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(Communicated by A. Aglić Aljinović)

Abstract. In this paper, we obtain Ostrowski-type bounds for the weighted Čebyšev functional.
Also we give bounds of weighted Čebyšev functional in the case of Steffesen’s generalization of
Čebyšev inequality.

1. Introduction and preliminaries

Let f ,g : [a,b] → R and p : [a,b] → R
+ be Lebesgue integrable functions. Then

we consider the weighted Čebyšev functional:

T ( f ,g; p) :=
1

P(b)

b∫
a

p(t) f (t)g(t)dt − 1
P(b)

b∫
a

p(t) f (t)dt · 1
P(b)

b∫
a

p(t)g(t)dt, (1)

where P(x) =
∫ x
a p(t)dt .

If p(t) = 1 for all t ∈ [a,b] , we define Čebyšev functional T ( f ,g) = T ( f ,g;1) .
It is known that if f and g are monotonic in the same direction on interval [a,b] ,

then
T ( f ,g; p) � 0 (2)

If f and g are monotonic in opposite directions on interval [a,b] , then the reverse
of the inequality in (2) is valid. In both cases, equality in (2) holds if and only if either
f or g is constant almost everywhere.

Steffensen [6] (see also [5, page 199]) noted that inequality (2) is also valid when
f is an increasing function on [a,b] and g satisfies the condition

1
P(x)

x∫
a

p(t)g(t)dt � 1
P(b)

b∫
a

p(t)g(t)dt, where P(x) =
x∫

a

p(t)dt, (3)

for x ∈ (a,b) .
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bounds.
The research of the second author was supported by the Croatian Ministry of Science, Education and Sports under

the Research Grant 117-1170889-0888.

c© � � , Zagreb
Paper JMI-09-15

155

http://dx.doi.org/10.7153/jmi-09-15


156 K. M. AWAN, J. PEČARIĆ AND ATIQ UR REHMAN

The condition p(t) > 0 for t ∈ [a,b] for the inequality (2) can be replaced by

0 � P(x) � P(b) for a � x � b. (4)

In 1970, A. M. Ostrowski [3] proved that if g is absolutely continuous on [a,b]
and g′ ∈ L∞[a,b] , then

|T ( f ,g)| � 1
8
(b−a)(M−m)‖g′‖∞, (5)

provided m and M are real numbers with property

−∞ < m � f � M < ∞ and ‖g′‖∞ = sup
t∈[a,b]

|g′(t)|.

The constant 1
8 in (5) cannot be improved in the general case.

In [1], P. Cerone and S. Dragomir gave the bounds of the Čebyšev functional
T ( f ,g) . Namely, they proved that if g is non-decreasing on [a,b] and f is absolutely
continuous on [a,b] with f ′ ∈ L∞[a,b] , then

|T ( f ,g)| � 1
2(b−a)

‖ f ′‖∞

∫ b

a
(x−a)(b− x)dg(x) (6)

holds and the constant 1
2 is best possible. They deduce bound of T ( f ,g) given by

Čebyšev in [2] i.e. if g is absolutely continuous on [a,b] and g′ ∈ L∞[a,b] , then

|T ( f ,g)| � 1
12

‖ f ′‖∞‖g′‖∞(b−a)2, (7)

holds and the constant 1
12 is sharp.

In this paper, we find Ostrowski-type bounds for weighted Čebyšev functional and
deduce the results of [1] in the case of non-weighted Čebyšev functional. Also we give
some bounds in the case of Steffesen generalization of weighted Čebyšev inequality.

2. Main results

Let f ,g be integrable functions on [a,b] and p be positive integrable function
on [a,b] with P(b) :=

∫ b
a p(t)dt . Then the weighted version of Korkin’s identity is

represented by

T ( f ,g; p) =
1

2P2(b)

∫ b

a

∫ b

a
p(x)p(y)( f (x)− f (y)) (g(x)−g(y))dxdy. (8)

We use identity (8) to prove the following lemma, which later leads to the bounds of
Čebyšev functional.
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LEMMA 2.1. Let φ : [a,b] → R be an absolutely continuous function, and p :
[a,b]→ R

+ an integrable function and (ϕ ′)2 ∈ L[a,b]

P(x) =
∫ x

a
p(t)dt and P̃(x) = P(x)

∫ b

a
t p(t)dt−P(b)

∫ x

a
t p(t)dt. (9)

Then we have the inequality

T (φ ,φ ; p) � 1
P2(b)

∫ b

a
P̃(x)

[
φ ′(x)

]2
dx, (10)

provided that the integral on right hand side of above inequality exists. Also the in-
equality in (10) is sharp.

Proof. We have (see [4])

T ( f ,g; p) =
1

P2(b)

∫ b

a

{∫ x

a
p(t)h(t)dt

}
g′(x)dx,

where

h(t) =
∫ b

a
p(s)( f (s)− f (t))ds.

If we take l(x) = x , then

T (l,g; p) =
1

P2(b)

∫ b

a

∫ x

a
p(t)

∫ b

a
p(s)(s− t)dsdtg′(x)dx.

A simple computation yields that

T (l,g; p) =
1

P2(b)

∫ b

a
P̃(x)g′(x)dx. (11)

Korkin’s identity (8) gives us

T (φ ,φ ; p) =
1

2P2(b)

∫ b

a

∫ b

a
p(x)p(y)(φ(x)−φ(y))2 dxdy,

=
1

2P2(b)

∫ b

a

∫ b

a
p(x)p(y)(x− y)2

(
φ(x)−φ(y)

x− y

)2

dxdy.

Since φ is absolutely continuous, φ(t)− φ(s) =
∫ t
s φ ′(u)du , and by using Cauchy-

Schwarz inequality, we have

T (φ ,φ ; p) =
1

2P2(b)

∫ b

a

∫ b

a
p(x)p(y)(x− y)2

(∫ y
x φ ′(s)ds
x− y

)2

dxdy,

� 1
2P2(b)

∫ b

a

∫ b

a
p(x)p(y)(x− y)2

(
1

x− y

∫ y

x
[φ ′(s)]2ds

)
dxdy,

=
1

2P2(b)

∫ b

a

∫ b

a
p(x)p(y)(x− y)

(∫ y

x
[φ ′(s)]2ds

)
dxdy.

= T (l,ψ ; p), by applying Korkin’s identity with ψ(x) =
∫ x

a

[
φ ′(s)

]2
ds.
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Now using (11) , we get inequality (10) .
To prove the sharpness of (10) , we assume this inequality is valid with a constant

C > 0, that is,

T (φ ,φ ; p) � C
P2(b)

∫ b

a
P̃(x)

[
φ ′(x)

]2
dx, (12)

If we consider φ(x) = x , then we observe that the left hand side of (12) is equal to
1

P2(b)

∫ b
a P̃(x)dx and the right hand side of (12) is equal to C

P2(b)

∫ b
a P̃(x)dx. Thus we

deduce that C � 1. �
A non-weighted case of the above theorem is given in the following corollary. It

is also proved in [1].

COROLLARY 2.2. If φ : [a,b] → R is an absolutely continuous function with
(ϕ ′)2 ∈ L[a,b], then we have the inequality

T (φ ,φ) � 1
2(b−a)

∫ b

a
(x−a)(b− x)[φ ′(x)]2dx. (13)

The constant 1
2 is the best possible.

Proof. Using p(t) = 1 in (9) , we get

P̃(x) = (x−a)
∫ b

a
tdt− (b−a)

∫ x

a
tdt,

=
1
2
(x−a)(b2−a2)− 1

2
(b−a)(x2−a2),

=
1
2
(x−a)(b−a)(b− x).

Now using this result in (10) , along with the fact that T (φ ,φ ,1) = T (φ ,φ) , we get the
result.

The inequality in (10) is sharp and we get constant 1
2 in the simplification of (9) ,

hence it is best possible. �
Throughout the paper we keep the notations P(x) and P̃(x) used in Lemma 2.1.

THEOREM 2.3. Let f ,g : [a,b] → R be two absolutely continuous functions with
( f ′)2 , (g′)2 ∈ L[a,b] and p : [a,b] → R

+ be an integrable function, then we have the
inequalities

|T ( f ,g; p)| � 1
P(b)

T
1
2 ( f , f ; p)

(∫ b

a
P̃(x)

[
g′(x)

]2
dx

) 1
2

,

� 1
P2(b)

(∫ b

a
P̃(x)

[
f ′(x)

]2
dx

) 1
2
(∫ b

a
P̃(x)

[
g′(x)]

]2
dx

) 1
2

.

The above inequalities are sharp.
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Proof. By Cauchy-Schwartz inequality for double integrals, we have

|T ( f ,g; p)| � T
1
2 ( f , f ; p)T

1
2 (g,g; p). (14)

Now using (8) and Lemma 2.1 in above inequality, we get the required result. �
If we consider p(t) = 1, then we get Theorem 1 of [1], which is stated in the

following corollary.

COROLLARY 2.4. Let f ,g : [a,b]→ R be two absolutely continuous functions on
[a,b] with ( f ′)2 , (g′)2 ∈ L[a,b] . Then we have the inequality

T ( f ,g) � 1√
2

[T ( f , f )]
1
2

1√
b−a

(∫ b

a
(x−a)(b− x)

[
g′(x)

]2
dx

) 1
2

,

� 1
2(b−a)

(∫ b

a
(x−a)(b− x)

[
f ′(x)

]2
dx

) 1
2

×
(∫ b

a
(x−a)(b− x)

[
g′(x)

]2
dx

) 1
2

.

(15)

The constants 1√
2

and 1
2 in (15) are best possibles.

THEOREM 2.5. Assume that g : [a,b]→ R is monotonic nondecreasing, p : [a,b]
→ R

+ be integrable function and f : [a,b] → R is absolutely continuous with f ′ ∈
L∞[a,b] . Then we have the inequality

|T ( f ,g; p)| � ‖ f ′‖∞

P2(b)

∫ b

a
P̃(x)dg(x), (16)

The inequality (16) is sharp.

Proof. We have, by Korkin’s identity, that

|T ( f ,g; p)| =
1

2P2(b)

∣∣∣∣
∫ b

a

∫ b

a
p(x)p(y)( f (x)− f (y)) (g(x)−g(y))dxdy

∣∣∣∣ ,
� 1

2P2(b)

∫ b

a

∫ b

a
p(x)p(y)

∣∣∣∣ f (x)− f (y)
x− y

∣∣∣∣ |(x− y)(g(x)−g(y))|dxdy,

� || f ′||∞
2P2(b)

∫ b

a

∫ b

a
p(x)p(y) |(x− y)(g(x)−g(y))|dxdy,

=
|| f ′||∞
2P2(b)

∫ b

a

∫ b

a
p(x)p(y)(x− y)(g(x)−g(y))dxdy,

= || f ′||∞ T (l,g; p), where l(x) = x for x ∈ [a,b].

Now we have

T (l,g; p) =
1

P2(b)

∫ b

a
P̃(x)dg(x).
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This leads us to (16) . Now to prove sharpness of the inequality, we consider that there
exists constant D > 0 such that

|T ( f ,g; p)| � D
P2(b)

‖ f ′‖∞

∫ b

a
P̃(x)dg(x). (17)

If we choose f (x) = g(x) = x , x ∈ [a,b] , then we observe that the left hand side of (17)
is equal to 1

P2(b)

∫ b
a P̃(x)dx and the right hand side of (17) is equal to D

P2(b)

∫ b
a P̃(x)dx .

Thus we deduce that D � 1. �

The following result is a non-weighted case of the above result and has been
proved in [1].

COROLLARY 2.6. Assume that g : [a,b] → R is monotonic nondecreasing on
[a,b] and f : [a,b] → R is absolutely continuous with f ′ ∈ L∞[a,b] . Then we have
the inequality

|T ( f ,g)| � 1
2(b−a)

|| f ||∞
∫ b

a
(x−a)(b− x)dg(x). (18)

The constant 1
2 is best possible.

Proof. Putting p(t) = 1 for t ∈ [a,b] in (16) gives the required result. �

THEOREM 2.7. Assume that f ,g : [a,b]→ R are absolutely continuous functions
with f ′,g′ ∈ L∞[a,b] and g is non-decreasing on [a,b] . Also assume that p : [a,b] →
R

+ is integrable function. Then we have an inequality

|T ( f ,g; p)| � || f ′‖|∞
P2(b)

∫ b

a
P̃(x)dg(x),

� 1
P2(b)

‖ f ′‖∞‖g′‖∞

∫ b

a
P̃(x)dx.

(19)

The above inequalities are sharp.

Proof. Since g is absolutely continuous and g ∈ L∞[a,b] , therefore

∫ b

a
P̃(x)dg(x) =

∫ b

a
P̃(x)g′(x)dx

� ‖g′‖∞

∫ b

a
P̃(x)dx.

(20)

Using the above result in Theorem 2.5, we get the required result. Sharpness of the
inequalities is obvious from the sharpness of inequality in Theorem 2.5. �
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If we consider p(t) = 1 for all t ∈ [a,b] in Theorem 2.7, then we have

|T ( f ,g)| � 1
2(b−a)

‖ f ′‖∞

∫ b

a
(x−a)(b− x)dg(x), (21)

� 1
12

‖ f ′‖∞‖g′‖∞ (b−a).

This gives us refinement of inequality (7) , it has been proved in [1]. Also note that
Theorem 2.7 provides us weighted version of inequalities (6) and (7) .

In Theorem 2.5 and 2.7, the weight function p is positive on [a,b] . This condition
can be weaken if we use Steffensen’s generalization of Čebyšev inequality.

THEOREM 2.8. Assume that g : [a,b]→ R is monotonic nondecreasing, p : [a,b]
→ R be integrable function such that (3) is valid and f : [a,b] → R is absolutely
continuous with f ′ ∈ L∞[a,b] . Then inequality (16) is valid.

Proof. As it is given in [4]

T ( f ,g; p) =
1

P2(b)

(∫ b

a
P(x)

∫ x

a
P(t)dg(t)d f (x)+

∫ b

a
P(x)

∫ b

x
P(t)dg(t)d f (x)

)
,

where P(x) = P(b)−P(x) .
This gives us

|T ( f ,g; p)| � || f ′||∞
P2(b)

{∫ b

a
P(x)dx

∫ x

a
P(t)dg(t)+

∫ b

a
P(x)dx

∫ b

x
P(t)dg(t)

}

= || f ′||∞ T (l,g; p), where l(x) = x for x ∈ [a,b].

Combining the above expression with (11) gives us the required result. �

THEOREM 2.9. Assume that g : [a,b]→ R is monotonic nondecreasing, p : [a,b]
→ R be integrable function such that (3) is valid and f ,g : [a,b] → R is absolutely
continuous with f ′,g′ ∈ L∞[a,b] . Then inequality (19) is valid.

Proof. Using inequality (20) and Theorem 2.8, we get the required result. �

THEOREM 2.10. Assume that f ,g : [a,b] → R are continuous on [a,b] and dif-
ferentiable on [a,b] with g′(t) �= 0 for each t ∈ (a,b) . Also assume that p : [a,b]∈ R

+

be integrable function. Then we have the inequalites

T ( f ,g; p) �
∥∥∥∥ f ′

g′

∥∥∥∥
∞

T (g,g; p)

� 1
P2(b)

∥∥∥∥ f ′

g′

∥∥∥∥
∞

∫ b

a
P̃(x)

[
g′(x)

]2
dx.

(22)

The above inequalities are sharp.
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Proof. Let t,s ∈ (a,b), with t �= s . By Cauchy mean value theorem there is ξ ∈
(t,s) such that

f (t)− f (s)
g(t)−g(s)

=
f ′(ξ )
g′(ξ )

,

where g′(ξ ) �= 0.

Thus, for any t,s ∈ (a,b) with t �= s and g′(t) �= 0 for each t ∈ [a,b] , we have

∣∣∣∣ f (t)− f (s)
g(t)−g(s)

∣∣∣∣ �
∥∥∥∥ f ′

g′

∥∥∥∥
∞

.

Using the Korkin’s identity (8) , we deduce

T ( f ,g; p) =
1

2P2(b)

∫ b

a

∫ b

a
p(s)p(t)

(
f (s)− f (t)
g(s)−g(t)

)
(g(s)−g(t))2dsdt,

� 1
2P2(b)

∫ b

a

∫ b

a
p(s)p(t)

∣∣∣∣ f (s)− f (t)
g(s)−g(t)

∣∣∣∣(g(s)−g(t))2dsdt,

� 1
2P2(b)

∥∥∥∥ f ′

g′

∥∥∥∥
∞

∫ b

a

∫ b

a
p(s)p(t)(g(s)−g(t))2dsdt

=
∥∥∥∥ f ′

g′

∥∥∥∥
∞

T (g,g; p).

This gives us the first inequality in (22) . The second inequality follows by applying
Lemma 2.1 to first inequality.

The sharpness of the inequalities can be proved in a way similar as in Theorem
2.5. �

COROLLARY 2.11. Assume that f ,g : [a,b] → R are continuous on [a,b] and
differentiable on [a,b] with g′(t) �= 0 for each t ∈ (a,b) , then the inequalities are
valid:

T ( f ,g) �
∥∥∥∥ f ′

g′

∥∥∥∥
∞

T (g,g),

� 1
2(b−a))

∥∥∥∥ f ′

g′

∥∥∥∥
∞

∫ b

a
(x−a)(b− x)

[
g′(x)

]2
dx.

(23)

The first inequality in (23) and the constant 1
2 in second inequality are sharp.

Proof. Considering p(t) = 1 for t ∈ [a,b] in Theorem 2.10, we get the required
result. �
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