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CERTAIN INEQUALITIES FOR CONVEX FUNCTIONS

ZLATKO PAVIĆ

(Communicated by I. Perić)

Abstract. This is a review paper on some new inequalities for convex functions of one and sev-
eral variables. The most important result presented for convex functions of one variable is the
extension of Jensen’s inequality to affine combinations. The most interesting results presented
for convex functions of several variables refer to inequalities concerning simplexes and its cones.

1. Introduction

We give a short description of the concept of affinity and convexity in a real linear
space X .

A set A ⊆ X is affine if it contains all binomial affine combinations in A , that
is, the combinations αa+βb of points a,b ∈ A and coefficients α,β ∈ R of the sum
α + β = 1. The affine hull of a set S ⊆ X as the smallest affine set that contains S
is denoted with affS . A function f : A → R is affine if the equality

f (αa+ βb) = α f (a)+ β f (b) (1)

holds for all binomial affine combinations αa+ βb of points a,b ∈ A .
A set C ⊆X is convex if it contains all binomial convex combinations in C , that

is, the combinations αa+βb of points a,b∈C and non-negative coefficients α,β ∈R

of the sum α +β = 1. The convex hull of a set S ⊆X as the smallest convex set that
contains S is denoted with convS . A function f : C → R is convex if the inequality

f (αa+ βb) � α f (a)+ β f (b) (2)

holds for all binomial convex combinations αa+ βb of points a,b ∈ C .
Using mathematical induction, it can be proved that the above concept applies to

all n -membered affine or convex combinations. Relying on induction, Jensen (see [2])
has extended the inequality in equation (2).

2. Generalization and reversal of the Jensen-Mercer inequality

The section contains the parts of paper [9].

We consider inequalities that are close to the Jensen-Mercer inequality obtained
in [4]. The generalization of this inequality is given in Corollary 1, and the reverse
inequality is specified in Corollary 2.
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If a,b ∈ R are different points, then every point x ∈ R can be presented by the
unique affine combination

x =
b− x
b−a

a+
x−a
b−a

b. (3)

The above combination is convex if, and only if, the point x belongs to the closed
interval conv{a,b} . Let f : R → R be a convex function, and let f line

{a,b} : R → R be the
function of the secant line passing through the graph points A(a, f (a)) and B(b, f (b)) .
Applying the affinity of f line

{a,b} to the combination in equation (3), we get the secant
equation

f line
{a,b}(x) =

b− x
b−a

f (a)+
x−a
b−a

f (b). (4)

Combining the convexity of f and the affinity of f line
{a,b} , we obtain the inequality

f (x) � f line
{a,b}(x) if x ∈ conv{a,b}, (5)

and the reverse inequality

f (x) � f line
{a,b}(x) if x /∈ conv{a,b} \ {a,b}. (6)

Assume that conv{a,b} = [a,b] . A point x of the ray (−∞,a] can be presented by
the unique affine combination x = (1+ p)a− pb with the nonnegative coefficient p =
(a− x)/(b−a) . According to equation (6), it follows that

f
(
(1+ p)a− pb

)
� (1+ p) f (a)− p f (b). (7)

Replacing a and b , we have the presentation and the inequality for a point x of the ray
[b,+∞) .

LEMMA 1. Let α,β ,γ ∈ [0,1] be coefficients such that α +β −γ = 1 . Let a,b,c∈
R be points such that c ∈ conv{a,b} .

Then the affine combination αa + βb− γc is in conv{a,b} , and every convex
function f : conv{a,b}→ R satisfies the inequality

f (αa+ βb− γc) � α f (a)+ β f (b)− γ f (c). (8)

Proof. Involving the convex combination c = κa+ λb , it follows that

αa+ βb− γc = [α(1−κ)+ κ(1−β )]a+[β(1−λ)+λ (1−α)]b. (9)

The coefficients in square parentheses are nonnegative with the sum equal to 1. So, the
right-hand side of the above equality is the convex combination of points a and b , and
therefore the combination αa+ βb− γc belongs to conv{a,b} .

If a = b , the inequality in equation (8) takes the trivial form f (a) � f (a) . If a �= b ,
then applying the convexity of f and affinity of f line

{a,b} , we get

f (αa+ βb− γc) � f line
{a,b}(αa+ βb− γc) (10)

= α f (a)+ β f (b)− γ f line
{a,b}(c) (11)

� α f (a)+ β f (b)− γ f (c) (12)
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finishing the proof.

COROLLARY 1. Let α,β ,γ ∈ [0,1] and γi ∈ [0,1] be coefficients such that α +
β − γ = ∑n

i=1 γi = 1 . Let a,b,ci ∈ R be points such that all ci ∈ conv{a,b} .
Then the affine combination αa + βb− γ ∑n

i=1 γici is in conv{a,b} , and every
convex function f : conv{a,b}→ R satisfies the inequality

f

(
αa+ βb− γ

n

∑
i=1

γici

)
� α f (a)+ β f (b)− γ

n

∑
i=1

γi f (ci). (13)

If α = β = γ = 1, then the inequality in equation (13) is reduced to Mercer’s
variant of Jensen’s inequality obtained in [4]. Another generalization of Mercer’s result
was achieved in [6] using the majorization assumptions.

LEMMA 2. Let α,β ,γ ∈ [1,∞) be coefficients such that α + β − γ = 1 . Let
a,b,c ∈ R be points such that c /∈ conv{a,b} \ {a,b} .

Then the affine combination αa+βb− γc is not in conv{a,b}\{a,b} , and every
convex function f : conv{a,b,c}→ R satisfies the inequality

f (αa+ βb− γc) � α f (a)+ β f (b)− γ f (c). (14)

Proof. Involving the affine combination c = κa+ λb , we have the presentation

αa+ βb− γc = (α − γκ)a+(β − γλ )b, (15)

where the right-hand side is the affine combination of points a and b . The condition
κa+ λb /∈ conv{a,b} \ {a,b} implies that κ � 0 or κ � 1. If κ � 0, then α − γκ �
α � 1. If κ � 1, then α − γκ � α − γ = 1−β � 0. So, the combination αa+βb− γ
does not belong to conv{a,b} \ {a,b} by equation (15). Applying the inequality in
equation (6), we get the series of inequalities containing the inequality in equation (14).

COROLLARY 2. Let α,β ,γ ∈ [1,∞) and γi ∈ [0,1] be coefficients such that α +
β − γ = ∑n

i=1 γi = 1 . Let a,b,ci ∈ R be points such that any ci /∈ conv{a,b} \ {a,b}
and the convex combination ∑n

i=1 γici /∈ conv{a,b} \ {a,b} .
Then the affine combination αa + βb− γ ∑n

i=1 γici is not in conv{a,b} \ {a,b} ,
and every convex function f : conv{a,b,ci}→ R satisfies the inequality

f

(
αa+ βb− γ

n

∑
i=1

γici

)
� α f (a)+ β f (b)− γ

n

∑
i=1

γi f (ci). (16)

3. Inequalities with affine combinations

This section is prepared according to paper [8].
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3.1. Extension of Jensen’s inequality to affine combinations

Relying on findings of the previous section, we can expose the extension of Jensen’s
inequality to affine combinations.

THEOREM 1. Let αi,β j,γk � 0 be coefficients such that their sums α = ∑n
i=1 αi ,

β = ∑m
j=1 β j , γ = ∑l

k=1 γk satisfy α + β − γ = 1 and α,β ∈ (0,1] . Let ai,b j,ck ∈ R

be points such that ck ∈ conv{a,b} , where

a =
1
α

n

∑
i=1

αiai , b =
1
β

m

∑
j=1

β jb j. (17)

Then the affine combination

n

∑
i=1

αiai +
m

∑
j=1

β jb j −
l

∑
k=1

γkck (18)

belongs to conv{a,b} , and every convex function f : conv{ai,b j} → R satisfies the
inequality

f

(
n

∑
i=1

αiai +
m

∑
j=1

β jb j −
l

∑
k=1

γkck

)
�

n

∑
i=1

αi f (ai)+
m

∑
j=1

β j f (b j)−
l

∑
k=1

γk f (ck). (19)

Proof. Since α = 1−β + γ , we have that α � γ , and similarly β � γ .
If γ = 0, the combination in equation (18) takes the convex form αa+βb belong-

ing to conv{a,b} , and the inequality in equation (19) is reduced to Jensen’s inequality.
If γ > 0, then including points a , b and

c =
1
γ

l

∑
k=1

γkck (20)

in equation (18), we get the combination αa+ βb− γc which belongs to conv{a,b}
by Lemma 1. The inequality in equation (19) is trivially true for a = b . So, we assume
that a �= b and use the function f line

{a,b} . Applying the affinity of f line
{a,b} to the convex

combination in equation (20), and respecting the inequalities f line
{a,b}(ck) � f (ck) , we

have

f line
{a,b}(c) =

1
γ

l

∑
k=1

γk f line
{a,b}(ck) � 1

γ

l

∑
k=1

γk f (ck). (21)

Using the inequality in equation (11), applying Jensen’s inequality to f (a) and f (b) ,
and finally using the inequality in equation (21) respecting minus, we get

f

(
n

∑
i=1

αiai +
m

∑
j=1

β jb j −
l

∑
k=1

γkck

)
= f (αa+ βb− γc)

�α f (a)+ β f (b)− γ f line
{a,b}(c)

�
n

∑
i=1

αi f (ai)+
m

∑
j=1

β j f (b j)−
l

∑
k=1

γk f (ck)
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completing the proof.

A brief scientific-historic background on Jensen’s inequality follows at the end of
this subsection. Because of its attractiveness, Jensen’s and related inequalities were
studied during the whole last century. So, there are Steffensen’s, Brunk’s and Olkin’s
inequality. In this century the research goes on, and we got the Jensen-Mercer and the
Mercer-Steffensen inequality. For information as regards these inequalities, one may
refer to papers [11], [1], [4], [12] and [9].

A wide area of convex analysis including convex functions and their inequalities
is covered in [13]. The practical applications of convex analysis are presented in [16].

3.2. Application to quasi-arithmetic means

We assume that

x =
n

∑
i=1

αiai +
m

∑
j=1

β jb j −
l

∑
k=1

γkck (22)

is an affine combination as in Theorem 1, and ϕ : I → R is a strictly monotone con-
tinuous function where I = conv{ai,b j} . The discrete ϕ -quasi-arithmetic mean of
the combination x can be defined as the point

Mϕ (x) = ϕ−1

(
n

∑
i=1

αiϕ(ai)+
m

∑
j=1

β jϕ(b j)−
l

∑
k=1

γkϕ(ck)

)
(23)

belonging to conv{a,b} , because the affine combination enclosed in parentheses is
located in ϕ

(
conv{a,b}) .

The order of pair of quasi-arithmetic means Mϕ and Mψ depends on convexity of
the function ψ ◦ϕ−1 and monotonicity of the function ψ , as follows.

COROLLARY 3. Let x be an affine combination as in equation (22) satisfying all
the assumptions of Theorem 1. Let ϕ ,ψ : I → R be strictly monotone continuous
functions where I = conv{ai,b j} .

If ψ is either ϕ -convex and increasing or ϕ -concave and decreasing, then we
have the inequality

Mϕ (x) � Mψ(x). (24)

If ψ is either ϕ -convex and decreasing or ϕ -concave and increasing, then we
have the reverse inequality in equation (24).

If ψ is ϕ -affine, then the equality is valid in equation (24).

Proof. Prove the case that the function ψ is ϕ -convex and increasing. Put the
set J = ϕ(I ) = conv{ϕ(ai),ϕ(b j)} . Applying the inequality in equation (19) to the
affine combination

xϕ =
n

∑
i=1

αiϕ(ai)+
m

∑
j=1

β jϕ(b j)−
l

∑
k=1

γkϕ(ck) (25)
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which is in the set ϕ
(
conv{a,b}) , and the convex function f = ψ ◦ϕ−1 : J → R , we

get
ψ ◦ϕ−1(xϕ) � xψ .

Assigning the increasing function ψ−1 to the above inequality, we attain

Mϕ(x) = ϕ−1(xϕ) � ψ−1(xψ) = Mψ(x)

which finishes the proof.
The inequality in equation (24) may further be applied to the power means. The

monotonicity of these power means is also valid. The harmonic-geometric-arithmetic
mean inequality for these means is as follows.

COROLLARY 4. Let x be an affine combination as in equation (22) satisfying all
assumptions of Theorem 1 with the addition that all ai,b j > 0 .

Then we have the harmonic-geometric-arithmetic mean inequality(
n

∑
i=1

αi

ai
+

m

∑
j=1

β j

b j
−

l

∑
k=1

γk

ck

)−1

�
n

∏
i=1

aαi
i

m

∏
j=1

b
β j
j

l

∏
k=1

c−γk
k

�
n

∑
i=1

αiai +
m

∑
j=1

β jb j −
l

∑
k=1

γkck.

(26)

3.2.1. Application to other inequalities

Applying the mean inequality in equation (26), we get that the inequality(
α
a

+
β
b
− γ

c

)−1

� aαbβ

cγ � αa+ βb− γc (27)

holds for coefficients α,β ,γ ∈ [0,1] such that α + β − γ = 1, and points a,b,c > 0
such that c ∈ conv{a,b} .

As a consequence of equation (27), Bernoulli’s inequalities and Young’s inequality
can be extended on the left.

EXAMPLE 1. The inequality in equation (27) can be arranged to the inequality

1+ x
1+ x− px

� (1+ x)p � 1+ px, (28)

which holds for coefficients p ∈ [0,1] and points x > −1. The reverse inequality is
valid for p ∈ [1,∞) and x > −1.

EXAMPLE 2. The inequality in equation (27) can be arranged to the inequality(
x−p

p
+

y−q

q

)−1

� xy � xp

p
+

yq

q
, (29)

which holds for coefficients p,q ∈ (1,∞) such that 1/p+1/q = 1, and points x,y > 0.
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4. Inequalities on simplexes and their cones

This section is conceived according to paper [10].

4.1. Inequalities on the plane

Let (x1,y1),(x2,y2) ∈ R
2 be points. We use the standard coordinate addition

(x1,y1)+(x2,y2) = (x1 +x2,y1 +y2) , and the scalar multiplication α(x,y) = (αx,αy) .
If A(xA,yA) , B(xB,yB) and C(xC,yC) are planar points that do not belong to one line,
then every point P(x,y) ∈ R

2 can be presented by the unique affine combination

P = αA+ βB+ γC, (30)

where

α =

∣∣∣∣∣∣
x y 1
xB yB1
xC yC1

∣∣∣∣∣∣∣∣∣∣∣∣
xA yA1
xB yB1
xC yC1

∣∣∣∣∣∣
, β = −

∣∣∣∣∣∣
x y 1
xA yA1
xCyC1

∣∣∣∣∣∣∣∣∣∣∣∣
xA yA1
xB yB1
xCyC1

∣∣∣∣∣∣
, γ =

∣∣∣∣∣∣
x y 1
xAyA1
xByB1

∣∣∣∣∣∣∣∣∣∣∣∣
xA yA1
xB yB1
xC yC1

∣∣∣∣∣∣
. (31)

The above trinomial combination is convex if, and only if, the point P belongs to the
triangle conv{A,B,C} .

Let CA be the convex cone with the vertex at A spanned by the vectors A−B
and A−C containing trinomial affine combinations P = A + p(A−B)+ q(A−C) =
(1+ p+q)A− pB−qC where p,q � 0, that is,

CA =
{
(1+ p+q)A− pB−qC : p,q � 0

}
.

Cones CB and CC are defined in the same way.
Let f : R

2 → R be a convex function, and let f plane
{A,B,C} : R

2 → R be the function of

the plane passing through the graph points (A, f (A)) , (B, f (B)) and (C, f (C)) of the
graph of f . Because of the affinity of f plane

{A,B,C} , it follows that

f plane
{A,B,C}(P) = α f (A)+ β f (B)+ γ f (C). (32)

The following is the basic lemma.

LEMMA 3. Let A,B,C ∈ R
2 be the triangle vertices.

Then every convex function f : R
2 → R satisfies the inequality

f (P) � f plane
{A,B,C}(P) if P ∈ conv{A,B,C}, (33)

and the reverse inequality

f (P) � f plane
{A,B,C}(P) if P ∈ CA ∪CB ∪CC. (34)
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Proof. If P∈ conv{A,B,C} , the combination in (30) is convex. Applying Jensen’s
inequality, and using plane’s equation in (32), we obtain

f (P) � α f (A)+ β f (B)+ γ f (C) = f plane
{A,B,C}(P). (35)

If P ∈ CA ∪CB ∪CC , say P ∈ CA and P �= A , we can represent the point P as the
binomial affine combination

P = (1+ p+q)A− pB−qC (36)

= (1+ p+q)A− (p+q)
(

p
p+q

B+
q

p+q
C

)
. (37)

The sum p+q is positive because P �= A . The term in (37) can be though of as the ray
with the origin at A . Applying the line inequality in equation (7) to the ray in (37), then
using the convexity of f and the affinity of f plane

{A,B,C} , we get the series of inequalities

f (P) � (1+ p+q) f (A)− (p+q) f

(
p

p+q
B+

q
p+q

C

)
� (1+ p+q) f (A)− p f (B)−q f (C)

= f plane
{A,B,C}

(
(1+ p+q)A− pB−qC

)
= f plane

{A,B,C}(P)

which includes the inequality in equation (34).
The following are inequalities for convex functions and planar convex combina-

tions with the common center.

COROLLARY 5. Let A,B,C ∈ R
2 be the triangle vertices. Let ∑n

i=1 αiAi be a
convex combination of points Ai ∈ conv{A,B,C} , and let ∑m

j=1 β jB j be a convex com-
bination of points B j ∈ CA ∪CB ∪CC such that

P =
n

∑
i=1

αiAi =
m

∑
j=1

β jB j. (38)

Then every convex function f : R
2 → R satisfies the inequality

f (P) �
n

∑
i=1

αi f (Ai) �
m

∑
j=1

β j f (Bj). (39)

Proof. The left inequality in equation (39) is the Jensen inequality. The right
inequality follows from Lemma 3.1, and the affinity of the function f plane

{A,B,C} .
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COROLLARY 6. Let A,B,C ∈ R
2 be the triangle vertices. Let ∑n

i=1 αiAi be a
convex combination of points Ai ∈ conv{A,B,C} , and let αA+βB+ γC be the unique
convex combination such that

P =
n

∑
i=1

αiAi = αA+ βB+ γC. (40)

Then every convex function f : conv{A,B,C}→ R satisfies the inequality

f (P) �
n

∑
i=1

αi f (Ai) � α f (A)+ β f (B)+ γ f (C). (41)

4.2. Generalization to higher dimensions

The results of the previous section can be generalized to higher dimensions by
using simplexes. Let S1, . . . ,Sr+1 ∈ R

r be points. Their convex hull

S = conv{S1, . . . ,Sr+1}. (42)

is the r -simplex in the space R
r if the points S1 − Sr+1, . . . ,Sr − Sr+1 are linearly

independent. Every point P ∈ R
r can be presented by the unique affine combination

P =
r+1

∑
k=1

αkSk, (43)

where the coefficients αk can be determined by generalizing the coefficients in (31).
The combination in (43) is convex if and only if the point P belongs to the r -simplex
conv{S1, . . . ,Sr+1} .

Given the function f : R
r → R , let f hyperplane

{S1,...,Sr+1} : R
r → R be the function of the

hyperplane (in R
r+1 ) passing through the graph points. Then we have

f hyperplane
{S1,...,Sr+1}(P) =

r+1

∑
k=1

αk f (Sk). (44)

Let Ck (k = 1, . . . ,r + 1) be the convex cone with the vertex at Sk spanned by
the vectors Sk − S j for k �= j = 1, . . . ,r + 1 containing (r + 1)-membered affine com-

binations P = Sk + ∑r+1
k �= j=1 p j(Sk −S j) =

(
1+ ∑r+1

k �= j=1 p j

)
Sk −∑r+1

k �= j=1 p jS j where all

p j � 0, that is,

Ck =
{(

1+ ∑r+1
k �= j=1 p j

)
Sk −∑r+1

k �= j=1 p jS j : p j � 0
}

.

LEMMA 4. Let S = conv{S1, . . . ,Sr+1} be an r -simplex in the space R
r .

Then every convex function f : R
r → R satisfies the inequality

f (P) � f hyperplane
{S1,...,Sr+1}(P) if P ∈ S , (45)

and the reverse inequality

f (P) � f hyperplane
{S1,...,Sr+1}(P) if P ∈ C1 ∪ . . .∪Cr+1. (46)
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Proof. To prove equations (45) and (46), we adapt the proof of Lemma 3 as fol-
lows.

To prove equation (45), we firstly apply Jensen’s inequality to the convex combi-
nation P = ∑r+1

k=1 αkPk ∈ conv{S1, . . . ,Sr+1} , and then we use the hyperplane equation
in (44).

To prove equation (46) for P ∈ Ck other than Sk , we firstly implement the ray
inequality in equation (7) to the binomial affine combination

P =
(
1+ ∑r+1

k �= j=1 p j

)
Sk −∑r+1

k �= j=1 p jS j

= (1+ p)Sk− pPk

where p = ∑r+1
k �= j=1 p j and Pk = ∑r+1

k �= j=1(p j/p)S j , then we apply Jensen’s inequality to
the convex combination of Pk , and thus obtain

f (P) �
(
1+ ∑r+1

k �= j=1 p j

)
f (Sk)−∑r+1

k �= j=1 p j f (S j) = f hyperplane
{S1,...,Sr+1}(P), (47)

which is the desired inequality.
Relying on Lemma 4, we get the generalization of Corollary 5 to higher dimen-

sions.

COROLLARY 7. Let S = conv{S1, . . . ,Sr+1} be an r -simplex in the space R
r .

Let ∑n
i=1 αiAi be a convex combination of points Ai ∈S , and let ∑m

j=1 β jB j be a convex
combination of points B j ∈ C1 ∪ . . .∪Cr+1 such that

P =
n

∑
i=1

αiAi =
m

∑
j=1

β jB j. (48)

Then every convex function f : R
r → R satisfies the inequality

f (P) �
n

∑
i=1

αi f (Ai) �
m

∑
j=1

β j f (Bj) (49)

COROLLARY 8. Let S = conv{S1, . . . ,Sr+1} be an r -simplex in the space R
r .

Let ∑n
i=1 αiAi be a convex combination of points Ai ∈ S , and let ∑r+1

j=1 β jS j be the
unique convex combination such that

P =
n

∑
i=1

αiAi =
r+1

∑
j=1

β jS j. (50)

Then every convex function f : S → R satisfies the inequality

f (P) �
n

∑
i=1

αi f (Ai) �
r+1

∑
j=1

β j f (S j). (51)



CERTAIN INEQUALITIES FOR CONVEX FUNCTIONS 1359

Implementing the integral method with convex combinations to the symmetric
form of the discrete inequality in equation (51),

f

(
r+1

∑
j=1

β jS j

)
�

n

∑
i=1

αi f (Ai) �
r+1

∑
j=1

β j f (S j), (52)

we obtain the Hermite-Hadamard inequality

f

(
1

r+1

r+1

∑
j=1

S j

)
� 1

vol(S )

∫
S

f (x1, . . . ,xr)dx1 . . .dxr � 1
r+1

r+1

∑
j=1

f (S j). (53)

For information as regards the Hermite-Hadamard inequality, one may refer to
paper [5].

5. Inequalities with positive linear functionals

This section is prepared respecting paper [7].

Let X be a non-empty set, and let X be a subspace of the linear space of all real
functions on the domain X . We assume that X contains the unit function 1 defined by
1(x) = 1 for every x ∈ X .

Let I ⊆ R be an interval, and let XI be the set containing all functions g ∈ X

with the image in I . Then XI is convex set in the space X . The same is true for
convex sets of Euclidean spaces. Let C ⊆ R

r be a convex set, and let (Xr)C be the
set containing all function r -tuples g = (g1, . . . ,gr) ∈ X

r with the image in C . Then
(Xr)C is convex set in the space X

r .

A linear functional L : X → R is positive (nonnegative) if L(g) � 0 for every non-
negative function g ∈ X , and L is unital (normalized) if L(1) = 1. If g ∈ X , then for
every unital positive functional L the number L(g) is in the closed interval of real num-
bers containing the image of g . Through the paper, the space of all linear functionals
on the space X will be denoted with L(X) .

Let f : R → R be an affine function, f (x) = κx+λ where κ and λ are real con-
stants. If g1, . . . ,gn ∈X are functions, and if L1, . . . ,Ln ∈ L(X) are positive functionals
providing the unit equality

n

∑
i=1

Li(1) = 1, (54)

then

f

(
n

∑
i=1

Li(gi)

)
= κ

n

∑
i=1

Li(gi)+ λ
n

∑
i=1

Li(1) =
n

∑
i=1

Li(κgi + λ1)

=
n

∑
i=1

Li( f (gi)).
(55)

Respecting the requirement of unit equality in equation (54), the sum ∑n
i=1 Li(gi) could

be called the functional convex combination. In the case n = 1, the functional L = L1

must be unital by the unit equality in equation (54).
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In 1931, Jessen stated the functional form of Jensen’s inequality for convex func-
tions of one variable, see [3]. Adapted to our purposes, that statement is as follows.

THEOREM 2. Let I ⊆ R be a closed interval, and let g ∈ XI be a function.
Then a unital positive functional L ∈ L(X) ensures the inclusion

L(g) ∈ I , (56)

and satisfies the inequality
f (L(g)) � L( f (g)) (57)

for every continuous convex function f : I → R providing that f (g) ∈ X .

The interval I must be closed, otherwise it could happen that L(g) /∈ I . The
function f must be continuous, otherwise it could happen that the inequality in (57)
does not apply. Such boundary cases are presented in [14].

In 1937, McShane extended the functional form of Jensen’s inequality to convex
functions of several variables. He has covered the generalization in two steps, calling
them the geometric (the inclusion in (58)) and analytic (the inequality in (59)) formu-
lation of Jensen’s inequality, see [15, Theorem 1 and Theorem 2]. Summarized in a
theorem, that generalization is as follows.

THEOREM 3. Let C ⊆R
r be a closed convex set, and let g = (g1, . . . ,gr)∈ (Xr)C

be a function.
Then a unital positive functional L ∈ L(X) ensures the inclusion

(L(g1), . . . ,L(gr)) ∈ C , (58)

and satisfies the inequality

f (L(g1), . . . ,L(gr)) � L( f (g1, . . . ,gr)). (59)

for every continuous convex function f : C → R providing that f (g1, . . . ,gr) ∈ X .

5.1. Functions of one variable

Through this subsection we will use a closed interval I ⊆ R , and a bounded
closed subinterval [a,b]⊆ I with endpoints a < b .

A convex function f : I → R satisfies the inequality

f (x) � f line
{a,b}(x) if x ∈ [a,b], (60)

and the reverse inequality

f (x) � f line
{a,b}(x) if x ∈ I \ (a,b). (61)

In the following consideration, we use continuous functions satisfying the inequalities
in equations (60)-(61).
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THEOREM 4. Let I ⊆R be a closed interval, let [a,b]⊆I be a bounded closed
subinterval, and let g ∈ X[a,b] and h ∈ XI \(a,b) be functions.

Then a pair of unital positive functionals L,H ∈ L(X) such that

L(g) = H(h), (62)

satisfies the inequality
L( f (g)) � H( f (h)) (63)

for every continuous function f : I → R satisfying equations (60)-(61), and providing
that f (g), f (h) ∈ X .

Proof. The number L(g) belongs to the interval [a,b] by the inclusion in equation
(56). Using the features of the function f , and applying the affinity of the function
f line
{a,b} , we get

L( f (g)) � L
(
f line
{a,b}(g)

)
= f line

{a,b}(L(g))

= f line
{a,b}(H(h)) = H

(
f line
{a,b}(h)

)
� H( f (h))

(64)

because f line
{a,b}(h(x)) � f (h(x)) for every x ∈ X .

Involving the binomial convex combination αa+βb with the equality in equation
(62) by assuming that

L(g) = αa+ βb = H(h), (65)

and inserting the term α f (a)+ β f (b) in equation (64) via the double equality

f line
{a,b}(L(g)) = α f (a)+ β f (b) = f line

{a,b}(H(h)) (66)

which is true because f line
{a,b}(αa + βb) = α f (a) + β f (b) , we achieve the double in-

equality
L( f (g)) � α f (a)+ β f (b) � H( f (h)). (67)

The functions used in Theorem 4 satisfy the functional form of Jensen’s inequality
in the following case.

COROLLARY 9. Let I ⊆ R be a closed interval, let [a,b] ⊆ I be a bounded
closed subinterval, and let h ∈ XI \(a,b) be a function.

Then a unital positive functional H ∈ L(X) such that

H(h) ∈ [a,b], (68)

satisfies the inequality
f (H(h)) � H( f (h)) (69)

for every continuous function f : I → R satisfying equations (60)-(61), and providing
that f (h) ∈ X .
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Proof. Putting αa+ βb = H(h) , it follows that

f (H(h)) = f (αa+ βb) � f line
{a,b}(αa+ βb)

= α f (a)+ β f (b) � H( f (h))
(70)

by the right inequality in equation (67).

5.2. Functions of several variables

We want to transfer the results of the previous subsection to higher dimensions.

Let C ⊆ R
2 be a convex set, let � ⊆ C be a triangle with vertices A , B and

C , and let �o be the triangle interior. In the following observation, we assume that
f : C → R is a continuous function satisfying the inequality

f (P) � f plane
{A,B,C}(P) if P ∈�, (71)

and the reverse inequality

f (P) � f plane
{A,B,C}(P) if P ∈ C \�o, (72)

where f plane
{A,B,C} is the function of the plane passing through the corresponding points of

the graph of f .

It should be noted that convex functions of two variables do not generally satisfy
equation (72). The next example confirms this claim.

EXAMPLE 3. We take the convex function f (x,y) = x2 + y2 , the triangle with
vertices A(0,0) , B(1,0) and C(0,2) , and the outside point P(1,1) .

The valuation of functions f and f plane
{A,B,C}(x,y) = x+2y at the point P is

2 = f (P) < f plane
{A,B,C}(P) = 3 (73)

as opposed to equation (72).

The generalization of Theorem 4 to two dimensions is as follows.

LEMMA 5. Let C ⊆ R
2 be a closed convex set, let �⊆ C be a triangle, and let

g = (g1,g2) ∈ (X2)� and h = (h1,h2) ∈ (X2)C \�o be functions.
Then a pair of unital positive functionals L,H ∈ L(X) such that(

L(g1),L(g2)
)

=
(
H(h1),H(h2)

)
, (74)

satisfies the inequality
L
(
f (g1,g2)

)
� H

(
f (h1,h2)

)
(75)

for every continuous function f : C → R satisfying equations (71)-(72), and providing
that f (g1,g2), f (h1,h2) ∈ X .
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Proof. The proof is similar to that of Theorem 4. Using the triangle vertices A , B
and C , we apply the plane function f plane

{A,B,C} instead of the line function f line
{a,b} .

The previous lemma suggests how the results of the previous subsection can be
transferred to higher dimensions.

Let C ⊆R
r be a convex set, and let S ⊆C be a r -simplex with vertices S1, . . . ,Sr+1 .

In the consideration that follows, we use a function f : C →R satisfying the inequality

f (P) � f hyperplane
{S1,...,Sr+1}(P) if P ∈ S , (76)

and the reverse inequality

f (P) � f hyperplane
{S1,...,Sr+1}(P) if P ∈ C \S o, (77)

where f hyperplane
{S1,...,Sr+1} is the function of the hyperplane passing through the corresponding

points of the graph of f .

THEOREM 5. Let C ⊆ R
r be a closed convex set, let S ⊆ C be an r -simplex,

and let g = (g1, . . . ,gr) ∈ (Xk)S and h = (h1, . . . ,hr) ∈ (Xr)C \S o be functions.
Then a pair of unital positive functionals L,H ∈ L(X) such that(

L(g1), . . . ,L(gr)
)

=
(
H(h1), . . . ,H(hr)

)
, (78)

satisfies the inequality

L
(
f (g1, . . . ,gr)

)
� H

(
f (h1, . . . ,hr)

)
(79)

for every continuous function f : C → R satisfying equations (76)-(77), and providing
that f (g1, . . . ,gr), f (h1, . . . ,hr) ∈ X .

Proof. Relying on the hyperplane function f hyperplane
{S1,...,Sr+1} where S1, . . . ,Sr+1 are the

simplex vertices, we can apply the proof similar to that of Theorem 4.
Including the (r+1)-membered convex combination ∑r+1

k=1 γkSk to the equality in
equation (78) in a way that

(
L(g1), . . . ,L(gr)

)
=

r+1

∑
k=1

γkSk =
(
H(h1), . . . ,H(hr)

)
, (80)

and using the double equality

f hyperplane
{S1,...,Sr+1}

(
L(g1), . . . ,L(gr)

)
=

r+1

∑
k=1

γk f (Sk) = f hyperplane
{S1,...,Sr+1}

(
H(h1), . . . ,H(hr)

)
, (81)

we can derive the double inequality

L
(
f (g1, . . . ,gr)

)
�

r+1

∑
k=1

γk f (Sk) � H
(
f (h1, . . . ,hr)

)
. (82)

The following functional form of Jensen’s inequality is true for functions of several
variables.
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COROLLARY 10. Let C ⊆R
r be a closed convex set, let S ⊆C be an r -simplex,

and let h = (h1, . . . ,hr) ∈ (Xr)C \S o be a function.
Then a unital positive functional H ∈ L(X) such that(

H(h1), . . . ,H(hr)
) ∈ S , (83)

satisfies the inequality

f
(
H(h1), . . . ,H(hr)

)
� H

(
f (h1, . . . ,hr)

)
(84)

for every continuous function f : C → R satisfying equations (76)-(77), and providing
that f (h1, . . . ,hr) ∈ X .
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[13] J. E. PEČARIĆ, F. PROSCHAN AND Y. L. TONG, Convex Functions, Partial Orderings, and Statistical
Applications, Academic Press, New York, USA, 1992.
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35000 Slavonski Brod, Croatia
e-mail: Zlatko.Pavic@sfsb.hr

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


