lournal of
athematical
nequalities

Volume 9, Number 1 (2015), 155-163 doi:10.7153/jmi-09-15

STEFFENSEN’S GENERALIZATION OF CEBYSEV INEQUALITY

K. M. AWAN, J. PECARIC AND ATIQ UR REHMAN

(Communicated by A. Agli¢ Aljinovic)

Abstract. In this paper, we obtain Ostrowski-type bounds for the weighted éeby§ev functional.
Also we give bounds of weighted Ceby3ev functional in the case of Steffesen’s generalization of
CebysSev inequality.

1. Introduction and preliminaries

Let f,g: [a,b] — R and p: [a,b] — R" be Lebesgue integrable functions. Then
we consider the weighted CebySev functional:

b b
1 1
T(f.4:p) /p N u/p(t)f(t)dt- o) a/p@g(t)dz, M)

where P(x) = [ p(¢)dt 5
If p(r) =1 forall # € [a,b], we define CebySev functional T'(f,g) =T(f,g;1).
It is known that if f and g are monotonic in the same direction on interval [a,b],
then

T(f.g:p) =0 (2)

If f and g are monotonic in opposite directions on interval [a,b], then the reverse
of the inequality in (2) is valid. In both cases, equality in (2) holds if and only if either
f or g is constant almost everywhere.

Steffensen [6] (see also [3, page 199]) noted that inequality (2) is also valid when
f is an increasing function on [a,b] and g satisfies the condition

%jp(;)g@) PL/b )dt, where P(x /p 3)

for x € (a,b).
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The condition p(¢) > 0 for ¢ € [a,b] for the inequality (2) can be replaced by
0< P(x) <P(b) for a<x<b. (4)

In 1970, A. M. Ostrowski [3] proved that if g is absolutely continuous on [a,b]
and g’ € Lo[a,b], then

(b—a)(M—m)|g'||-, ©)

O | ==

IT(f.8) <

provided m and M are real numbers with property

—eo<m< f<M<eoand ||g'l|l.. = sup [¢(r)].
t€la,b]

The constant % in (5) cannot be improved in the general case.

In [1], P. Cerone and S. Dragomir gave the bounds of the Ceby3ev functional
T(f,g). Namely, they proved that if g is non-decreasing on [a,b] and f is absolutely
continuous on [a,b] with f" € Le,[a,b], then

1

b
70,8 < gy Il | (e )b~ ©)

holds and the constant % is best possible. They deduce bound of T(f,g) given by
Cebysev in [2] i.e. if g is absolutely continuous on [a,b] and g’ € L [a,b], then

1 / /
Tl < 17 ll=lgll (b~ a)?, ™

1 .
holds and the constant 15 is sharp.

In this paper, we find Ostrowski-type bounds for weighted Cebysev functional and
deduce the results of [1] in the case of non-weighted CebySev functional. Also we give
some bounds in the case of Steffesen generalization of weighted CebySev inequality.

2. Main results
Let f,g be integrable functions on [a,b] and p be positive integrable function

on [a,b] with P(b) := ff p(t)dt. Then the weighted version of Korkin’s identity is
represented by

1 b rb
T80 = 3 [, [ POPOI W~ F0) (6) gD sdy. )

We use identity (8) to prove the following lemma, which later leads to the bounds of
Cebysev functional.
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LEMMA 2.1. Let ¢ : [a,b] — R be an absolutely continuous function, and p :
[a,b] — RT an integrable function and (¢')* € L{a,b]

P(x) = / " p(t)dt and B(x) = P(x) / o0Vt — P(b) / “ip(t)d, ©)
Then we have the inequality
T(9,0:p) < o / " B [0/ (x)] dx (10)
) ’p ~ Pz(b) u )

provided that the integral on right hand side of above inequality exists. Also the in-
equality in (10) is sharp.

Proof. We have (see [4])

T(f.8:p)= /{/p } (x)dx,

b
0= / p(s) (f(s) — £(01)) ds.
If we take [(x) = x, then

T(l,gp) P2 / / / )(s —1t)dsdtg' (x)dx.

A simple computation yields that

where

T(l,g:p) = /a hP(x)g’(x)dx. (11)

Korkin’s identity (8) gives us

1060050 = gy [ | 0p0) (000) — 00 dsas,

~ sy | pree (220 gy

Since ¢ is absolutely continuous, ¢(¢) — ¢ (s) = [ ¢'(u)du, and by using Cauchy-
Schwarz inequality, we have

0,00 = gy || [ pps 27 (EEOLY gy
s | prie-? (= [o6ras) asa
— sy |, [ peowee—) ([10/01Pas ) dvas.

X
= T(I,y;p), by applying Korkin’s identity with y(x) = / [q)’(s)]zds.

N
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Now using (11), we get inequality (10).
To prove the sharpness of (10), we assume this inequality is valid with a constant
C > 0, that is,

2

b
T(0.0:0) < s [ P[00 a (12

If we consider ¢(x) = x, then we observe that the left hand side of (12) is equal to
1%(17) fubﬁ(x)dx and the right hand side of (12) is equal to 1%(1)) / f P(x)dx. Thus we
deducethat C>1. O

A non-weighted case of the above theorem is given in the following corollary. It
is also proved in [1].

COROLLARY 2.2. If ¢ : [a,b] — R is an absolutely continuous function with
(¢")? € L[a,b], then we have the inequality

b
7(0.60) < 5557 |, (=) (b—0)lo (P (13)
The constant % is the best possible.

Proof. Using p(t) =1 in (9), we get

b X
x—a)/ tdt—(b—a)/ tdt,

1
(x—a)(bz—az) — E(b—a)(xz—az),

P(x) =

—

R — 1] —

(x—a)(b—a)(b—x).

Now using this result in (10
result.

The inequality in (10) is sharp and we get constant % in the simplification of (9),
hence it is best possible. [

=

, along with the fact that T(¢,¢,1) =T(¢,9), we get the

Throughout the paper we keep the notations P(x) and P(x) used in Lemma 2.1.

THEOREM 2.3. Let f,g: [a,b] — R be two absolutely continuous functions with
(f")?, (¢')? € Lla,b] and p: [a,b] — R* be an integrable function, then we have the
inequalities

‘ B

IT(f,g:p)| <

v

()

1
2
1

T ([ P e ar)

(/abf’ @) [f’<x>]2dx)5 ( [P [8/(x)]]2dx) 2

The above inequalities are sharp.

1
<
- P2(b)



STEFFENSEN’S GENERALIZATION OF éEBYgEV INEQUALITY 159

Proof. By Cauchy-Schwartz inequality for double integrals, we have

1 1
IT(f,&:p)| <T2(f.fip)T2(8,8:P)- (14)
Now using (8) and Lemma 2.1 in above inequality, we get the required result. [
If we consider p(z) = 1, then we get Theorem 1 of [1], which is stated in the

following corollary.

COROLLARY 2.4. Let f,g: [a,b] — R be two absolutely continuous functions on
[a,b] with (f')?, (g')? € L[a,b]. Then we have the inequality

1 % 1 b , B %
1.0 < SNt (a0 @] a)

s ([ o o)) 1s)

X (/ab(x—a)(b—x) [g’(x)]zdx)z.

The constants % and % in (15) are best possibles.

THEOREM 2.5. Assume that g : [a,b] — R is monotonic nondecreasing, p : [a,b]
— R™ be integrable function and f : [a,b] — R is absolutely continuous with f' €
Le.[a,b]. Then we have the inequality

1 Nl
P2(b

b ~
IT(f.8:p)| < / P(x)dg(x), (16)

~

The inequality (16) is sharp.

Proof. We have, by Korkin’s identity, that

(.80 = 55y |/, ) £0) (8x) — g(v)) dxdy
<2P2 //p ‘fx )I(x—y)(g(X)—g(y))\dxdy,
%‘LJ;H / / |(x— ) (g(x) — g(v))| dxdy,

:2H}J:2/H / / —)(g(x) = g(v))dxdy,

|f'||= T(l,g;p), where [(x) = x for x € [a,b].

Now we have

T(l,gp)=
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This leads us to (16). Now to prove sharpness of the inequality, we consider that there
exists constant D > 0 such that

b
7(7,8:0) < 5 | Pwds(). a7
P b a
If we choose f (x) = g(x) =x, x € [a, D], then we observe that the left hand side of (1 )
is equal to P2 f P(x)dx and the right hand side of (17) is equal to 2 f P(x)dx
Thus we deduce that D>1. O

The following result is a non-weighted case of the above result and has been
proved in [1].

COROLLARY 2.6. Assume that g : [a,b] — R is monotonic nondecreasing on
[a,b] and [ :|a,b] — R is absolutely continuous with f' € Le|a,b]. Then we have
the inequality

IT(f,9) < )I\f\lm / (x—a)(b—x)dg(x). (18)

2(b -

The constant % is best possible.

Proof. Putting p(t) =1 for t € [a,b] in (16) gives the required result. [J

THEOREM 2.7. Assume that f,g: [a,b] — R are absolutely continuous functions
with f',g' € Lw[a,b] and g is non-decreasing on |a,b|. Also assume that p : |a,b] —
R™ is integrable function. Then we have an inequality

Fle
(g < LU= [ pgdg (),
P2(b) Ja
! b (19)
< —— / - ! - P d
oy I =181 | Pojax
The above inequalities are sharp.
Proof. Since g is absolutely continuous and g € L.[a,b], therefore
/ P(x)dg(x / P(x
(20)

<ll¢'ll- / Plx)dx

Using the above result in Theorem 2.5, we get the required result. Sharpness of the
inequalities is obvious from the sharpness of inequality in Theorem 2.5. [
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If we consider p(t) =1 forall 7 € [a,b] in Theorem 2.7, then we have
7081 < sl - [ =)o —0)ds ) e
.8 S3-a) - (x—a x)dg(x),

1
< — ol ||eo (B — a).
< I7 1=l |- (b= a)

This gives us refinement of inequality (7), it has been proved in [1]. Also note that
Theorem 2.7 provides us weighted version of inequalities (6) and (7).

In Theorem 2.5 and 2.7, the weight function p is positive on [, b]. This condition
can be weaken if we use Steffensen’s generalization of Ceby3ev inequality.

THEOREM 2.8. Assume that g : [a,b] — R is monotonic nondecreasing, p : [a,b]
— R be integrable function such that (3) is valid and f : [a,b] — R is absolutely
continuous with f' € Le|a,b|. Then inequality (16) is valid.

Proof. Asitis givenin [4]

1) = gy ([ 700 [ POastar+ [ o [ Poastare).

where P(x) = P(b) — P(x).
This gives us

T(f.e:p) |f/|°°{/P d/P Vs (t +/P dx/P \dg(1) }

= |||~ T(lL,g;p), where I(x) = x for x € [a,b)].

Combining the above expression with (11) gives us the required result. [

THEOREM 2.9. Assume that g : [a,b] — R is monotonic nondecreasing, p : [a,b]
— R be integrable function such that (3) is valid and f,g : [a,b] — R is absolutely
continuous with f',g' € Le|a,b]. Then inequality (19) is valid.

Proof. Using inequality (20) and Theorem 2.8, we get the required result. [

THEOREM 2.10. Assume that f,g : [a,b] — R are continuous on [a,b] and dif-
ferentiable on [a,b] with g'(t) # 0 for each t € (a,b). Also assume that p : [a,b] € R*
be integrable function. Then we have the inequalites

T(f,gp) < ‘ Jg; T(g,8:p)
o . i (22)
i 7| Polg @] as

The above inequalities are sharp.
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Proof. Let t,s € (a,b), with 1 # s. By Cauchy mean value theorem there is & €
(t,s) such that

f)—fs) _ f(§)
g(t)—g(s) &(&)’

where g'(§) #0.
Thus, for any #,s € (a,b) with 7 # s and g'(r) # 0 for each 7 € [a, D], we have

f/

<|%

’f(f)—f(S)
7

8(1) —g(s)

oo

Using the Korkin’s identity (8), we deduce

T(f,g:p) = 2P2 //p (fj; f(g)(g(s)—g(t)fdsdz,

2P2 //p

//\

<z |5 [ / p(5)p(0) a(s) — 8(1) s
= ‘ 5 Tlgg:p).

This gives us the first inequality in (22). The second inequality follows by applying
Lemma 2.1 to first inequality.

The sharpness of the inequalities can be proved in a way similar as in Theorem
25. O

COROLLARY 2.11. Assume that f,g : [a,b] — R are continuous on |a,b] and
differentiable on [a,b] with g'(t) # O for each t € (a,b), then the inequalities are
valid:

f/

- (23)
1 f/ b / 2
< m ‘ ? ‘x)/u (x_a)(b—x) [g (.x)] dx.

The first inequality in (23) and the constant % in second inequality are sharp.

Proof. Considering p(r) =1 for 7 € [a,b] in Theorem 2.10, we get the required
result. [
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