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NEW GENERALIZED 2D NONLINEAR INEQUALITIES
AND APPLICATIONS IN FRACTIONAL
DIFFERENTIAL-INTEGRAL EQUATIONS
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(Communicated by Q.-H. Ma)

Abstract. In this paper, we study some new generalized 2D nonlinear Gronwall-Bellman type
inequalities, which provide explicit bounds for unknown functions concerned, and are useful
in the analysis of qualitative and quantitative properties for solutions to fractional differential
and differential-integral equations. The presented inequalities are of new forms compared with
the existing results so far in the literature. For illustrating the validity of the results presented,
we present one application for them, in which the boundedness, uniqueness, and continuous
dependence on the initial value and parameter for the solution to a certain fractional differential-
integral equation are investigated.

1. Introduction

As is known, various inequalities play important roles in the research of differ-
ential equations, integral equations as well as difference equations. Among these in-
equalities, the Gronwall-Bellman inequality [1,2] and its various generalizations are
of particular importance as these inequalities provide explicit bounds for the unknown
functions concerned. During the past decades, much effort has been done for devel-
oping such inequalities (for example, see [3—22] and the references therein). These
generalizations of the Gronwall-Bellman inequality can be used as a handy tool in the
analysis of qualitative and quantitative properties such as boundedness, uniqueness,
and continuous dependence on initial data for solutions to certain differential equa-
tions, integral equations as well as difference equations. But we notice that most of the
Gronwall-Bellman type inequalities established so far can only be used in the research
of differential equations of integer order, while in order to fulfill qualitative and quan-
titative analysis for solutions to some certain differential equations of fractional order,
the earlier inequalities established are inadequate. So it is necessary to establish new
inequalities so as to obtain the desired analysis.

In [23], Ye et al. presented a new Gronwall-Bellman type inequality in the follow-
ing theorem:
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THEOREM A. Suppose B >0, a(t) is a nonnegative function locally integrable
on 0 <t <T (some T <e)and g(t) is a nonnegative, nondecreasing continuous
Sunction defined on 0 <t < T, g(t) < M (constant), and suppose u(t) is nonnegative
and locally integrable on 0 <t < T with

t
u(t) <a(r) +g(t)/ (r— s)ﬁ_lu(s)ds
0
on this interval. Then

"o [(g)T(B))" B
u(t) <a(n)+ | E[W(z—s) B la(s)}ds, 0<i<T.

Theorem A has proved to be useful in the research of boundedness and continuous
dependence on the order o and the initial condition for solutions to certain fractional
differential equations with the fractional derivative defined in the sense of Riemann-
Liouville fractional derivative.

The aim of this paper is to establish some new generalized nonlinear 2D Gronwall-
Bellman type inequalities, which is the 2D extension of the inequality in Theorem A,
and is of more general forms than the inequality above. Based on these inequalities,
new explicit bounds for unknown functions concerned are obtained. The presented in-
equalities can be used as a handy tool in the qualitative as well as quantitative analysis
of fractional differential and differential-integral equations. For illustrating the valid-
ity of the established results, we will present one application for them, in which the
boundedness, uniqueness, and continuous dependence on initial data for the solution to
a certain fractional differential-integral equation are investigated.

2. Main results

First we study the following inequality:

uf(x,y) <a(x,y)+ mh(xy) /Oy /Ox(x—s)o‘_l(y—t)l3_1L(s,t7u(sJ))dsdt7
(x,y) €D, ey

Similar inequality involving the form L(s,t,®) can be found in [4]. Here o, B >
0, p>1lisaconstant, D:={(x,y)0<x<X,0<y<Y}, LeC(DxXRy,Ry) with
0 < L(s,t,u) — L(s,¢,v) < T(u—v) for u >v >0, where T is the Lipschitz constant,
u(x,y), a(x,y), h(x,y) are nonnegative functions locally integrable on D with h(x,y)
nondecreasing and bounded by M, where M is a positive constant.

Based on the inequality (1), we will derive an explicit bound for the function
u(x,y).

LEMMA 1. [24] Assume that a >0, p > q >0, and p # 0, then for any K > 0
a% < qu;Tpa—i-gK%.
p p
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THEOREM 2. [f the inequality denoted in (1) satisfies, then we have the following
estimate for u(x,y):

o e [ [ 5 (50 e

1
7

X (y— t)"ﬁ‘lb“(s,t)] dsdt} '

o (x,y // —1)P- 1L<s,t7TlKP>dsdt

and K > 0 is a constant.

, (x,y)eD, )

where

a(x,y) = a(x,y) + =——=rav

Proof. Denote the right-hand side of (1) by v(x,y). Then we have

u(x,y) <vr(x,y), (x,y) € D. 3)
So it follows that
1 Yy X 1
v(x7y) < a(x7y) + Wh(X7y)/0 /(; (X— s)ail(y_t)ﬁill‘(svhvp (S7t))det7
(x,y) €D. “4)

By use of Lemma 1 we obtain that
< ;h i _o-lo, Bl
V(x7y)\a(x7y)+r (y) o f =) =1)
><L(s7t,lK Py(s, t)—f——lKI’)dsdt
— 1 oc 1 B—1
_a(x7y)+1—~ (X F(ﬁ 7y / / S t)
1 1-p 1
x[L(s,t7—Kr W(s, t)+TKP>—L< tTK )
p—1 1
+L(S,I,TKP)]dsdt
1 Yo [x
a(x,y) + =—=—=-h(x, //x—s‘)‘*l —)B-1 KI’ s,
() Frarggr ) [ ] 9 =P DK s
+L(s7t,p—_1K%>}dsdt
p
_ 1 Yo o—1 B—1 p—1_1
—a(x,y)—i-r h(x,y)//(x )% (y—1) L(s,t, . KP)dsdt
+ZKFTP h(x,y // (x—8)% Ny —1)P~Nv(s,1)dsdr
p

=c7(x,y>+£1<7r h(x,y / / — 1B N(s, 1)dsd.
(5)
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Define the operator G such that

Gz(x,y) = £K¥ mh(my) /Oy /Ox(x—s)o‘_l(y—t)ﬁ_lz(s,t)dsdt,

where z is locally integrable on D. Then from (5) we have

v(x,y) <d(x,y) +Gv(x,y).

Furthermore,

n—1
v(x,y) < Y Gra(x,y) + G™v(x,y). (6)
k=0

Next we will show that the following relation holds:

n- T 1*7)[1 " l Y x n _ no— _ np—1-
G"a(x,y) < <;K I ) 7l"(n(x)l"(nﬂ)/o /0 B (x,y)(x — 8)"* Ly —1)"P~a(s, 1 )dsdt.
(7

In order to prove the inequality above, we will use the mathematical induction method.
When n =1, (7) holds in equality. Assume that (7) holds for n = k. Then for
n=k+1, we have

G a(x,y) = G(Gra(x,y))
1-p\ k+1 oc
<(ZK’> ( )(kﬂl) xy// x=s) =0

// (s, (s — )k (s 5)"13 'al,&)dTdg | s

<<_K’)>k+1 _ )(kﬁl)( hk+1xy// (x— )% (y—1)B-1
// Tkl — gYB-15(1, é)drdé]dsdt

k+1 1

-G<7) BT TR

//// x—9)* Ny —0)P s — o)k (e — E)F NG, & )drdE dsdt
k+1 1

=) M )

//// (=) =P s— )k (1 - &) Na(x, & )dsdrddE
k+1 1

=(%") M

/// ()Pt — é)kﬁ’ldt}[/:(x—s)""l(s—T)k“’lds}&(r,’g')drdé.

®)
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On the other hand, letting s = T+ p(x — T), we obtain that

x 1
/T (x—s)a_l(s— ,L.)koc—lds — (x_ T)(k-&-l)oc—l/o (1 _p)a—lpka—ldp
— (x_ T)(k+1)0£—lB(ka7a)

(k+1)a—1 I'(o)I'(kor)

=0=7) T((k+ D)’

€)

where B(kot, o) denotes the beta function. Similarly, for the integral [; g (y—1)B=1(r—
EVB=1dr, if we let t = & + ¢ (y— &), then we obtain that

Lo gyt = ot [ g g
¢ 0

= (=) B(kp, )
— - gy B (10)

Combining (8)-(10) we deduce that (7) holds for n = k+ 1. So (7) is proved.
Moreover, as h(x,y) < M, then

MT
G"v(x,y) < <—K P / / ) 1 t)”ﬁ_lv(s,t)dsdt.
p I'(no)T nﬂ

: : : MT Lr n no—1
Since when n — oo, I'(na)T"(nf) tends to infinity faster than (—p K7 ) (x—s)
(y— t)”ﬁ_l, then one can see lim G"v(x,y) = 0. So combining with (6)—(7) we have

n—so0

proved the desired inequality (2). O

COROLLARY 3. Under the conditions of Theorem 2, furthermore, assume a(x,y)
is nondecreasing. Then we have the following estimate:

> 1-p )% B\n
u(x,y)g{ﬁ(x7y)2(zKT)nr (h(x,y)x®y")"

17, (x.y) €D.

= (noo+1)T(nB+1)
Proof. From (2) we obtain
u(x,y)
<{atxy) +/Oy/0x @1 (%KITPY%()C—s)"a_l(y—t)"ﬁ_la(s,t)} dsdt}
<‘7%()C’y){l+/oy/ox {il (gKl”pyr(:;()xr’gﬁ)("_s)wl(y_t)nﬁl]ds‘”}%

oo l—p\n X, o By\n %
- {5(x7y) ; (ZKT> 1“(;1(2(4r f;r(yﬂ)ﬂ) '

==
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So the proof is complete. [J
Now we study the following inequality with more general form than (1)

(x,y) <a(x,y) +/Oy /Oxb(s,t)uq(s7t)dsdt
—0)B1L(s,,u(s,1))dsdt,

@R

(x,y) €D,
(x,y), h(x,y) are defined as in Theorem 2, b(x,y) is a
i zq=>1.

1)

where D, a, B, u(x,y), a(x,
nonnegative function locally integrable on D, and p, g are constants with p > ¢
), a(x,y), b(x,y) are

LEMMA 4. (see [25, Lemma 1] with T =R) Suppose u(x,y)
>0. Then

continuous functions with b(x,y)
u(x,y) < a(x,y) +/ bst) (s,1)dsdt

implies
(x,y) <a(x,y)+/y:/xo a(s,t)b(s,t)exp / / b(t,&) deé)dsdt

Furthermore, if a(x,y) is nondecreasing, then we have
(x,y)exp ( b(s,t)dsdt).

Yo 7Xo

u(x,y) <a

THEOREM 5. If a(x,y) is nondecreasing, and the inequality (11) satisfies, then

we have
() <exp (LK'F /y/xb(s,z)dsdt){a(x,y>+/0“/0 2 %K“T”)
(x,y) € D, (12)
where
(x,y) = alx,y) + ﬂK% /y /xb(s7t)dsdt
+ a)ll" B) h(x,y // (x—s)%" 1y )ﬁ*1L<S,t,pT?1K%>dsdt,
h <€K¥/0 /0 b(s,t)dsdt h(x,y).

h(x,y) = exp
p
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Proof. Denote the right-hand side of (1) by v(x,y). Then we have

u(x,y) VI (xy), (v.y) € D. (13)
So by Lemma 1 it follows that
v(x,y) < a(x,y) +/y /xb(s,t)v%(s,t)dsdt
+ = o (x,y / / —1)P- 1L<s7t,vl’ (s, t))dsdt

a(x,y)+/ / b(s,t) —KI_’v(sJ)—l—;qK%]dsdt
(O P p

1 y " ~
+Wh<x,y>//<x—s> ()Pt

1 1= 1 1
X |L|s,t,—K 7 i st —|——K
Lot & s+ 22k
—L(s,z, p—_lK%) +L<s,t7 p—_lK%)]dsdt
a(x,y +/ / bst KI’ (st)+ KI’]dsdt
1
I _o— l B—1 K
e [ /0 (x—s) > K )
p—1.1
+L(s7t, . K:)]dsdt7 (x,y) € D. (14)
Let
_ Yy X
Z(x,y):a(x,y)—l—uK%/ / b(s,t)dsdt
1 -1 1
p-1 P~ ks
4+ = T8 xy// —1) L( 8,1, > Kf’>dsdt
5 B=1y(s,1)dsd
T (B) h(x,y // — )P (s, t)dsdt.

‘\
(S

+—=K

"BI’\]'ﬂ

Then we have
g5 7"
v(x,y) <z(x,y)+=K'? / / b(s,t)v(s,t)dsdt, (x,y) € D. (15)
p 0 Jo
By z(x,y) is nondecreasing, applying Lemma 4 to (15) we get that

vey) <senep (265 [ [onasar). wyyep. ae
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Moreover,

2(n,y) <alx,y)+ MK% / ’ / (s, )dsdi
) T ) / / x— )%y Z)ﬁ_lL(s,LpT?lK%)dsdt
*%KIT’ r(a>1r<ﬁ>h(x’y% f = to-nP
X [z(s,t)exp (%K? /Ot/osb(r,’g')drdéﬂdsdt
a(x,y)+ MK% /y /xb(s,t)dsdt
* TGy e / / —1)P- 1L(s,t771Kﬁ>dsdt

1-p
+ZK»’ e Kﬁ//bstdsdt
p ()(

<o) [ /0 =) % y— )P o (s, 1) dsdlt

-3 r %71 h(x ' xx—sO“ — 1)1z (s,1)ds
= atey) + K7 ) [ e P s asar,

(x,y) €D. a7)

(=)

We notice that the structure of (17) is the same as (5). So following in a similar manner
to the proof in Theorem 2 we get that

3 l p 71\" Xs no— nB—1-~
) s dle +/ / g‘ (noz()l"{r)zﬁ)(x_s) =0y ats, o) | dsdr,

(x,y) € D. (18)
Combining (13), (16) and (18) we get the desired result. [
COROLLARY 6. For Theorem 5, similar to the proof of Corollary 3, we can obtain
the following estimate for u(x,y):

oye (Aley)x®P) 3
(g ") r(nﬁﬁi) (ﬁﬁﬂ)} ’

q L <
u(x,y)<exp —2K » / / b( stdsdt alx,y)
n=»

(x,y) eD.

0



NEW GENERALIZED 2D NONLINEAR INEQUALITIES AND APPLICATIONS 243

3. Applications

In this section, we apply the inequalities established above to research bounded-
ness, uniqueness, and continuous dependence on the initial value and parameter for
the solution to a fractional differential-integral equation. Let us consider the following
fractional differential-integral equation:

DB (x,y) = Ky + I f(x,y,u(x,y)), (x,y) €D, (19)

with the initial condition

DY~ (v, y) -0 = Ko, (20)
where 0 < o, B < 1, J¥ denotes the Riemann- Liouville fractional partial integral
with respect to the variable x defined by J%v(x,y) = F(a) Jo(x—= )% 1v(s,y)ds, Dﬁ
denotes the Riemann-Liouville fractional partial derlvatlve with respect to the vari-
able y defined by DPv(x,y) = F(ll—ﬁ) F R G=0Puxndi, f€CDxR,R) with
|f(x,y,u)| < L(x,y,|u|), where D, L are defined as in Theorem 2.

THEOREM 7. For the IVP (19)—(20), we have the following estimate:

”(x7y)<</W(x»y)+/0y/ox[ i <gK_%>nm(x—s)"“‘l(y—t)"ﬁ—lW(s,t)] dsdt,
(21)

where W (x,y)

in Theorem 2.

=y

Proof. The equivalent integral form of the IVP (19)—(20) can be denoted as fol-
lows:

By — K2 p- K s
R ORI T

1 y X . B
+W/o /o (x=5)" My —=0)P 1 f(s,8,u(s,1))dsdt.
So
u(x,y)?

- yXX—Sa_ —0)B 1 (s, uls s
<)F(ﬂ)y + (ﬁ-l—l )+ (ﬁ)/() /0( ) 1()7 1) l‘f( e (»t))"l di

T _yp- d ’ xx—s”“ —)BL(s,t, |u(s s
<t e +F(a)l“([5)/0 /0( )% =0)P L (s, 1, (s, )] )dsdle

:W()@y)—km/Oy/Ox(x—s)afl(y—t)ﬁflL(sJ,|u(s7t)|)dsdt, (x,y) € D.

(22)

Then a suitable application of Theorem 2 (with p = 3) to (22) yields the desired re-
sult. [
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THEOREM 8. If |f(x,y,u) — f(x,y,v)| < L(x,y,|u® —V3|), where L is defined as
in Theorem 2, and L(s,t,0) = 0, then the IVP (19)—(20) has a unique solution.

Proof. Suppose the IVP (19)—(20) has two solutions u(x,y), uz(x,y). Then we
have

)= r1<<123>y'3_1 e

/ / (x5 (v =P f (s, (5,))dsdr,  (23)

K2
b = F(ﬁ>yﬁ i

/ / x—5)% Ny —0)BVf(s,0,ux(s,1))dsdr. (24)

Furthermore,
m@y) 63(x,y)
St o ) G om0 s an (50) = (st (), 25)
which nnphes
\Ml(x Y) —uz(x ¥)|

/ / x—s)%7 t)ﬁfl‘f(sj,ul(s,t))—f(s7t,u2(s7t))|dsdt
< W/O /0 (x_s)a—l(y—t)ﬁ—lL(SJ,|u?(S,t)—u%(s,t)|)dsdt. (26)

Treating |u3(x,y) —u3(x,y)| as one independent function, applying Theorem 2 to (26)
we obtain |u3(x,y) —u3(x,y)| < 0, which implies u; (x,y) = uz(x,y). So the proof is
complete. [J
Now we research the continuous dependence on the initial value and parameter for
the solution of the IVP (19)—(20).
THEOREM 9. Let u(x,y) be the solution of the IVP (19)—(20), and u(x,y) be the
solution of the following IVP:
DI (x,y) = Ky + 2 f(x.y.(x, ), o
D 1# (x,y) -0 = Ko.

If |Ki—Ki| <€, i=1,2, where € is arbitrarily small, and |f(x,y,u) — f(x,y,v)| <
L(x,y, |u® —v?|), where L is defined as in Theorem 2, and L(s,t,0) = 0, then we have:
B-1 VP 1 xmx
P Yy
X,y x,y)| < 8{ + =t {
e o R A

(n+1)B " n+1[3 1
[ g )H}»
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where B(o,3) denotes the beta function.

Proof. The equivalent integral form of the IVP (27) is denoted as follows:

”(’“’”‘rw)y * (ﬁ+1>y
/ / — OB (s,e s, 0))dsdr. (29)
So we have

W(x,y) - (x ZK_Eﬁ” ! ﬁ x) —a(x
(5.9) = (x.) F(B)y + ey ) —at)

e | [0t

X [f(sJ,u(s,t)) — f(s,2,u(s,t))]dsds. (30)

Furthermore,
K, — K| 5y |Ki—K|] 1 v
) =Pl <« St T e b b ©
X (y—= )PV f (st uls,0)) — f(s,2,7(s,1))|dsdt,

y[ﬁl yﬁ 1 Y ox " .
<e(55 * ) * g o o 0000
XL(SJ»W?(SJ)—Mg(s7t)|)dsdz. 31)

Applying Theorem 2 to (31), after some basic computation we can get the desired
result. [

4. Conclusions

In this paper, we have established some new generalized 2D nonlinear Gronwall-
Bellman type inequalities. As one can see from the present example, the results estab-
lished are useful in researching the qualitative as well as quantitative properties such
as the boundedness, uniqueness, and continuous dependence on the initial value and
parameter for solutions to certain fractional differential and differential-integral equa-
tions. Moreover, we note that in order to fulfill analysis for the solutions to fractional
differential-integral equations with more complicated forms, it is necessary to establish
corresponding Gronwall-Bellman type inequalities with more general forms.
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