1,+∞) , such that H1(x) > 0 for x ∈ (1,x2) and H1(x) < 0 for x ∈ (x2,+∞) .
Therefore, H(x) is strictly increasing in [1,x2] and strictly decreasing in [x2,+∞) .

From the piecewise monotonicity of H(x) and (2.19) together with (2.20) we
clearly see that H(x) > 0 for x ∈ [1,+∞) and r > 0. �

LEMMA 2.5. For 0 < λ < 1 and x � 1 , we have

λ +(1−λ ) erf(1) � λ erf(x)+ (1−λ ) erf(1)
erf(xλ )

(2.24)

and

λ +(1−λ ) erf(1) � λ erf(1)+ (1−λ ) erf(x)
erf(x1−λ )

. (2.25)

Proof. Let E(x)= λ erf(x)+(1−λ ) erf(1)− [λ +(1−λ ) erf(1)] erf(xλ ) , E1(x)=
√

π
2λ ex2

E ′(x) and E2(x) = x2−λ ex2λ −x2

λ+(1−λ ) erf(1)E
′
1(x) , then simple computation leads to

E(1) = (1−λ )(1− erf(1)) erf(1) > 0, (2.26)

lim
x→+∞

E(x) = 0, (2.27)

E1(x) = 1− [λ +(1−λ ) erf(1)]xλ−1e−x2λ +x2
,

E1(1) = (1−λ )(1− erf(1)) > 0, (2.28)

lim
x→+∞

E1(x) = −∞, (2.29)

E2(x) = 1−λ +2λx2λ −2x2,

E2(1) = λ −1 < 0 (2.30)

and
E ′

2(x) = 4x(λ 2x2λ−2−1) < 0 (2.31)

for x � 1.
Therefore, Inequalities (2.31) and (2.30) imply that E1(x) is strictly decreasing in

[1,+∞) .
From the monotonicity of E1(x) and (2.28) together with (2.29) we clearly see

that there exists x3 ∈ (1,+∞) , such that E1(x) > 0 for x ∈ (1,x3) and E1(x) < 0 for
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x ∈ (x3,+∞) . Thus, E(x) is strictly increasing in [1,x3] and is strictly decreasing in
[x3,+∞) .

Hence, E(x) > 0 follows from the piecewise monotonicity of E(x) and (2.26)
together with (2.27).

The proof of (2.25) is similarly with (2.24), so we omit the detail. �

LEMMA 2.6. For 0 < λ < 1 , r � 1 and 0 < x < 1 , we have

λ erf(1)

erf(λ 1
r )

� λ erf(x)

erf(λ 1
r x)

(2.32)

and
λ erf(1)

erf(λ 1
r )

� (1−λ ) erf(x)

erf((1−λ )
1
r x)

. (2.33)

Proof. We only prove (2.32). For 0 < x< 1 and r � 1, let J(x)= λ erf(λ
1
r ) erf(x)−

λ erf(1) erf(λ 1
r x), then simple computation leads to

J(0) = 0, J(1) = 0 (2.34)

and

J′′(x) = − 4λ√
π

xe−x2
[erf(α)−α3 erf(1)e(1−α2)x2

] (2.35)

where 0 < α = λ
1
r < 1.

Since

erf(α)−α3 erf(1)e(1−α2)x2
> erf(α)−α3 erf(1)e1−α2

(2.36)

for x ∈ (0,1) .
Next, we prove that I(α) = erf(α)−α3 erf(1)e1−α2

> 0 for α ∈ (0,1) .
Elementary computations yield

I(0) = 0, I(1) = 0 (2.37)

I′(α) = erf′(α)− erf(1)(3α2−2α4)e1−α2
,

I′(0) =
2√
π

, I′(1) =
2

e
√

π
− erf(1) = −0.4276... < 0 (2.38)

and
I′′(α) = αe−α2

I1(α),

where

I1(α) = − 4√
π
− erf(1)e(6−14α2 +4α4), (2.39)

I1(0) = − 4√
π
−6 erf(1)e = −16.0009... < 0, (2.40)
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I1(1) = − 4√
π

+4 erf(1)e = 6.9060... > 0. (2.41)

It is easy to see that the function φ(α) = 6−14α2 +4α4 is strictly decreasing in
(0,1) , then (2.39) yields to I1(α) is strictly increasing in (0,1) .

It follows from the monotonicity of I1(α) and (2.40) together with (2.41) that there
exists α1 ∈ (0,1) , such that I1(α) < 0 for α ∈ (0,α1) and I1(α) > 0 for α ∈ (α1,1) .
Therefore, I′(α) is strictly decreasing in [0,α1] and strictly increasing in [α1,1] .

From the piecewise monotonicity of I′(α) and (2.38) we conclude that there exists
α2 ∈ (0,1) , such that I′(α) > 0 for α ∈ (0,α2) and I1(α) < 0 for α ∈ (α2,1) . Hence,
I(α) is strictly increasing in [0,α2] and strictly decreasing in [α2,1] .

It follows from the piecewise monotonicity of I(α) and (2.37) that I(α) > 0 for
α ∈ (0,1) .

Therefore, (2.36) and (2.35) lead to J(x) is concave on (0,1) , from (2.34) we have
J(x) � min{J(0),J(1)} = 0. �

3. Main results

THEOREM 3.1. Let λ ∈ (0,1) , the double inequalities

erf(Mp(x,y;λ )) � λ erf(x)+ (1−λ ) erf(y) � erf(Mr(x,y;λ )) (3.1)

hold for all x � 1 , y � 1 if and only if p = −∞ and r � −1 .

Proof. Firstly, we prove that if r � −1 and p = −∞ , then (3.1) hold.
The monotonicity of erf(x) implies that the left-hand side of (3.1) is true with

p = −∞ . Since the weighted power mean is increasing on R with respect with it’s
order, this implies that t → erf(Mt (x,y;λ )) is increasing on R . Therefore, it is enough
to prove that the right-hand side of (3.1) is valid for r = −1, which is followed from
(1.1).

Secondly, we prove that the right-hand side of (3.1) imply that r � −1.
For x � 1 and y � 1, from the right-hand side of (3.1) we can let

K(x,y) = erf(Mr(x,y;λ ))−λ erf(x)− (1−λ ) erf(y) � 0.

Then simple computation leads to

K(y,y) =
∂
∂x

K(x,y) |x=y= 0

and
∂ 2

∂x2 K(x,y) |x=y= λ (1−λ )
2√
π

1
y
e−y2

[r−1+2y2] � 0,

this leads to r � −1.
Thirdly, we suppose that there exists a real number p such that the left-hand side

of (3.1) hold for all x � 1 and y � 1. We divide the proof into two cases.
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Case A. If p � 0, for fixed y ∈ R we have

lim
x→+∞

erf(Mp(x,y;λ )) = 1

and
lim

x→+∞
[λ erf(x)+ (1−λ ) erf(y)] = λ +(1−λ ) erf(y) < 1.

This contradict with the left-hand side of (3.1).
Case B. If −∞ < p < 0, then for x � 1, from the left-hand side of (3.1) we let

β = λ
1
p , y → +∞ and

Q(x) = λ erf(x)+1−λ − erf(βx) � 0. (3.2)

Hence we get
lim

x→+∞
Q(x) = 0 (3.3)

and

Q′(x) =
2√
π

e−x2
[λ −βe(1−β )x2

]. (3.4)

Since β > 1, then (3.4) leads to that there exists η1 ∈ (1,+∞) , such that Q′(x) > 0
for x ∈ (η1,+∞) , this implies that Q(x) is strictly increasing in [η1,+∞) .

It follows from (3.3) and the monotonicity of Q(x) that there exists η2 ∈ (1,+∞) ,
such that Q(x) < 0 for x ∈ (η2,+∞) , this is contradict with (3.2). �

THEOREM 3.2. Let λ ∈ (0,1) , the double inequalities

erf(Mμ(x,y;λ )) � λ erf(x)+ (1−λ ) erf(y) � erf(Mν (x,y;λ )) (3.5)

hold for all 0 < x,y < 1 if and only if μ � −1 and ν � 1 .

Proof. Firstly we prove that if μ � −1 and ν � 1, then (3.5) is valid.
For μ � −1 and 0 < x,y < 1, we let s = xμ and t = yμ , then s,t > 1. It follows

from Lemma 2.1(1) that

w(λ s+(1−λ )t) � λw(s)+ (1−λ )w(t).

This leads to
erf(Mμ(x,y;λ )) � λ erf(x)+ (1−λ ) erf(y)

for all 0 < x,y < 1.
For ν � 1, 0 < x,y < 1, we let s = xν and t = yν , then 0 < s,t < 1. From Lemma

2.1(4) we clearly see that

w(λ s+(1−λ )t) � λw(s)+ (1−λ )w(t).

This leads to
erf(Mν(x,y;λ )) � λ erf(x)+ (1−λ ) erf(y)
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for all 0 < x,y < 1.
Secondly, we prove that the right-hand side of (3.5) implies ν � 1. Let

T (x,y) = erf(Mν (x,y;λ ))−λ erf(x)− (1−λ ) erf(y) � 0.

Then

T (y,y) =
∂
∂x

T (x,y)|x=y = 0

and
∂ 2

∂x2 T (x,y)|x=y = λ (1−λ )
2√
π

1
y
e−y2

[ν −1+2y2] � 0. (3.6)

Therefore, (3.6) leads to ν � 1 for all 0 < x,y < 1.
Finally, we prove that the left-hand side of (3.5) implies μ � −1.
Let y → 1, then from the left-hand side of (3.5) we obtain

L(x) = λ erf(x)+ (1−λ ) erf(1)− erf(Mμ(x,1;λ )) � 0 (3.7)

for 0 < x < 1.
By elementary computations, we get

L(1) = 0 (3.8)

and

L′(x) =
2λ√

π
e−x2

[1− xμ−1(λxμ +1−λ )
1
μ −1ex2−(λ xμ +1−λ )

2
μ
]. (3.9)

Let

L1(x) = log1− log[xμ−1(λxμ +1−λ )
1
μ −1ex2−(λ xμ +1−λ )

2
μ
]. (3.10)

Then
lim

x→1−
L1(x) = 0 (3.11)

and

L′
1(x) =

1
x(λxμ +1−λ )

L2(x), (3.12)

where

L2(x) = (1− μ)(1−λ )+2λ (λxμ +1−λ )
2
μ xμ −2x2(λxμ +1−λ )

and
lim

x→1−
L2(x) = (1−λ )(−1− μ). (3.13)

In fact, if μ > −1, then by the continuity of L2(x) and (3.13) we know that there
exists a small δ1 > 0 such that L2(x) < 0 for x ∈ (1−δ1,1) . Therefore, (3.12) leads to
L1(x) is strictly decreasing in [1− δ1,1] .

From (3.11) and the monotonicity of L1(x) in [1− δ1,1] we conclude that there
exists a small δ2 > 0, such that L1(x) > 0 for x ∈ (1− δ2,1) . Hence, (3.9) and (3.10)
imply that L(x) is increasing in [1− δ2,1] .
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It follows from (3.8) and the monotonicity of L(x) in (1−δ2,1) that there exists a
small δ3 > 0, such that L(x) < 0 for x ∈ (1−δ3,1) . This is contradict with (3.7). �

The following Theorem 3.3 generalized Theorem 1.1.

THEOREM 3.3. Let 0 < λ < 1 and r � −1 , then the double inequalities

c1(λ ,r) erf(Mr(x,y;λ )) � λ erf(x)+(1−λ ) erf(y) � c2(λ ,r) erf(Mr(x,y;λ )) (3.14)

hold for all x,y � 1 , and the factors

c1(λ ,r) =

{ λ+(1−λ ) erf(1)

erf((1−λ )
1
r )

, −1 � r < 0,

λ +(1−λ ) erf(1), r � 0,
and c2(λ ,r) = 1

are the best possible.

Proof. The right-hand side of (3.14) follows from Theorem 3.1, so we only need
to prove the left-hand side of (3.14). We divide the proof into three cases.

Case 1. −1 � r < 0. For x � 1 and y � 1, we let w(z) = erf(z
1
r ) , s = xr and

t = yr , then 0 < s, t � 1. From (2.1) and (2.2) we clearly see that w′′ < 0 and w′ < 0
on (0,1) for −1 � r < 0. Therefore, −w′ is positive and increasing in [0,1] . Let

Aλ (s, t) = λw(s)+ (1−λ )w(t)− c1(λ ,r)w(λ s+(1−λ )t). (3.15)

Subcase 1.1. If 0 < s � t � 1, then s � λ s+(1−λ )t � t . Differentiating (3.15)
leads to

1
1−λ

∂
∂ t

Aλ (s,t) = w′(t)− c1(λ ,r)w′(λ s+(1−λ )t) < 0.

Thus

Aλ (s, t) � Aλ (s,1) = λw(s)+ (1−λ )w(1)− c1(λ ,r)w(λ s+1−λ ). (3.16)

Therefore, Aλ (s,t) � 0 follows from (3.16) and (2.12).
Subcase 1.2. If 0 < t � s � 1, then t � λ s+(1−λ )t � s . Differentiating (3.15)

yields to
1
λ

∂
∂ s

Aλ (s,t) = w′(s)− c1(λ ,r)w′(λ s+(1−λ )t) < 0.

So

Aλ (s, t) � Aλ (1,t) = λw(1)+ (1−λ )w(t)− c1(λ ,r)w(λ +(1−λ )t). (3.17)

Hence, Aλ (s, t) � 0 follows from (3.17) and (2.13).

Case 2. r = 0. For x � 1 and y � 1, we let u(z) = erf(ez) , s = logx and
t = logy , then s, t � 0. From (2.3) and (2.4) we know that u′′ < 0 and u′ > 0 on
[0,+∞) . Therefore, u′ is positive and decreasing in [0,+∞) . Let

Bλ (s, t) = λu(s)+ (1−λ )u(t)− c1(λ ,r)u(λ s+(1−λ )t). (3.18)
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Subcase 2.1. If 0 � s � t , then s � λ s+(1−λ )t � t , (3.18) leads to

1
λ

∂
∂x

Bλ (s,t) = u′(s)− c1(λ ,r)u′(λ s+(1−λ )t) > 0.

This implies that

Bλ (s, t) � Bλ (0,t) = λu(0)+ (1−λ )u(t)− c1(λ ,r)u((1−λ )t). (3.19)

Hence, Bλ (s, t) � 0 follows from (3.19) and (2.25).
Subcase 2.2. If 0 � t � s , then t � λ s+(1−λ )t � s , (3.18) yields

1
1−λ

∂
∂ t

Bλ (s,t) = u′(t)− c1(λ ,r)u′(λ s+(1−λ )t) > 0.

Thus, we have

Bλ (s, t) � Bλ (s,0) = λu(s)+ (1−λ )u(0)− c1(λ ,r)u(λ s). (3.20)

Hence, Bλ (s, t) � 0 follows from (3.20) and (2.24).

Case 3. r > 0. For x � 1 and y � 1, we let w(z) = erf(z
1
r ) , s = xr and t = yr ,

then s, t � 1. It follows from (2.1) and (2.2) that w′′ < 0 and w′ > 0 in (1,+∞) for
r � 0, therefore, w′ is positive and decreasing in [1,+∞) .

Subcase 3.1. If 1 � s � t , then s � λ s+(1−λ )t � t , (3.15) leads to

1
λ

∂
∂ s

Aλ (s,t) = w′(s)− c1(λ ,r)w′(λ s+(1−λ )t) > 0.

Therefore,

Aλ (s, t) � Aλ (1,t) = λw(1)+ (1−λ )w(t)− c1(λ ,r)w(λ +(1−λ )t). (3.21)

Hence, Aλ (s, t) � 0 follows from (3.21) and (2.13).
Subcase 3.2. If 1 � t � s , then t � λ s+(1−λ )t � s , from (3.15) we obtain

1
1−λ

∂
∂ t

Aλ (s,t) = w′(t)− c1(λ ,r)w′(λ s+(1−λ )t) > 0.

Thus

Aλ (s, t) � Aλ (s,1) = λw(s)+ (1−λ )w(1)− c1(λ ,r)w(λ s+1−λ ). (3.22)

Therefore, Aλ (s,t) � 0 follows from (3.22) and (2.12).
The following (3.23) and (3.24) imply that c1(λ ,r) and c2(λ ,r) are the best pos-

sible.

lim
y→1

lim
x→+∞

λ erf(x)+ (1−λ ) erf(y)
erf(Mr(x,y;λ ))

=

{ λ+(1−λ ) erf(1)

erf((1−λ )
1
r )

, −1 � r < 0,

λ +(1−λ ) erf(1), r � 0.
(3.23)
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and

lim
y→x

λ erf(x)+ (1−λ ) erf(y)
erf(Mr(x,y;λ ))

= 1 (r � −1). (3.24)

This complete the proof of Theorem 3.3. �
The following Theorem 3.4 complement of Theorem 1.1.

THEOREM 3.4. Let 0 < λ < 1 , r � 1 , then the double inequalities

c3(λ ,r) erf(Mr(x,y;λ )) � λ erf(x)+(1−λ ) erf(y) � c4(λ ,r) erf(Mr(x,y;λ )) (3.25)

hold for all 0 < x,y < 1 , and the factors

c3(λ ,r) =
λ erf(1)

erf(λ 1
r )

and c4(λ ,r) = 1

are the best possible.

Proof. The right-hand side of (3.25) follows from Theorem 3.2, so we only need
to prove the left-hand side of (3.25). We let w(z) = erf(z

1
r ) and

Dλ (s, t) = λw(s)+ (1−λ )w(t)− c3(λ ,r)w(λ s+(1−λ )t). (3.26)

For r � 1, 0 < x,y < 1, let s = xr,t = yr , then 0 < s,t < 1. From (2.1) and (2.2)
we see that w′′ < 0 and w′ > 0, thus w′ is positive and decreasing in [0,1] .

Case 1. If 0 < s � t < 1, then s � λ s+(1−λ )t � t . It follows from (3.26) that

1
λ

∂
∂ s

Dλ (s,t) = w′(s)− c3(λ ,r)w′(λ s+(1−λ )t) > 0.

This leads to

Dλ (s, t) > Dλ (0,t) = λw(0)+ (1−λ )w(t)− c3(λ ,r)w((1−λ )t). (3.27)

Hence, Bλ (s, t) > 0 follows from (3.27) and (2.33).

Case 2. If 0 < t � s < 1, then t � λ s+(1−λ )t � s . From (3.26) we get

1
1−λ

∂
∂ t

Dλ (s,t) = w′(t)− c3(λ ,r)w′(λ s+(1−λ )t) > 0.

So
Dλ (s, t) > Dλ (s,0) = λw(s)+ (1−λ )w(0)− c3(λ ,r)w(λ s). (3.28)

Hence, Dλ (s, t) > 0 follows from (3.28) and (2.32).
The following (3.29) and (3.30) imply that c3(λ ,r) and c4(λ ,r) are the best pos-

sible.

lim
y→0

lim
x→1

λ erf(x)+ (1−λ ) erf(y)
erf(Mr(x,y;λ ))

=
λ erf(1)

erf(λ 1
r )

(3.29)

and

lim
y→x

λ erf(x)+ (1−λ ) erf(y)
erf(Mr(x,y;λ ))

= 1 (3.30)

for r � 1. �
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[32] D. S. MITRINOVIĆ, Problem 5555, Amer. Math. Monthly 75 (1968), 1129–1130.

[33] S. MOROSAWA, The parameter space of error functions of the form a
∫ z
0 e−w2

dw , Complex analysis
and potential theory (2007), 174–177.

[34] H. S. MUKUNDA, Evaluation of some definite integrals involving repeated integrals of error functions,
Bull. Calcutta Math. Soc. 66 (1974), 39–54.

[35] K. OLDHAM, J. MYLAND AND J. SPANIER, An atlas of functions. With Equator, the atlas function
calculator, Second edition, Springer, New York, 2009.

[36] H. E. SALZER, Complex zeros of the error function, J. Franklin Inst. 260 (1955), 209–211.
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