

STEFFENSEN'S GENERALIZATION OF ČEBYŠEV INEQUALITY

K. M. Awan, J. Pečarić and Atiq ur Rehman

(Communicated by A. Aglić Aljinović)

Abstract. In this paper, we obtain Ostrowski-type bounds for the weighted Čebyšev functional. Also we give bounds of weighted Čebyšev functional in the case of Steffesen's generalization of Čebyšev inequality.

1. Introduction and preliminaries

Let $f,g:[a,b]\to\mathbb{R}$ and $p:[a,b]\to\mathbb{R}^+$ be Lebesgue integrable functions. Then we consider the weighted Čebyšev functional:

$$T(f,g;p) := \frac{1}{P(b)} \int_{a}^{b} p(t)f(t)g(t)dt - \frac{1}{P(b)} \int_{a}^{b} p(t)f(t)dt \cdot \frac{1}{P(b)} \int_{a}^{b} p(t)g(t)dt, \quad (1)$$

where $P(x) = \int_{a}^{x} p(t)dt$.

If p(t) = 1 for all $t \in [a,b]$, we define Čebyšev functional T(f,g) = T(f,g;1).

It is known that if f and g are monotonic in the same direction on interval [a,b], then

$$T(f,g;p) \geqslant 0 \tag{2}$$

If f and g are monotonic in opposite directions on interval [a,b], then the reverse of the inequality in (2) is valid. In both cases, equality in (2) holds if and only if either f or g is constant almost everywhere.

Steffensen [6] (see also [5, page 199]) noted that inequality (2) is also valid when f is an increasing function on [a,b] and g satisfies the condition

$$\frac{1}{P(x)} \int_{a}^{x} p(t)g(t)dt \leqslant \frac{1}{P(b)} \int_{a}^{b} p(t)g(t)dt, \quad \text{where} \quad P(x) = \int_{a}^{x} p(t)dt, \quad (3)$$

for $x \in (a,b)$.

Mathematics subject classification (2010): Primary 26D15, 26D20, 26D99.

Keywords and phrases: Čebyšev functional, weighted Čebyšev functional, bounds, Ostrowski-type bounds.

The research of the second author was supported by the Croatian Ministry of Science, Education and Sports under the Research Grant 117-1170889-0888.

The condition p(t) > 0 for $t \in [a, b]$ for the inequality (2) can be replaced by

$$0 \leqslant P(x) \leqslant P(b) \text{ for } a \leqslant x \leqslant b.$$
 (4)

In 1970, A. M. Ostrowski [3] proved that if g is absolutely continuous on [a,b] and $g' \in L_{\infty}[a,b]$, then

$$|T(f,g)| \le \frac{1}{8}(b-a)(M-m)||g'||_{\infty},$$
 (5)

provided m and M are real numbers with property

$$-\infty < m \leqslant f \leqslant M < \infty \text{ and } ||g'||_{\infty} = \sup_{t \in [a,b]} |g'(t)|.$$

The constant $\frac{1}{8}$ in (5) cannot be improved in the general case.

In [1], P. Cerone and S. Dragomir gave the bounds of the Čebyšev functional T(f,g). Namely, they proved that if g is non-decreasing on [a,b] and f is absolutely continuous on [a,b] with $f' \in L_{\infty}[a,b]$, then

$$|T(f,g)| \le \frac{1}{2(b-a)} ||f'||_{\infty} \int_{a}^{b} (x-a)(b-x)dg(x)$$
 (6)

holds and the constant $\frac{1}{2}$ is best possible. They deduce bound of T(f,g) given by Čebyšev in [2] i.e. if g is absolutely continuous on [a,b] and $g' \in L_{\infty}[a,b]$, then

$$|T(f,g)| \le \frac{1}{12} ||f'||_{\infty} ||g'||_{\infty} (b-a)^2,$$
 (7)

holds and the constant $\frac{1}{12}$ is sharp.

In this paper, we find Ostrowski-type bounds for weighted Čebyšev functional and deduce the results of [1] in the case of non-weighted Čebyšev functional. Also we give some bounds in the case of Steffesen generalization of weighted Čebyšev inequality.

2. Main results

Let f,g be integrable functions on [a,b] and p be positive integrable function on [a,b] with $P(b):=\int_a^b p(t)dt$. Then the weighted version of Korkin's identity is represented by

$$T(f,g;p) = \frac{1}{2P^{2}(b)} \int_{a}^{b} \int_{a}^{b} p(x)p(y) (f(x) - f(y)) (g(x) - g(y)) dxdy. \tag{8}$$

We use identity (8) to prove the following lemma, which later leads to the bounds of Čebyšev functional.

LEMMA 2.1. Let $\phi:[a,b]\to\mathbb{R}$ be an absolutely continuous function, and $p:[a,b]\to\mathbb{R}^+$ an integrable function and $(\phi')^2\in L[a,b]$

$$P(x) = \int_{a}^{x} p(t)dt \text{ and } \tilde{P}(x) = P(x) \int_{a}^{b} t p(t)dt - P(b) \int_{a}^{x} t p(t)dt.$$
 (9)

Then we have the inequality

$$T(\phi, \phi; p) \leqslant \frac{1}{P^{2}(b)} \int_{a}^{b} \tilde{P}(x) \left[\phi'(x)\right]^{2} dx, \tag{10}$$

provided that the integral on right hand side of above inequality exists. Also the inequality in (10) is sharp.

Proof. We have (see [4])

$$T(f,g;p) = \frac{1}{P^2(b)} \int_a^b \left\{ \int_a^x p(t)h(t)dt \right\} g'(x)dx,$$

where

$$h(t) = \int_{a}^{b} p(s) (f(s) - f(t)) ds.$$

If we take l(x) = x, then

$$T(l,g;p) = \frac{1}{P^2(b)} \int_a^b \int_a^x p(t) \int_a^b p(s)(s-t) ds dt g'(x) dx.$$

A simple computation yields that

$$T(l,g;p) = \frac{1}{P^2(b)} \int_a^b \tilde{P}(x)g'(x)dx. \tag{11}$$

Korkin's identity (8) gives us

$$\begin{split} T(\phi,\phi;p) &= \frac{1}{2P^2(b)} \int_a^b \int_a^b p(x) p(y) \left(\phi(x) - \phi(y)\right)^2 dx dy, \\ &= \frac{1}{2P^2(b)} \int_a^b \int_a^b p(x) p(y) (x-y)^2 \left(\frac{\phi(x) - \phi(y)}{x-y}\right)^2 dx dy. \end{split}$$

Since ϕ is absolutely continuous, $\phi(t) - \phi(s) = \int_s^t \phi'(u) du$, and by using Cauchy-Schwarz inequality, we have

$$T(\phi, \phi; p) = \frac{1}{2P^2(b)} \int_a^b \int_a^b p(x)p(y)(x-y)^2 \left(\frac{\int_x^y \phi'(s)ds}{x-y}\right)^2 dxdy,$$

$$\leqslant \frac{1}{2P^2(b)} \int_a^b \int_a^b p(x)p(y)(x-y)^2 \left(\frac{1}{x-y} \int_x^y [\phi'(s)]^2 ds\right) dxdy,$$

$$= \frac{1}{2P^2(b)} \int_a^b \int_a^b p(x)p(y)(x-y) \left(\int_x^y [\phi'(s)]^2 ds\right) dxdy.$$

$$= T(l, \psi; p), \text{ by applying Korkin's identity with } \psi(x) = \int_a^x \left[\phi'(s)\right]^2 ds.$$

Now using (11), we get inequality (10).

To prove the sharpness of (10), we assume this inequality is valid with a constant C > 0, that is,

$$T(\phi, \phi; p) \leqslant \frac{C}{P^{2}(b)} \int_{a}^{b} \tilde{P}(x) \left[\phi'(x)\right]^{2} dx, \tag{12}$$

If we consider $\phi(x) = x$, then we observe that the left hand side of (12) is equal to $\frac{1}{P^2(b)} \int_a^b \tilde{P}(x) dx$ and the right hand side of (12) is equal to $\frac{C}{P^2(b)} \int_a^b \tilde{P}(x) dx$. Thus we deduce that $C \geqslant 1$. \square

A non-weighted case of the above theorem is given in the following corollary. It is also proved in [1].

COROLLARY 2.2. If $\phi:[a,b]\to\mathbb{R}$ is an absolutely continuous function with $(\phi')^2\in L[a,b]$, then we have the inequality

$$T(\phi,\phi) \le \frac{1}{2(b-a)} \int_{a}^{b} (x-a)(b-x)[\phi'(x)]^{2} dx.$$
 (13)

The constant $\frac{1}{2}$ is the best possible.

Proof. Using p(t) = 1 in (9), we get

$$\begin{split} \tilde{P}(x) &= (x-a) \int_{a}^{b} t dt - (b-a) \int_{a}^{x} t dt, \\ &= \frac{1}{2} (x-a) (b^2 - a^2) - \frac{1}{2} (b-a) (x^2 - a^2), \\ &= \frac{1}{2} (x-a) (b-a) (b-x). \end{split}$$

Now using this result in (10), along with the fact that $T(\phi, \phi, 1) = T(\phi, \phi)$, we get the result.

The inequality in (10) is sharp and we get constant $\frac{1}{2}$ in the simplification of (9), hence it is best possible. \Box

Throughout the paper we keep the notations P(x) and $\tilde{P}(x)$ used in Lemma 2.1.

THEOREM 2.3. Let $f,g:[a,b] \to \mathbb{R}$ be two absolutely continuous functions with $(f')^2$, $(g')^2 \in L[a,b]$ and $p:[a,b] \to \mathbb{R}^+$ be an integrable function, then we have the inequalities

$$\begin{split} |T(f,g;p)| & \leq \frac{1}{P(b)} T^{\frac{1}{2}}(f,f;p) \left(\int_{a}^{b} \tilde{P}(x) \left[g'(x) \right]^{2} dx \right)^{\frac{1}{2}}, \\ & \leq \frac{1}{P^{2}(b)} \left(\int_{a}^{b} \tilde{P}(x) \left[f'(x) \right]^{2} dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} \tilde{P}(x) \left[g'(x) \right]^{2} dx \right)^{\frac{1}{2}}. \end{split}$$

The above inequalities are sharp.

Proof. By Cauchy-Schwartz inequality for double integrals, we have

$$|T(f,g;p)| \le T^{\frac{1}{2}}(f,f;p)T^{\frac{1}{2}}(g,g;p).$$
 (14)

Now using (8) and Lemma 2.1 in above inequality, we get the required result. \Box

If we consider p(t) = 1, then we get Theorem 1 of [1], which is stated in the following corollary.

COROLLARY 2.4. Let $f,g:[a,b] \to \mathbb{R}$ be two absolutely continuous functions on [a,b] with $(f')^2$, $(g')^2 \in L[a,b]$. Then we have the inequality

$$T(f,g) \leq \frac{1}{\sqrt{2}} [T(f,f)]^{\frac{1}{2}} \frac{1}{\sqrt{b-a}} \left(\int_{a}^{b} (x-a)(b-x) \left[g'(x) \right]^{2} dx \right)^{\frac{1}{2}},$$

$$\leq \frac{1}{2(b-a)} \left(\int_{a}^{b} (x-a)(b-x) \left[f'(x) \right]^{2} dx \right)^{\frac{1}{2}}$$

$$\times \left(\int_{a}^{b} (x-a)(b-x) \left[g'(x) \right]^{2} dx \right)^{\frac{1}{2}}.$$
(15)

The constants $\frac{1}{\sqrt{2}}$ and $\frac{1}{2}$ in (15) are best possibles.

THEOREM 2.5. Assume that $g:[a,b] \to \mathbb{R}$ is monotonic nondecreasing, $p:[a,b] \to \mathbb{R}^+$ be integrable function and $f:[a,b] \to \mathbb{R}$ is absolutely continuous with $f' \in L_{\infty}[a,b]$. Then we have the inequality

$$|T(f,g;p)| \leqslant \frac{||f'||_{\infty}}{P^2(b)} \int_a^b \tilde{P}(x) dg(x), \tag{16}$$

The inequality (16) is sharp.

Proof. We have, by Korkin's identity, that

$$\begin{split} |T(f,g;p)| &= \frac{1}{2P^2(b)} \left| \int_a^b \int_a^b p(x)p(y) \left(f(x) - f(y) \right) \left(g(x) - g(y) \right) dx dy \right|, \\ &\leqslant \frac{1}{2P^2(b)} \int_a^b \int_a^b p(x)p(y) \left| \frac{f(x) - f(y)}{x - y} \right| |(x - y)(g(x) - g(y))| dx dy, \\ &\leqslant \frac{||f'||_\infty}{2P^2(b)} \int_a^b \int_a^b p(x)p(y) |(x - y)(g(x) - g(y))| dx dy, \\ &= \frac{||f'||_\infty}{2P^2(b)} \int_a^b \int_a^b p(x)p(y)(x - y)(g(x) - g(y)) dx dy, \\ &= ||f'||_\infty T(l,g;p), \text{ where } l(x) = x \text{ for } x \in [a,b]. \end{split}$$

Now we have

$$T(l,g;p) = \frac{1}{P^2(b)} \int_a^b \tilde{P}(x) dg(x).$$

This leads us to (16). Now to prove sharpness of the inequality, we consider that there exists constant D > 0 such that

$$|T(f,g;p)| \le \frac{D}{P^2(b)} ||f'||_{\infty} \int_a^b \tilde{P}(x) dg(x).$$
 (17)

If we choose f(x) = g(x) = x, $x \in [a,b]$, then we observe that the left hand side of (17) is equal to $\frac{1}{P^2(b)} \int_a^b \tilde{P}(x) dx$ and the right hand side of (17) is equal to $\frac{D}{P^2(b)} \int_a^b \tilde{P}(x) dx$. Thus we deduce that $D \geqslant 1$. \square

The following result is a non-weighted case of the above result and has been proved in [1].

COROLLARY 2.6. Assume that $g:[a,b] \to \mathbb{R}$ is monotonic nondecreasing on [a,b] and $f:[a,b] \to \mathbb{R}$ is absolutely continuous with $f' \in L_{\infty}[a,b]$. Then we have the inequality

$$|T(f,g)| \le \frac{1}{2(b-a)} ||f||_{\infty} \int_{a}^{b} (x-a)(b-x)dg(x).$$
 (18)

The constant $\frac{1}{2}$ is best possible.

Proof. Putting p(t) = 1 for $t \in [a,b]$ in (16) gives the required result. \square

THEOREM 2.7. Assume that $f,g:[a,b]\to\mathbb{R}$ are absolutely continuous functions with $f',g'\in L_{\infty}[a,b]$ and g is non-decreasing on [a,b]. Also assume that $p:[a,b]\to\mathbb{R}^+$ is integrable function. Then we have an inequality

$$|T(f,g;p)| \leqslant \frac{||f'|||_{\infty}}{P^{2}(b)} \int_{a}^{b} \tilde{P}(x)dg(x),$$

$$\leqslant \frac{1}{P^{2}(b)} ||f'||_{\infty} ||g'||_{\infty} \int_{a}^{b} \tilde{P}(x)dx.$$
(19)

The above inequalities are sharp.

Proof. Since g is absolutely continuous and $g \in L_{\infty}[a,b]$, therefore

$$\int_{a}^{b} \tilde{P}(x)dg(x) = \int_{a}^{b} \tilde{P}(x)g'(x)dx$$

$$\leq \|g'\|_{\infty} \int_{a}^{b} \tilde{P}(x)dx.$$
(20)

Using the above result in Theorem 2.5, we get the required result. Sharpness of the inequalities is obvious from the sharpness of inequality in Theorem 2.5. \Box

If we consider p(t) = 1 for all $t \in [a,b]$ in Theorem 2.7, then we have

$$|T(f,g)| \leq \frac{1}{2(b-a)} ||f'||_{\infty} \int_{a}^{b} (x-a)(b-x)dg(x),$$

$$\leq \frac{1}{12} ||f'||_{\infty} ||g'||_{\infty} (b-a).$$
(21)

This gives us refinement of inequality (7), it has been proved in [1]. Also note that Theorem 2.7 provides us weighted version of inequalities (6) and (7).

In Theorem 2.5 and 2.7, the weight function p is positive on [a,b]. This condition can be weaken if we use Steffensen's generalization of Čebyšev inequality.

THEOREM 2.8. Assume that $g:[a,b] \to \mathbb{R}$ is monotonic nondecreasing, $p:[a,b] \to \mathbb{R}$ be integrable function such that (3) is valid and $f:[a,b] \to \mathbb{R}$ is absolutely continuous with $f' \in L_{\infty}[a,b]$. Then inequality (16) is valid.

Proof. As it is given in [4]

$$T(f,g;p) = \frac{1}{P^2(b)} \left(\int_a^b \overline{P}(x) \int_a^x P(t) dg(t) df(x) + \int_a^b P(x) \int_x^b \overline{P}(t) dg(t) df(x) \right),$$

where $\bar{P}(x) = P(b) - P(x)$. This gives us

$$\begin{split} |T(f,g;p)| &\leqslant \frac{||f'||_{\infty}}{P^2(b)} \left\{ \int_a^b \overline{P}(x) dx \int_a^x P(t) dg(t) + \int_a^b P(x) dx \int_x^b \overline{P}(t) dg(t) \right\} \\ &= ||f'||_{\infty} T(l,g;p), \text{ where } l(x) = x \text{ for } x \in [a,b]. \end{split}$$

Combining the above expression with (11) gives us the required result. \Box

THEOREM 2.9. Assume that $g:[a,b] \to \mathbb{R}$ is monotonic nondecreasing, $p:[a,b] \to \mathbb{R}$ be integrable function such that (3) is valid and $f,g:[a,b] \to \mathbb{R}$ is absolutely continuous with $f',g' \in L_{\infty}[a,b]$. Then inequality (19) is valid.

Proof. Using inequality (20) and Theorem 2.8, we get the required result. \Box

THEOREM 2.10. Assume that $f,g:[a,b] \to \mathbb{R}$ are continuous on [a,b] and differentiable on [a,b] with $g'(t) \neq 0$ for each $t \in (a,b)$. Also assume that $p:[a,b] \in \mathbb{R}^+$ be integrable function. Then we have the inequalites

$$T(f,g;p) \leq \left\| \frac{f'}{g'} \right\|_{\infty} T(g,g;p)$$

$$\leq \frac{1}{P^{2}(b)} \left\| \frac{f'}{g'} \right\|_{\infty} \int_{a}^{b} \tilde{P}(x) \left[g'(x) \right]^{2} dx. \tag{22}$$

The above inequalities are sharp.

Proof. Let $t, s \in (a,b)$, with $t \neq s$. By Cauchy mean value theorem there is $\xi \in (t,s)$ such that

$$\frac{f(t) - f(s)}{g(t) - g(s)} = \frac{f'(\xi)}{g'(\xi)},$$

where $g'(\xi) \neq 0$.

Thus, for any $t, s \in (a, b)$ with $t \neq s$ and $g'(t) \neq 0$ for each $t \in [a, b]$, we have

$$\left| \frac{f(t) - f(s)}{g(t) - g(s)} \right| \leqslant \left\| \frac{f'}{g'} \right\|_{\infty}.$$

Using the Korkin's identity (8), we deduce

$$\begin{split} T(f,g;p) &= \frac{1}{2P^2(b)} \int_a^b \int_a^b p(s)p(t) \left(\frac{f(s) - f(t)}{g(s) - g(t)} \right) (g(s) - g(t))^2 ds dt, \\ &\leqslant \frac{1}{2P^2(b)} \int_a^b \int_a^b p(s)p(t) \left| \frac{f(s) - f(t)}{g(s) - g(t)} \right| (g(s) - g(t))^2 ds dt, \\ &\leqslant \frac{1}{2P^2(b)} \left\| \frac{f'}{g'} \right\|_{\infty} \int_a^b \int_a^b p(s)p(t) (g(s) - g(t))^2 ds dt \\ &= \left\| \frac{f'}{g'} \right\|_{\infty} T(g,g;p). \end{split}$$

This gives us the first inequality in (22). The second inequality follows by applying Lemma 2.1 to first inequality.

The sharpness of the inequalities can be proved in a way similar as in Theorem 2.5. $\ \Box$

COROLLARY 2.11. Assume that $f,g:[a,b] \to \mathbb{R}$ are continuous on [a,b] and differentiable on [a,b] with $g'(t) \neq 0$ for each $t \in (a,b)$, then the inequalities are valid:

$$T(f,g) \leqslant \left\| \frac{f'}{g'} \right\|_{\infty} T(g,g),$$

$$\leqslant \frac{1}{2(b-a)} \left\| \frac{f'}{g'} \right\|_{\infty} \int_{a}^{b} (x-a)(b-x) \left[g'(x) \right]^{2} dx.$$
(23)

The first inequality in (23) and the constant $\frac{1}{2}$ in second inequality are sharp.

Proof. Considering p(t) = 1 for $t \in [a,b]$ in Theorem 2.10, we get the required result. \Box

REFERENCES

- [1] P. CERONE AND S. S. DRAGOMIR, Some Ostrowski-type bounds for the Čebyšev functional and applications, J. Math. Inequal. 8, 1 (2014), 159–170.
- [2] P. L. CHEBYSHEV, Sue les expressions approximatives des inté grales définies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov 2 (1882), 93–98.
- [3] A. M. OSTROWSKI, On an integral inequalty, Aequat. Math. 4 (1970), 358–373.
- [4] J. E. PEČARIĆ, On the Ostrowski Generalization of Čebyšev Inequality, J. Math. Anal. Appl. 102 (1984), 479–487.
- [5] J. E. PEČARIĆ, F. PROSCHAN AND Y. L. TONG, Convex functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
- [6] J. F. Steffensen, En ulighed mellem middelve edier, Mat. Tidsskrift B, 49–53.

(Received October 1, 2013)

K. M. Awan

Department of Mathematics, University of Sargodha

Sargodha, Pakistan

e-mail: khalid819@uos.edu.pk

J. Pečarić

Abdus Salam School of Mathematical Sciences, GC University

68-B, New Muslim Town

Lahore 54600, Pakistan

ana

Faculty of Textile Technology, University of Zagreb

Pierottijeva 6

10000 Zagreb, Croatia

e-mail: pecaric@mahazu.hazu.hr

Atiq ur Rehman

Department of Mathematics

COMSATS Institute of Information Technology

Attock, Pakistan

e-mail: atiq@mathcity.org