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REFINEMENT OF JENSEN’S INEQUALITY WITH APPLICATIONS

TO CYCLIC MIXED SYMMETRIC MEANS AND CAUCHY MEANS

ILKO BRNETIĆ, KHURAM ALI KHAN AND JOSIP PEČARIĆ

(Communicated by N. Elezović)

Abstract. Generalized refinement of Jensen’s inequality is given. Appplications are done for
cyclic mixed symmetric means and Cauchy means.

1. Introduction and preliminary results

The aim of this article is to establish generalized refinement of Jensen’s inequality
and to apply this result for power means, cyclic mixed symmetric mean, generalized
means and quasi-arithmetic means and also for Cauchy means.

At the beginning let’s remind on classical Jensen’s inequality:
Jensen’s inequality. If f : I → R , I ⊆ R is a convex function, (x1, . . . ,xn) ∈ In

(n � 2) and (λ1, . . . ,λn) positive n− tuple such that ∑n
i=1 λi = 1, then the following

inequality holds

f
( n

∑
i=1

λixi
)

�
n

∑
i=1

λi f (xi).

Especially, the following inequality is valid

f

(
∑n

i=1 xi

n

)
� ∑n

i=1 f (xi)
n

.

Throught this article we are going to use some of the following hypotheses:
(H1 ) Let I ⊂ R be an interval, x := (x1, . . . ,xn) ∈ In such that and xi+n = xi and

λ := (λ1, . . . ,λn) be a positive n -tuple such that ∑k
i=1λi = 1 for some k , 2 � k � n .

(H2 ) Let f : I → R be a convex function.
(H3 ) Let h , g : I → R be continuous and strictly monotone functions.
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2. Refinement of Jensen’s inequality

THEOREM 2.1. Let (H1 ), (H2 ) be fulfilled. Then

f

(
∑n

i=1 xi

n

)
� 1

n

n

∑
i=1

f

(k−1

∑
j=0

λ j+1xi+ j

)
� ∑n

i=1 f (xi)
n

. (1)

Proof. First, since f is convex, by Jensen’s inequality we have

n

∑
i=1

f

(k−1

∑
j=0

λ j+1xi+ j

)
�

n

∑
i=1

k−1

∑
j=0

λ j+1 f (xi+ j)

=
n

∑
i=1

f (xi)
k

∑
j=1

λ j =
n

∑
i=1

f (xi).

On the other hand, since f is convex, by Jensen’s inequality, we have

1
n

n

∑
i=1

f

(k−1

∑
j=0

λ j+1xi+ j

)
� f

(∑n
i=1 ∑k−1

j=0 λ j+1xi+ j

n

)

= f

(
∑n

i=1 xi ∑k
j=1 λ j

n

)
= f

(
∑n

i=1 xi

n

)
. �

The result given in Theorem 2.1. is a generalization of the result given in [3,
Theorem 4].

3. Cyclic mixed symmetric means

Assume (H1 ) for the positive n -tuple x . We define the power means of order
r ∈ R as follows:

Mr(xi, . . . ,xi+k−1;λ1, . . . ,λk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
k−1
∑
j=0

λ j+1xr
i+ j

) 1
r

; r �= 0,

k−1
∏
j=0

x
λ j+1
i+ j ; r = 0,

and cyclic mixed symmetric means corresponding to (1) are

Mr,s(x,λ ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
n

n
∑
i=1

Ms
r (xi, . . . ,xi+k−1;λ1, . . . ,λk)

) 1
s

; s �= 0,(
n
∏
i=1

Mr(xi, . . . ,xi+k−1;λ1, . . . ,λk)
) 1

n

; s = 0.

(2)
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The standard power means of order r ∈ R for the positive n -tuple x , are

Mr(x1, . . . ,xn) = Mr(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
n

n
∑
i=1

xr
i

) 1
r

; r �= 0,(
n
∏
i=1

xi

) 1
n

; r = 0.

The bounds for cyclic mixed symmetric means are power means, as given in the
following result.

COROLLARY 3.1. Assume (H1 ) for the positive n-tuple x . Let r,s ∈ R such that
r � s. Then

Mr(x) � Ms,r(x,λ ) � Ms(x). (3)

Proof. Assume r , s �= 0. To obtain (3), we apply Theorem 2.1, either for the
function f (x) = x

s
r (x > 0) and the n -tuples (xr

1, . . . ,x
r
n) in (1) and then raising the

power 1
s , or f (x) = x

r
s (x > 0) and (xs

1, . . . ,x
s
n) and raising the power 1

r .
When r = 0 or s = 0, we get the required results by taking limit. �

Special cases of the refinement given in Corollary 3.1. can be found in [2] (Theo-
rem 4 with Corollaries 4.1.–4.4. as an application). Namely, the result of this theorem
is an inequality (3) for r = 0, s = 1, n = 3 and k = 3.

Assume (H1 ) and (H3 ). Then we define the generalized means with respect to
(1) as follows:

Mg,h(x,λ ) := g−1

(
1
n

n

∑
i=1

(g ◦ h−1)(
k−1

∑
j=0

λ j+1h(xi+ j))

)
.

Let q : I →R be a continuous and strictly monotone function then the cyclic quasi-
arithmetic means are given by

Mq(x) := q−1

(
1
n

n

∑
i=1

q(xi)

)
.

The relation among the generalized means and cyclic quasi-arithmetic means is given
in the next corollary.

COROLLARY 3.2. Assume (H1 ) and (H3 ). Then

Mh(x) � Mg,h(x,λ ) � Mg(x) (4)

if either g◦ h−1 is convex and g is strictly increasing or g◦ h−1 is concave and g is
strictly decreasing.
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Proof. First, we can apply Theorem 2.1 to the function g ◦ h−1 and the n -tuples
(h(x1), . . . ,h(xn)) , then we can apply g−1 to the inequality coming from (1). This gives
(4). �

For instance, if we put g(x) = x and h(x) = lnx in Corollary 3.2. we obtain

M0(x1, . . . ,xn) � 1
n

n

∑
i=1

M0(xi, . . . ,xi+k−1;λ1, . . . ,λk) � M1(x1, . . . ,xn).

which is a special case of Corollary 3.1. as well.

REMARK 3.3. Under the conditions (H1 ), we define

ϒ1( f ) = ϒ1(x,λ , f ) :=
1
n

n

∑
i=1

f (xi)− 1
n

n

∑
i=1

f (
k−1

∑
j=0

λ j+1xi+ j),

ϒ2( f ) = ϒ2(x,λ , f ) :=
1
n

n

∑
i=1

f (
k−1

∑
j=0

λ j+1xi+ j)− f

(
1
n

n

∑
i=1

xi

)
,

where f : I → R is a function and 2 � k � n . The functionals f → ϒi( f ) are linear,
i = 1,2, and Theorem 2.1 imply that

ϒi( f ) � 0, i = 1,2

if f : I → R is a convex function.

4. m-exponential convexity

For log-convexity, exponential convexity and m-exponential convexity of the func-
tionals obtained from the interpolations of the discrete Jensen’s inequality, we refer
[1, 4, 5, 7] and references therein.

We apply the method given in [8], to prove the m-exponential convexity and expo-
nential convexity of the functionals f → ϒi( f ) for i = 1,2, together with the Lagrange
type and Cauchy type mean value theorems.

DEFINITION 1. [8] A function g : I → R is called m-exponentially convex in the
Jensen sense if

m

∑
i, j=1

aia jg

(
xi + x j

2

)
� 0

holds for every ai ∈ R and every xi ∈ I , i = 1,2, . . . ,m .
A function g : I → R is m-exponentially convex if it is m-exponentially convex in

the Jensen sense and continuous on I.

Note that 1-exponentially convex functions in the Jensen sense are in fact the
nonnegative functions. Also, m-exponentially convex functions in the Jensen sense are
n -exponentially convex in the Jensen sense for every n ∈ N, n � m .
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PROPOSITION 4.1. If g : I → R is an m-exponentially convex function, then for

every xi ∈ I , i = 1,2, . . . ,m and for all n ∈ N, n � m the matrix
[
g
(

xi+x j
2

)]n
i, j=1

is a

positive semi-definite matrix. Particularly,

det

[
g

(
xi + x j

2

)]n

i, j=1
� 0

for all n ∈ N , n = 1,2, . . . ,m.

DEFINITION 2. A function g : I →R is exponentially convex in the Jensen sense,
if it is m-exponentially convex in the Jensen sense for all m ∈ N .

A function g : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 4.2. It is easy to see that a positive function g : I → R is log-convex in
the Jensen sense if and only if it is 2-exponentially convex in the Jensen sense, that is

a2
1g(x)+2a1a2g

(
x+ y

2

)
+a2

2g(y) � 0

holds for every a1,a2 ∈ R and x,y ∈ I .
Similarly, if g is 2-exponentially convex, then g is log-convex. On the other

hand, if g is log-convex and continuous, then g is 2-exponentially convex.

In sequel, we need the well known notion of “Divided difference”.

DEFINITION 3. The second order divided difference of a function g : I → R at
mutually different points y0,y1,y2 ∈ I is defined recursively by

[yi;g] = g(yi), i = 0,1,2

[yi,yi+1;g] =
g(yi+1)−g(yi)

yi+1− yi
, i = 0,1

[y0,y1,y2;g] =
[y1,y2;g]− [y0,y1;g]

y2 − y0
. (5)

REMARK 4.3. The value [y0,y1,y2;g] is independent of the order of the points
y0,y1 , and y2 . By taking limits this definition may be extended to include the cases
in which any two or all three points coincide as follows: ∀ y0 , y1 , y2 ∈ I such that
y2 �= y0

lim
y1→y0

[y0,y1,y2;g] = [y0,y0,y2;g] =
g(y2)−g(y0)−g

′
(y0)(y2 − y0)

(y2− y0)
2

provided that g′ exists, and furthermore, taking the limits yi → y0, i = 1,2 in (5), we
get

[y0,y0,y0;g] = lim
yi→y0

[y0,y1,y2;g] =
g
′′
(y0)
2

for i = 1,2

provided that g′′ exist on I .
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Now, we give the m-exponential convexity for the linear functionals ϒi( f ) ( i =
1,2).

THEOREM 4.4. Assume I ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is a
family of functions defined on an interval I ⊂R , such that the function t → [y0,y1,y2;φt ]
(t ∈ J) is m-exponentially convex in the Jensen sense on I for every three mutually
different points y0,y1,y2 ∈ I . Let ϒi( f ) (i = 1,2) be the linear functionals constructed
in Remark 3.3. Then t → ϒi(φt) (t ∈ J) is an m-exponentially convex function in the
Jensen sense on I for each i = 1,2 . If the function t → ϒi(φt ) (t ∈ J) is continuous for
i = 1,2 , then it is m-exponentially convex on I for i = 1,2 .

Proof. Fix i = 1,2.
Let tk, tl ∈ J, tkl :=

tk+tl
2 and bk,bl ∈R for k, l = 1,2, . . . ,n , and define the function

ω on I by

ω :=
n

∑
k,l=1

bkblφtkl .

Since the function t → [y0,y1,y2;φt ] (t ∈ J) is m-exponentially convex in the Jensen
sense, we have

[y0,y1,y2;ω ] =
n

∑
k,l=1

bkbl[y0,y1,y2;φtkl ] � 0.

Hence ω is a convex function on I . Therefore we have ϒi(ω) � 0, which yields by the
linearity of ϒi , that

n

∑
k,l=1

bkblϒi(φtkl ) � 0.

We conclude that the function t →ϒi(φt ) (t ∈ J) is an m-exponentially convex function
in the Jensen sense on I .

If the function t → ϒi(φt ) (t ∈ J) is continuous on I , then it is m-exponentially
convex on I by definition. �

As a consequence of the above theorem we can give the following corollaries.

COROLLARY 4.5. Assume I ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is a
family of functions defined on an interval I ⊂R , such that the function t → [y0,y1,y2;φt ]
(t ∈ J) is exponentially convex in the Jensen sense on I for every three mutually differ-
ent points y0,y1,y2 ∈ I . Let ϒi( f ) (i = 1,2) be the linear functionals constructed in
Remark 3.3. Then t → ϒi(φt ) (t ∈ J) is an exponentially convex function in the Jensen
sense on I for i = 1,2 . If the function t → ϒi(φt ) (t ∈ J) is continuous, then it is
exponentially convex on I for i = 1,2 .

COROLLARY 4.6. Assume I ⊂ R is an interval, and assume Λ = {φt : t ∈ J} is a
family of functions defined on an interval I ⊂R , such that the function t → [y0,y1,y2;φt ]
(t ∈ J) is 2 -exponentially convex in the Jensen sense on I for every three mutually
different points y0,y1,y2 ∈ I . Let ϒi( f ) (i = 1,2) be the linear functionals constructed
in Remark 3.3. Then the following two statements hold for i = 1,2 :
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(i) If the function t →ϒi(φt) (t ∈ J) is positive and continuous, then it is 2 -exponen-
tially convex on I , and thus log-convex.

(ii) If the function t → ϒi(φt ) (t ∈ J) is positive and differentiable, then for every
s, t,u,v ∈ J , such that s � u and t � v, we have

us,t(ϒi,Λ) � uu,v(ϒi,Λ) (6)

where

us,t(ϒi,Λ) :=

⎧⎪⎪⎨
⎪⎪⎩
(

ϒi(φs)
ϒi(φt)

) 1
s−t

, s �= t,

exp

(
d
ds ϒi(φs)
ϒi(φs)

)
, s = t

(7)

for φs,φt ∈ Λ .

Proof. Fix i = 1,2.

(i) The proof follows by Remark 4.2 and Theorem 4.4.

(ii) From the definition of a convex function ψ on I , we have the following inequal-
ity (see [9, page 2])

ψ (s) − ψ (t)
s − t

� ψ (u) − ψ (v)
u − v

, (8)

∀s, t,u,v ∈ J such that s � u, t � v, s �= t, u �= v .
By (i), s → ϒi(φs) , s ∈ J is log-convex, and hence (8) shows with ψ(s) =
logϒi(φs) , s ∈ J that

logϒi(φs) − logϒi(φt)
s− t

� logϒi(φu)− logϒi(φv)
u− v

(9)

for s � u, t � v, s �= t, u �= v , which is equivalent to (6). For s = t or u = v (6)
follows from (9) by taking limit. �

REMARK 4.7. Note that the results from Theorem 4.4, Corollary 4.5, Corollary
4.6 are valid when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0 , for a family of
differentiable functions φt such that the function t → [y0,y1,y2;φt ] is m-exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense), and moreover, they are are also valid when all three points coincide for
a family of twice differentiable functions with the same property. The proofs can be
obtained by recalling Remark 4.3 and suitable characterization of convexity.

The following result given in [5] is related to the first condition of Theorem 4.4.

THEOREM 4.8. Assume I ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is
a family of twice differentiable functions defined on an interval I ⊂ R such that the
function t 
→ φ ′′

t (x) (t ∈ J) is exponentially convex for every fixed x ∈ I . Then the
function t 
→ [y0,y1,y2;φt ] (t ∈ J) is exponentially convex in the Jensen sense for any
three points y0 , y1 , y2 ∈ I .
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REMARK 4.9. It comes from either the conditions of Theorem 4.8 or the proof of
this theorem that the functions φt , t ∈ J are convex.

5. Mean value theorems

Now we formulate mean value theorems of Lagrange and Cauchy type for the
linear functionals ϒi( f ) ( i = 1,2) defined in Remark 3.3.

THEOREM 5.1. Let ϒi( f ) (i = 1,2) be the linear functionals constructed in Re-
mark 3.3 and g ∈C2[a,b] . Then there exists ξ ∈ [a,b] such that

ϒi (g) =
1
2
g′′ (ξ )ϒi

(
x2) ; i = 1,2.

Proof. Fix i = 1,2.
Since g∈C2[a,b] , there exist the real numbers m = min

x∈[a,b]
g′′(x) and M = max

x∈[a,b]
g′′(x) .

It is easy to show that the functions φ1 and φ2 defined on [a,b] by

φ1(x) =
M
2

x2−g(x) ,

and
φ2(x) = g(x)− m

2
x2,

are convex.
By applying the functional ϒi to the functions φ1 and φ2 , we have the properties

of ϒi that

ϒi

(
M
2

x2 −g(x)
)

� 0,

⇒ ϒi (g) � M
2

ϒi
(
x2) , (10)

and
ϒi

(
g(x)− m

2
x2
)

� 0

⇒ m
2

ϒi
(
x2)� ϒi (g) . (11)

From (10) and from (11), we get

m
2

ϒi
(
x2)� ϒi (g) � M

2
ϒi
(
x2) .

If ϒi
(
x2
)

= 0, then nothing to prove. If ϒi
(
x2
) �= 0, then

m � 2ϒi (g)
ϒi (x2)

� M.

Hence we have

ϒi (g) =
1
2
g′′ (ξ )ϒi

(
x2) . �
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THEOREM 5.2. Let ϒi( f ) (i = 1,2) be the linear functionals constructed in Re-
mark 3.3 and g,h ∈C2[a,b] . Then there exists ξ ∈ [a,b] such that

ϒi (g)
ϒi (h)

=
g′′ (ξ )
h′′ (ξ )

; i = 1,2,

provided that ϒi (h) �= 0 (i = 1,2) .

Proof. Fix i = 1,2.
Define L ∈C2[a,b] by

L := c1g− c2h,

where
c1 : = ϒi (h)

and
c2 : = ϒi (g) .

Now using Theorem 5.1 for the function L , we have(
c1

g′′ (ξ )
2

− c2
h′′ (ξ )

2

)
ϒi
(
x2)= 0. (12)

Since ϒi (h) �= 0, Theorem 5.1 implies that ϒi
(
x2
) �= 0, and therefore (12) gives

ϒi (g)
ϒi (h)

=
g′′ (ξ )
h′′ (ξ )

. �

6. Applications to Cauchy means

In this section we apply the results of previous sections to generate new Cauchy
means. We mention that the functionals ϒi( f ) , i = 1,2 defined in Remark 3.3 under
the assumption (H1 ), are linear on the vector space of real functions defined on the
interval I ⊂ R , and ϒi( f ) � 0 for every convex function on I .

EXAMPLE 6.1. Let I = R and consider the class of convex functions

Λ1 := {φt : R → [0,∞) | t ∈ R},

where

φt(x) :=

{
1
t2

etx; t �= 0,

1
2x2; t = 0.

Then t 
→ φ ′′
t (x) (t ∈ R) is exponentially convex for every fixed x ∈ R (see [6]), thus

by Theorem 4.8, the function t 
→ [y0,y1,y2;φt ] , t ∈ R is exponentially convex in the
Jensen sense for every three mutually different points y0,y1,y2 ∈ R .
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Now fix i = 1,2. By applying Corollary 4.5 with Λ = Λ1 , we get the exponential
convexity of t 
→ ϒi(φt ) (t ∈ R) in the Jensen sense. This mapping is also differen-
tiable, therefore exponentially convex, and the expression in (7) has the form

us,t(ϒi,Λ1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ϒi(φs)
ϒi(φt)

) 1
s−t

; s �= t,

exp
(

ϒi(id φs)
ϒi(φs)

− 2
s

)
; s = t �= 0,

exp
(

ϒi(id φ0)
3ϒi(φ0)

)
; s = t = 0,

where “ id ” means the identity function on R .
From (6) we have the monotonicity of the functions us,t(ϒi,Λ1) in both parameters

s and t .
Suppose ϒi(φt) > 0 (t ∈ R) , a := min{x1, . . . ,xn} , b := max{x1, . . . ,xn} , and let

Ms,t(ϒi,Λ1) := logus,t(ϒi,Λ1); s,t ∈ R.

Then from Theorem 5.2 we have

a � Ms,t(ϒi,Λ1) � b,

and thus Ms,t(ϒi,Λ1) (s,t ∈ R) are means. The monotonicity of these means is fol-
lowed by (6).

EXAMPLE 6.2. Let I = (0,∞) and consider the class of convex functions

Λ2 = {ψt : (0,∞) → R | t ∈ R},
where

ψt(x) :=

⎧⎪⎪⎨
⎪⎪⎩

xt

t(t−1) ; t �= 0,1,

− logx; t = 0,

x logx; t = 1.

Then t 
→ ψ ′′
t (x) = xt−2 = e(t−2) logx (t ∈ R) is exponentially convex for every fixed

x ∈ (0,∞) .
Now fix 1 � i � 4. By similar arguments as given in Example 6.1 we get the

exponential convexity of t 
→ ϒi(ψt) (t ∈ R) in the Jensen sense. This mapping is
differentiable too, therefore exponentially convex. It is easy to calculate that (7) can be
written as

us,t(x,p,ϒi,Λ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϒi(ψs)
ϒi(ψt)

) 1
s−t

; s �= t,

exp
(

1−2s
s(s−1) − ϒi(ψsψ0)

ϒi(ψs)

)
; s = t �= 0,1,

exp
(
1− ϒi(ψ2

0 )
2ϒi(ψ0)

)
; s = t = 0,

exp
(
−1− ϒi(ψ0ψ1)

2ϒi(ψ1)

)
; s = t = 1.
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Suppose ϒi(ψt) > 0 (t ∈ R) , and let a := min{x1, . . . ,xn} , b := max{x1, . . . ,xn} . By
Theorem 5.2, we can check that

a � us,t(x,p,ϒi,Λ2) � b; s,t ∈ R. (13)

The means us,t(x,p,ϒi,Λ2) (s,t ∈R) are continuous, symmetric and monotone in both
parameters (by use of (6)).

Let s, t,r ∈ R such that r �= 0. By the substitutions s → s
r , t → t

r , (x1, . . . ,xn) →
(xr

1, . . . ,x
r
n) in (13), we get

a � us/r,t/r(x
r,p,ϒi,Λ2) � b,

where a := min{xr
1, . . . ,x

r
n} and b := max{xr

1, . . . ,x
r
n} . Thus new means can be defined

with three parameters:

us,t,r(x,λ ,ϒi,Λ2) :=

{
(us/r,t/r(xr,λ ,ϒi,Λ2))

1
r ; r �= 0,

us,t(logx,λ ,ϒi,Λ1); r = 0,

where logx = (logx1, . . . , logxn) .
The monotonicity of these three parameter means is followed by the monotonicity

and continuity of the two parameter means.

EXAMPLE 6.3. Let I = (0,∞) , and consider the class of convex functions

Λ3 = {ηt : (0,∞) → (0,∞) | t ∈ (0,∞)},

where

ηt(x) :=

⎧⎨
⎩

t−x

log2t
; t �= 1,

x2

2 ; t = 1.

t 
→ ψ ′′
t (x) (t ∈ (0,∞)) is exponentially convex for every fixed x ∈ (0,∞) , being the

restriction of the Laplace transform of a nonnegative function (see [6] or [10] page 210).
Now fix 1 � i � 4. We can get the exponential convexity of t 
→ ϒi(ψt) (t ∈ R)

as in Example 6.1. For the class Λ3 , (7) has the form

us,t(ϒi,Λ3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ϒi(ηs)
ϒi(ηt)

) 1
s−t

; s �= t,

exp
(
− 2

slogs − ϒi(idηs)
sϒi(ηs)

)
; s = t �= 1,

exp
(
−ϒi(idη1)

3ϒi(η1)

)
; s = t = 1.

The monotonicity of us,t(ϒi,Λ3) (s,t ∈ (0,∞)) comes from (6).
Suppose ϒi(ηt)> 0 (t ∈ (0,∞)) , and let a := min{x1, . . . ,xn} , b := max{x1, . . . ,xn} ,

and define
Ms,t(ϒi,Λ3) := −L(s,t) logus,t(ϒi,Λ3), s,t ∈ (0,∞),
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where L(s, t) is the well known logarithmic mean

L(s,t) :=

{
s−t

logs−logt ; s �= t,

t; s = t.

From Theorem 5.2 we have

a � Ms,t(ϒi,Λ3) � b, s,t ∈ (0,∞),

and therefore we get means.

EXAMPLE 6.4. Let I = (0,∞) and consider the class of convex functions

Λ4 = {γt : (0,∞) → (0,∞) | t ∈ (0,∞)},

where

γt(x) :=
e−x

√
t

t
.

t 
→ ψ ′′
t (x) = e−x

√
t , t ∈ (0,∞) is exponentially convex for every fixed x∈ (0,∞) , being

the restriction of the Laplace transform of a non-negative function (see [6] or [10] page
214).

Now fix 1 � i � 4. As before t 
→ ϒi(ψt) (t ∈ R) is exponentially convex and
differentiable. For the class Λ4 , (7) becomes

us,t(ϒi,Λ4) =

⎧⎪⎨
⎪⎩
(

ϒi(γs)
ϒi(γt)

) 1
s−t

; s �= t,

exp
(
− 1

t − ϒi(idγt)
2
√

tϒi(γt)

)
; s = t,

where id means the identity function on (0,∞) . The monotonicity of us,t(ϒi,Λ4) (s,t ∈
(0,∞)) is followed by (6).

Suppose ϒi(ηt) > 0 (t ∈ (0,∞)) , let a := min{x1, . . . ,xn} , b := max{x1, . . . ,xn} ,
and define

Ms,t(ϒi,Λ4) := −(
√

s+
√

t) logus,t(ϒi,Λ4), s,t ∈ (0,∞).

Then Theorem 5.2 yields that

a � Ms,t(ϒi,Λ4) � b,

thus we have new means.
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[7] K. A. KHAN, J. PEČARIĆ AND I. PERIĆ, Differences of weighted mixed symmetric means and related
results, Journal of Inequalities and Applications, Volume 2010, Article ID 289730, 16 pages, (2010).
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