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Abstract. Let P be a real n×n matrix, whose all the eigenvalues have positive real part, At = tP ,
t > 0 , γ = trP is the homogeneous dimension on R

n and Ω is an At -homogeneous of degree
zero function, integrable to a power s > 1 on the unit sphere generated by the corresponding
parabolic metric. We study the parabolic fractional maximal and integral operators MP

Ω,α and

IPΩ,α , 0 < α < γ with rough kernels in the parabolic generalized Morrey space Mp,ϕ,P(Rn) .

We find conditions on the pair (ϕ1,ϕ2) for the boundedness of the operators MP
Ω,α and IPΩ,α

from the space Mp,ϕ1 ,P(Rn) to another one Mq,ϕ2,P(Rn) , 1 < p < q < ∞ , 1/p− 1/q = α/γ ,
and from the space M1,ϕ1,P(Rn) to the weak space WMq,ϕ2 ,P(Rn) , 1 � q < ∞ , 1− 1/q =
α/γ . We also find conditions on ϕ for the validity of the Adams type theorems MP

Ω,α , IPΩ,α :
M

p,ϕ
1
p ,P

(Rn) → M
q,ϕ

1
q ,P

(Rn),1 < p < q < ∞ .

1. Introduction

The boundedness of classical operators of the real analysis, such as the maximal
operator, fractional maximal operators, fractional integral operators and singular inte-
gral operators etc, from one weighted Lebesgue space to another one is well studied by
now, and there are well known various applications of such results in partial differential
equations. Besides Lebesgue spaces, Morrey spaces, both the classical ones (the idea of
their definition having appeared in [22]) and generalized ones, also play an important
role in the theory of partial differential equations, see [12, 19, 20, 29, 30].

In this paper, we find conditions for the boundedness of the parabolic fractional
maximal and integral operators with rough kernel from a parabolic generalized Morrey
space to another one, including also the case of weak boundedness, and prove Adams
type boundedness theorems for this operators. To precisely formulate the results of this
paper, we need the notions given below.

Note that we deal not exactly with the parabolic metric, but with a general aniso-
tropic metric ρ of generalized homogeneity, the parabolic metric being its particular
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case, but we keep the term parabolic in the title and text of the paper, following the
existing tradition, see for instance [7].

Everywhere in the sequel A � B means that A � CB with some positive constant
C independent of appropriate quantities. If A � B and B � A , we write A ≈ B and say
that A and B are equivalent.

1.1. Parabolic homogeneous space {R
n,ρ ,dx}

For x∈R
n and r > 0, we denote the open ball centered at x of radius r by B(x,r) ,

its complement by
�
B(x,r) and |B(x,r)| will stand for the Lebesgue measure of B(x,r) .

Let P be a real n×n matrix, whose all the eigenvalues have positive real part. Let
At = tP (t > 0) , and set

γ = trP.

Then, there exists a quasi-distance ρ associated with P such that (see [8])

(a) ρ(Atx) = tρ(x), t > 0, for every x ∈ R
n;

(b) ρ(0) = 0, ρ(x) = ρ(−x) � 0

and ρ(x− y) � k(ρ(x− z)+ ρ(y− z));

(c) dx = ργ−1dσ(w)dρ , where ρ = ρ(x),w = Aρ−1x

and dσ(w) is a measure on the unit ellipsoid Sρ = {w : ρ(w) = 1}.
Then, {R

n,ρ ,dx} becomes a space of homogeneous type in the sense of Coifman-
Weiss (see [8]) and a homogeneous group in the sense of Folland-Stein (see [10]).
Moreover, we always assume that there hold the following properties of the quasidis-
tance ρ :

(d) For every x ,

c1|x|α1 � ρ(x) � c2|x|α2 , if ρ(x) � 1;

c3|x|α3 � ρ(x) � c4|x|α4 , if ρ(x) � 1

and
ρ(θx) � ρ(x) for 0 < θ < 1,

with some positive constants αi and ci (i = 1, . . . ,4) . Similar properties hold also for
the quasimetric ρ∗ associated with the adjoint matrix P∗ .

The following are some important examples of the above defined matrices P and
distances ρ .

1. Let (Px,x) � (x,x) , x ∈ R
n . In this case, ρ(x) is defined as the unique solution

ρ(x) = t of |At−1x|= 1, and k = 1. This is the case studied by Calderon and Torchinsky
in [7].

2. Let P be a diagonal matrix with positive diagonal entries, and t = ρ(x) , x ∈ R
n

be the unique solution of |At−1x| = 1.
2a) When all the diagonal entries are greater than or equal to 1, O. V. Besov, V.

P. Il’in, P. I. Lizorkin in [3] and E. B. Fabes and N. M. Rivière in [9] studied the weak
(1,1) and strong (p, p) estimates of singular integral operators.
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2b) If there are diagonal entries smaller than 1, then ρ satisfies the above (a)−
(d) with k > 1.

3. In [28] Stein and Wainger defined and studied some problems in harmonic
analysis on this kind of spaces. Consider a one parameter group of dilations on R

n ,
At : R

n → R
n for each t > 0 with the following properties:

(i) Ast = AsAt and A1 is the identity;
(ii) lim

t→0
Atx = 0 for every x ∈ R

n ;

(iii) Atx = tPx = exp{P logt}x .
Then all eigenvalues of P have positive real part. Then in this case there exist

0 < β1 < β2 and 0 < c′1 < c′2 such that At has the following properties:
(iv) for every x

c′1t
β1 |x| < |Atx| < c′2t

β2 |x|, for t � 1

and

(c′2)
−1tβ2 |x| < |Atx| < (c′1)

−1tβ1 |x|, for t � 1.

By [28], if |Atx| were strictly monotonic, then we might define the unique solutions
of |Atx| = 1 by ρ(x) . Otherwise, there is a positive definite symmetric matrix B such
that

〈Atx〉 = 〈Atx〉B = (BAtx,Atx)
1
2

is strictly increasing and thus ρ can be defined as follows: For x 	= 0, ρ(x) is the
unique positive t such that 〈A−1

t (x)〉 = 1. For x = 0, set ρ(x) = 0. Then for x 	= 0

x = Aρ(x)w(x),

where 〈w(x)〉 = 1 and w(x) is unique. Let ρ∗(ξ ) be the quasi-distance function corre-
sponding to the group A∗

t = tP
∗
= exp(P∗ logt) . Then ξ = A∗

ρ∗(ξ )(w
∗(ξ )) where

〈w∗(ξ )〉 = (B1w
∗(ξ ),w∗(ξ ))

1
2

for an appropriate positive definite symmetric matrix B .
It was pointed out in [28] that both ρ and ρ∗ satisfy (1.1)–(1.4), and one can

easily see that α1 = α4 = 1
β2

, α1 = α3 = 1
β1

, and ci depends on on the matrices P and
B . Moreover, in this case

dx = ργ−1dσ(w)dρ ,

where dσ(w) is a C∞ measure on the ellipsoid ρ(w)2 = (Bw,w) = 1.
In the standard parabolic case P0 = diag(1, . . . ,1,2) we have

ρ(x) =

√
|x′|2 +

√|x′|4 + x2
n

2
, x = (x′,xn).
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The balls E (x,r) = {y ∈ R
n : ρ(x− y) < r} with respect to the quasidistance ρ

are ellipsoids. For its Lebesgue measure one has

|E (x,r)| = vρrγ ,

where vρ is the volume of the unit ellipsoid. By
�
E (x,r) = R

n \E (x,r) we denote the
complement of E (x,r) .

1.2. Parabolic generalized Morrey spaces

We define the parabolic Morrey space Mp,λ ,P(Rn) via the norm

‖ f‖Mp,λ ,P
= sup

x∈Rn,t>0

(
t−λ

∫
E (x,t)

| f (y)|pdy

)1/p

< ∞,

where 1 � p � ∞ and 0 � λ � γ .
If λ = 0, then Mp,0,P(Rn) = Lp(Rn) ; if λ = γ , then Mp,γ,P(Rn) = L∞(Rn) ; if

λ < 0 or λ > γ , then Mp,λ ,P = Θ , where Θ is the set of all functions equivalent to 0
on R

n .
We also denote by WMp,λ ,P(Rn) the weak parabolic Morrey space of functions

f ∈WLloc
p (Rn) for which

‖ f‖WMp,λ ,P
= sup

x∈Rn,t>0
r−

λ
p ‖ f‖WLp(E (x,r)) < ∞,

where WLp(E (x,r)) denotes the weak Lp -space of measurable functions f for which

‖ f‖WLp(E (x,r)) = sup
t>0

t |{y ∈ E (x,r) : | f (y)| > t}|1/p .

Note that WLp(Rn) = WMp,0,P(Rn) ,

Mp,λ ,P(Rn) ⊂WMp,λ ,P(Rn) and ‖ f‖WMp,λ ,P
� ‖ f‖Mp,λ ,P

.

If P = I , then Mp,λ (Rn) ≡ Mp,λ ,I(Rn) is the classical Morrey space.
We introduce the parabolic generalized Morrey spaces following the known ideas

of defining generalized Morrey spaces ([15, 24, 26] etc).

DEFINITION 1.1. Let ϕ(x,r) be a positive measurable function on R
n × (0,∞)

and 1 � p < ∞ . The space Mp,ϕ,P ≡ Mp,ϕ,P(Rn), called the parabolic generalized
Morrey space, is defined by the norm

‖ f‖Mp,ϕ,P = sup
x∈Rn,t>0

ϕ(x,t)−1 |E (x,t)|− 1
p ‖ f‖Lp(E (x,t)).
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DEFINITION 1.2. Let ϕ(x,r) be a positive measurable function on R
n × (0,∞)

and 1 � p < ∞ . The space WMp,ϕ,P ≡ WMp,ϕ,P(Rn), called the weak parabolic
generalized Morrey space, is defined by the norm

‖ f‖WMp,ϕ,P = sup
x∈Rn,t>0

ϕ(x,t)−1 |E (x,t)|− 1
p ‖ f‖WLp(E (x,t)).

If P = I , then Mp,ϕ(Rn)≡Mp,ϕ,I(Rn) and WMp,ϕ(Rn)≡WMp,ϕ,I(Rn) are the
generalized Morrey space and the weak generalized Morrey space, respectively.

According to this definition, we recover the space Mp,λ ,P(Rn) under the choice

ϕ(x,r) = r
λ−γ

p :

Mp,λ ,P(Rn) = Mp,ϕ,P(Rn)

∣∣∣∣∣
ϕ(x,r)=r

λ−γ
p

.

1.3. Operators under consideration

Let Sρ = {w ∈ R
n : ρ(w) = 1} be the unit ρ -sphere (ellipsoid) in R

n (n � 2)
equipped with the normalized Lebesgue surface measure dσ and Ω be At -homoge-
neous of degree zero, i.e. Ω(Atx) ≡ Ω(x) , x ∈ R

n , t > 0. The parabolic fractional
maximal function MP

Ω,α f and the parabolic fractional integral IP
Ω,α f by with rough

kernels, 0 < α < γ, of a function f ∈ Lloc
1 (Rn) are defined by

MP
Ω,α f (x) = sup

t>0
|E (x,t)|−1+ α

γ

∫
E (x,t)

|Ω(x− y)| | f (y)|dy,

IP
Ω,α f (x) =

∫
Rn

Ω(x− y) f (y)
ρ(x− y)γ−α dy.

If Ω ≡ 1, then MP
α ≡ MP

1,α and IP
α ≡ IP

1,α are the parabolic fractional maximal
operator and the parabolic fractional integral operator, respectively. If α = 0, then
MP

Ω ≡MP
Ω,0 is the parabolic maximal operator with rough kernel. If P = I , then MΩ,α ≡

MI
Ω,α is the fractional maximal operator with rough kernel, and M ≡MI

Ω,0 is the Hardy-
Littlewood maximal operator with rough kernel. It is well known that the parabolic
fractional maximal operators play an important role in harmonic analysis (see [10, 27]).

We prove the boundedness of the parabolic fractional maximal and integral op-
erators MP

Ω,α , IP
Ω,α with rough kernel from one parabolic generalized Morrey space

Mp,ϕ1,P(Rn) to another one Mq,ϕ2,P(Rn) , 1 < p < q < ∞ , 1/p− 1/q = α/γ , and
from the space M1,ϕ1,P(Rn) to the weak space WMq,ϕ2,P(Rn) , 1 � q < ∞ , 1−1/q =
α/γ . We also prove the Adams type boundedness of the operators MP

Ω,α , IP
Ω,α from

M
p,ϕ

1
p ,P

(Rn) to M
q,ϕ

1
q ,P

(Rn) for 1 < p < q < ∞ and from M1,ϕ,P(Rn) to

WM
q,ϕ

1
q ,P

(Rn) for 1 < q < ∞ .
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2. Preliminaries

In the papers [24, 25], where the maximal and other operator were studied in
generalized Morrey spaces, the following condition was imposed on ϕ(x,r) :

c−1ϕ(x,r) � ϕ(x,t) � cϕ(x,r), (2.1)

whenever r � t � 2r , jointly with the condition:

∫ ∞

r
ϕ(x,t)p dt

t
� Cϕ(x,r)p

for the maximal or singular operators and the condition

∫ ∞

r
tα pϕ(x,t)p dt

t
� Crα pϕ(x,r)p (2.2)

for potential and fractional maximal operators, where c and C do not depend on r and
x .

The results of [24, 25] imply the following statement.

THEOREM 2.1. Let 1 � p < ∞ , 0 < α < γ
p , 1

q = 1
p − α

γ and ϕ(x,t) satisfy

the conditions (2.1) and (2.2). Then MP
α and IP

α are bounded from Mp,ϕ,P(Rn) to
Mq,ϕ,P(Rn) for p > 1 and from M1,ϕ,P(Rn) to WMq,ϕ,P(Rn) for p = 1 .

In [11] the following statement was proved by fractional integral operator with
rough kernels IΩ,α , containing the result in [21, 24].

THEOREM 2.2. LetΩ ∈ Ls(Sn−1) , 1 < s � ∞ , be homogeneous of degree zero.
Let 0 < α < n, s′ < p < n

α , 1
q = 1

p − α
n and ϕ(x,r) satisfy the condition (2.1) and

∫ ∞

r
tα pϕ(x,t)p dt

t
� Crα pϕ(x,r)p, (2.3)

where C does not depend on x and r . Then the operator IΩ,α is bounded from Mp,ϕ
to Mq,ϕ .

The following statements, containing results obtained in [21], [24] was proved in
[13, 15] (see also [4]–[6], [14]–[17]).

THEOREM 2.3. Let 0 < α < γ , 1 � p < γ
α , 1

q = 1
p − α

γ and (ϕ1,ϕ2) satisfy the
condition ∫ ∞

r
tα−1ϕ1(x,t)dt � Cϕ2(x,r), (2.4)

where C does not depend on x and r . Then the operator IP
α is bounded from Mp,ϕ1,P

to Mq,ϕ2,P for p > 1 and from M1,ϕ1,P to WLMq,ϕ2 for p = 1 .
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Let v be a weight on (0,∞). We denote by L∞,v(0,∞) the space of all functions
g(t) , t > 0 with finite norm

‖g‖L∞,v(0,∞) = ess sup
t>0

v(t)|g(t)|

and write L∞(0,∞) ≡ L∞,1(0,∞) . Let M(0,∞) be the set of all Lebesgue-measurable
functions on (0,∞) and M+(0,∞) its subset of all nonnegative functions. By
M+(0,∞;↑) we denote the cone of all functions in M+(0,∞) non-decreasing on (0,∞)
and introduce also the set

A =
{

ϕ ∈ M+(0,∞;↑) : lim
t→0+

ϕ(t) = 0

}
.

Let u be a non-negative continuous function on (0,∞) . We define the supremal opera-
tor Su on g ∈ M(0,∞) by

(Sug)(t) := ‖ug‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [5].

THEOREM 2.4. Let v1 , v2 be non-negative measurable functions satisfying 0 <
‖v1‖L∞(t,∞) < ∞ for any t > 0 and let u be a continuous non-negative function on
(0,∞). Then the operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A

if and only if ∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

< ∞. (2.5)

We are going to use the following statement on the boundedness of the weighted
Hardy operator

H∗
wg(t) :=

∫ ∞

t
g(s)w(s)ds, 0 < t < ∞,

where w is a fixed function non-negative and measurable on (0,∞) .
The following theorem was proved in [18].

THEOREM 2.5. Let v1 , v2 and w be positive almost everywhere and measurable
functions on (0,∞) . The inequality

ess sup
t>0

v2(t)H∗
wg(t) � Cess sup

t>0
v1(t)g(t) (2.6)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := ess sup
t>0

v2(t)
∫ ∞

t

w(s)ds
ess sup
s<τ<∞

v1(τ)
< ∞. (2.7)

Moreover, if C∗ is the minimal value of C in (2.6), then C∗ = B.

REMARK 2.1. In (2.6) and (2.7) it is assumed that 1
∞ = 0 and 0 ·∞ = 0.
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3. Boundedness of the parabolic fractional
operators in the spaces Lp(Rn)

In this section we prove the (p, p)-boundedness of the operator MP
Ω and the

(p,q)-boundedness of the operators IP
Ω,α and MP

Ω,α .

THEOREM 3.1. Let Ω ∈ Ls(Sρ) , 1 < s � ∞ , be At -homogeneous of degree zero.
Then the operator MP

Ω is bounded in the space Lp(Rn) , p > s′ .

Proof. In the case s = ∞ the statement of Theorem 3.1 is known and may be found
in [8] and [27]. So we assume that 1 < s < ∞ .

Note that

‖Ω(x−·)‖Ls(E (x,t)) =
(∫

E (0,t)
|Ω(y)|sdy

)1/s

=
(∫ t

0
rγ−1dr

∫
Sρ
|Ω(ω)|sdσ(ω)

)1/s
(3.1)

= c0 ‖Ω‖Ls(Sρ ) |E (x,t)|1/s,

where c0 =
(
γvρ
)−1/s

and vρ = |E (0,1)| .
The case p = ∞ is easy. Indeed, making use of (3.1), we get

‖MP
Ω f‖L∞ � ‖ f‖L∞ sup

t>0
|E (x,t)|−1+ 1

s′ ‖Ω(x−·)‖Ls(E (x,t)) � c0 ‖Ω‖Ls(Sρ ) ‖ f‖L∞ .

So we assume that s′ < p < ∞. Applying Hölder’s inequality, we get

MP
Ω f (x) � sup

t>0
|E (x,t)|−1‖Ω(x−·)‖Ls(E (x,t)) ‖ f‖Ls′ (E (x,t)). (3.2)

Then from (3.2) and (3.1) we have

MP
Ω f (x) � c0 ‖Ω‖Ls(Sρ ) sup

t>0
|E (x,t)|−1+1/s ‖ f‖Ls′ (E (x,t))

= c0 ‖Ω‖Ls(Sρ )

(
sup
t>0

|E (x,t)|−1‖| f |s′ ‖L1(E (x,t))

)1/s′

= c0 ‖Ω‖Ls(Sρ )

(
MP(| f |s′)(x)

)1/s′
. (3.3)

Therefore, from (3.3) for 1 � s′ < p < ∞ we get

‖MP
Ω f‖Lp � c0 ‖Ω‖Ls(Sρ )‖

(
MP(| f |s′)(x)

)1/s′‖Lp

= c0 ‖Ω‖Ls(Sρ )‖MP| f |s′ ‖1/s′
Lp/s′

� ‖| f |s′ ‖1/s′
Lp/s′

= ‖ f‖Lp . �
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THEOREM 3.2. Suppose that 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ) , is At -

homogeneous of degree zero. Let 1 � p < γ
α and 1/p−1/q= α/γ . Then the fractional

integral operator IPΩ,α is bounded from Lp(Rn) to Lq(Rn) for p > 1 and from L1(Rn)
to WLq(Rn) for p = 1 .

Proof. We denote

K(x) :=
Ω(x)

ρ(x)γ−α

for brevity, and may assume that K(x) � 0. We have∣∣∣{x ∈ R
n : IP

α f (x) > λ}
∣∣∣� ∣∣∣{x ∈ R

n : IP
Ω f (x) > C−1

γ,α λ}
∣∣∣� I1 + I2,

where

I1 :=
∣∣∣{x ∈ R

n : |K1
μ ∗ f (x)| > λ

2

}∣∣∣, I2 :=
∣∣∣{x ∈ R

n : |K2
μ ∗ f (x)| > λ

2

}∣∣∣,
K1

μ(x) = (K(x)− μ)χ
E(μ)(x) and K2

μ(x) = K(x)−K1
μ(x),

μ > 0 and E(μ) = {x ∈ R
n : K(x) > μ} . Note that

|E(μ)| � Bμ
γ

γ−α . (3.4)

where B = 1
α ‖Ω‖

γ
γ−α
L γ

γ−α
(Sρ ) as seen from the following estimation:

|E(μ)| � 1
μ

∫
E(μ)

|Ω(x)|
ρ(x)γ−α dx

=
1
μ

∫
Sρ

Ω(x′)dσ(x′)
∫ ( |Ω(x′)|

μ

) 1
γ−α

0
rα−1dr = Bμ

γ
γ−α .

By means of (3.4) we can prove the estimate

‖K2
μ‖Lp′ �

(γ −α
γ

Bq
) 1

p′ μ
γ

(γ−α)q , 1 � p <
γ
α

.

For p = 1 it easily follows from (3.4), and for p > 1 we have

∫
Rn

|K2
μ(x)|p′dx = p′

∫ μ

0
t p′−1|E(t)|dt

� p′B
∫ μ

0
t p′−1− γ

γ−α dt

=
γ −α

γ
Bqμ

γ
γ−α

p′
q .
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Then by the Young inequality we obtain

‖K2
μ ∗ f‖L∞ � ‖K2

μ‖Lp′ ‖ f‖Lp �
( γ −α

γ
Bq
) 1

p′ μ
γ

(γ−α)q ‖ f‖Lp .

Now for a λ > 0, we choose μ such that

( γ −α
γ

Bq
) 1

p′ μ
γ

(γ−α)q ‖ f‖Lp =
λ
2

,

then ∣∣∣{x ∈ R
n : |K2

μ ∗ f (x)| > λ
2

}∣∣∣= 0.

Thus ∣∣∣{x ∈ R
n : IP

α f (x) > λ}
∣∣∣� ∣∣∣{x ∈ R

n : |K1
μ ∗ f (x)| > λ

2

}∣∣∣
�
( 2

λ
‖K1

μ ∗ f‖Lp

)p
. (3.5)

The following estimations take (3.4) into account:∫
Rn

|K1
μ(x)|dx =

∫
E(μ)

(|K(x)|− μ
)
dx

�
∫ ∞

0
|E(t + μ)|dt

� B
∫ ∞

μ
t−

γ
γ−α dt (3.6)

=
αB

γ −α
μ− α

γ−α .

For all f ∈ L∞(Rn) and x ∈ R
n , from (3.6) it follows that

|K1
μ ∗ f (x)| � ‖ f‖L∞

∫
Rn

|K1
μ(x)|dx � αB

γ −α
μ− α

γ−α ‖ f‖L∞ . (3.7)

For all f ∈ L1(Rn) , from (3.6) follows

‖K1
μ ∗ f‖L1 �

∫
Rn

∫
Rn

|K1
μ(x− y)|| f (y)|dxdy � αB

γ −α
μ− α

γ−α ‖ f‖L1 . (3.8)

Thus from (3.7) and (3.8) follows that the operator T1 : f →K1
μ ∗ f is of (∞,∞) and

(1,1)-type. Then by the Riesz-Thorin theorem the operator T1 is also of (p, p)-type,
1 < p < ∞ , and

‖T1 f‖Lp � αB
γ −α

μ− α
γ−α ‖ f‖Lp . (3.9)
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From (3.5) and (3.9) we get∣∣∣{x ∈ R
n : IP

α f (x) > λ}
∣∣∣� ( 2

λ
‖K1

μ ∗ f‖Lp

)p

� C
( 1

λ
‖ f‖Lp

)q
, (3.10)

where C is independent of λ and f .
To finish the proof, i.e. prove that the operator IP

α is bounded from Lp(Rn) to
Lq(Rn) for 1 < p < γ

α and 1/p− 1/q = α/γ , observe that the inequality (3.10) tells
us that IP

α is bounded from L1(Rn) to WLq(Rn) with 1−1/q = α/γ . We choose any
p0 such that p < p0 < γ

α , and put 1
q0

= 1
p0
− α

γ . By (3.10) the operator IP
α is of weak

(p0,q0)-type. Since it is also of weak (1,q)-type by the Marcinkiewicz interpolation
theorem, we conclude that IP

α is of (p,q)-type. �

COROLLARY 3.1. Under the assumptions of Theorem 3.2, the fractional maximal
operator MP

Ω,α is bounded from Lp(Rn) to Lq(Rn) for p > 1 and from L1(Rn) to
WLq(Rn) for p = 1 .

Proof. It suffices to refer to the known fact that

MP
Ω,α f (x) � Cγ,α IP

Ω,α f (x), Cγ,α = |E (0,1)| γ−α
γ , �

Note that in the isotropic case P = I Theorem 3.2 was proved in [23].

4. Parabolic fractional maximal operator with rough kernels in the spaces
Mp,ϕ,P(Rn)

Note that in the next Section 5 we obtain boundedness results of Spanne and
Adams type for the fractional integral operator IP

Ω,α . Although MP
Ω,α f is dominated

by IP
Ω,α f and consequently from the results of Section 5 there may be derived the cor-

responding results for MP
Ω,α f , we obtain here a Spanne type statement for the operator

MP
Ω,α f separately from Section 5, because for this operator we are able to obtain the

boundedness results under weaker assumptions than in Section 5, see Remark 5.3.
Recall that in the classical isotropic case, i.e. in the case of of the operator Mα ,

0 � α < n on R
n with Euclidean distance, sufficient conditions on for the boundedness

of this operator in generalized Morrey spaces Mp,ϕ(Rn) have been obtained in [2, 5,
15, 24].

LEMMA 4.1. Suppose that 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ) is At -

homogeneous of degree zero. Let 1 � p < γ
α , 1

q = 1
p − α

γ . Then for any ball E = E (x,r)
in R

n and f ∈ Lloc
p (Rn) there hold the inequalities

‖MP
Ω,α f‖Lq(E (x,r)) � ‖ f‖Lp(E (x,2kr)) + r

γ
q sup

t>2kr
t−γ+α‖Ω(x−·) f (·)‖L1(E (x,t)), p > 1,
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‖MP
Ω,α f‖WLq(E (x,r)) � ‖ f‖L1(E (x,2kr)) + r

γ
q sup

t>2kr
t−γ+α‖Ω(x−·) f (·)‖L1(E (x,t)), p = 1.

(4.1)

Proof. Given a ball E = E (x,r), we split the function f as f = f1 + f2 , where
f1 = f χE (x,2kr) and f2 = f χ�(E (x,2kr))

, and then

‖MP
Ω,α f‖Lq(E ) � ‖MP

Ω,α f1‖Lq(E ) +‖MP
Ω,α f2‖Lq(E ).

Let p > 1. By Corollary 3.1

‖MP
Ω,α f1‖Lq(E ) � ‖ f‖Lp(E (x,2kr)).

To estimate MP
Ω,α f2(y), observe that if E (y,t)∩ �

(E (x,2kr)) 	= /0, where y ∈ E , then

t > r . Indeed, if z ∈ E (y,t)∩ �
(E (x,2kr)), then t > ρ(y− z) � 1

k ρ(x− z)−ρ(x− y) >
2r− r = r .

On the other hand, E (y,t)∩ �
(E (x,2kr)) ⊂ E (x,2kt) . Indeed, for z ∈ E (y,t)∩

�
(E (x,2kr)) we get ρ(x− z) � kρ(y− z)+ kρ(x− y)< k(t + r) < 2kt .

Hence

MP
Ω,α f2(y) = sup

t>0

1

|E (y,t)|1−α/γ

∫
E (y,t)∩�(E (x,2kr))

| f (z)||Ω(x− z)|dz

� (2k)γ−α sup
t>r

1

|E (x,2kt)|1−α/γ

∫
E (x,2kt)

| f (z)||Ω(x− z)|dz

= (2k)γ−α sup
t>2kr

1

|E (x,t)|1−α/γ

∫
E (x,t)

| f (z)||Ω(x− z)|dz.

Therefore, for all y ∈ E we have

MP
Ω,α f2(y) � (2k)γ−α sup

t>2kr

1

|E (x,t)|1−α/γ

∫
E (x,t)

| f (z)||Ω(x− z)|dz. (4.2)

Thus

‖MP
Ω,α f‖Lq(E ) � ‖ f‖Lp(E (x,2kr)) + |E | 1

q sup
t>2kr

1

|E (x,t)|1−α/γ

∫
E (x,t)

| f (z)||Ω(x− z)|dz.

Let p = 1. We have

‖MP
Ω,α f‖WLq(E ) � ‖MP

Ω,α f1‖WLq(E ) +‖MP
Ω,α f2‖WLq(E ).

By Corollary 3.1 we get

‖MP
Ω,α f1‖WLq(E ) � ‖ f‖L1(E (x,2kr)).

Then by (4.2) we arrive at (4.1) and complete the proof. �
Similarly to Lemma 4.1 and Theorem 3.1 the following lemma may be proved.
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LEMMA 4.2. Let the function Ω ∈ Ls(Sρ) , 1 < s � ∞ , be At -homogeneous of
degree zero. Then for p > s′ and any ball E = E (x,r) the inequality

‖MP
Ω f‖Lp(E (x,r)) � ‖ f‖Lp(E (x,2kr)) + r

γ
p sup

t>2kr
t−γ‖Ω(x−·) f (·)‖L1(E (x,t))

holds for all f ∈ Lloc
1 (Rn) .

LEMMA 4.3. Suppose that the function Ω ∈ L γ
γ−α

(Sρ) is At -homogeneous of de-

gree zero. Let 0 < α < γ , 1 � p < γ
α , 1

q = 1
p − α

γ . Then for f ∈ Lloc
p (Rn) there hold

the inequalities

‖MP
Ω,α f‖Lq(E (x,r)) � r

γ
q sup

t>2kr
t−

γ
q ‖ f‖Lp(E (x,t)), p > 1, (4.3)

‖MP
Ω,α f‖WLq(E (x,r)) � r

γ
q sup

t>2kr
t−

γ
q ‖ f‖L1(E (x,t)), p = 1. (4.4)

Proof. Let p > 1 Denote

A1 : = |E | 1
q

(
sup
t>2kr

1

|E (x,t)|1−α/γ

∫
E (x,t)

| f (z)||Ω(x− z)|dz

)
,

A2 : = ‖ f‖Lp(E (x,2kr)).

Applying Hölder’s inequality, we get

A1 � |E | 1
q sup

t>2kr
‖ f‖Lp(E (x,t)) ‖Ω(x−·)‖L γ

γ−α
(E (x,t)) |E (x,t)| α

γ − 1
p

� |E | 1
q sup

t>2kr
|E (x,t)|− 1

q ‖ f‖Lp(E (x,t)).

On the other hand,

|E | 1
q sup

t>2kr
|E (x,t)|− 1

q ‖ f‖Lp(E (x,t))

� |E | 1
q sup

t>2kr
|E (x,t)|− 1

q ‖ f‖Lp(E (x,2kr)) ≈ A2.

Since ‖MP
Ω,α f‖Lq(E ) � A1 +A2, by Lemma 4.1, we arrive at (4.3).

Let p = 1. The inequality (4.4) directly follows from (4.1). �
Similarly to Lemma 4.3 and Theorem 3.1 the following lemma is also proved.

LEMMA 4.4. Suppose that the function Ω ∈ Ls(Sρ) , 1 < s � ∞ , is At -homoge-
neous of degree zero. Then for p > s′ and any ball E = E (x,r) , the inequality

‖MP
Ω f‖Lp(E (x,r)) � r

γ
q sup

t>2kr
t−

γ
p ‖ f‖Lp(E (x,t))

holds for f ∈ Lloc
p (Rn) .
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THEOREM 4.1. Suppose that 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ) is At -

homogeneous of degree zero. Let 1 � p < γ
α , 1

q = 1
p − α

γ , and (ϕ1,ϕ2) satisfy the
condition

sup
r<t<∞

tα− γ
p ess inf

t<τ<∞
ϕ1(x,τ)τ

γ
p � Cϕ2(x,r), (4.5)

where C does not depend on x and r . Then the operator MP
Ω,α is bounded from

Mp,ϕ1,P(Rn) to Mq,ϕ2,P(Rn) for p > 1 and from M1,ϕ1,P(Rn) to WMq,ϕ2,P(Rn) for
p = 1 .

Proof. By Theorem 2.4 and Lemma 4.3 we get

‖MP
Ω,α f‖Mq,ϕ2 ,P � sup

x∈Rn,r>0
ϕ2(x,r)−1 sup

t>r
t−

γ
q ‖ f‖Lp(E (x,t))

� sup
x∈Rn,r>0

ϕ1(x,r)−1 r−
γ
p ‖ f‖Lp(E (x,r)) = ‖ f‖Mp,ϕ1,P ,

if p ∈ (1,∞) and

‖MP
Ω,α f‖WMq,ϕ2,P � sup

x∈Rn,r>0
ϕ2(x,r)−1 sup

t>r
t−

γ
q ‖ f‖L1(E (x,t))

� sup
x∈Rn,r>0

ϕ1(x,r)−1 r−γ ‖ f‖L1(E (x,r)) = ‖ f‖M1,ϕ1,P ,

if p = 1. �
In the same way, by means of Lemma 4.4 we can obtain the following theorem.

THEOREM 4.2. Suppose that the function Ω ∈ Ls(Sρ) , 1 < s � ∞ is At -homoge-
neous of degree zero. Let p > s′ and (ϕ1,ϕ2) satisfy the condition

sup
r<t<∞

t−
γ
p ess inf

t<τ<∞
ϕ1(x,τ)τ

γ
p � Cϕ2(x,r),

where C does not depend on x and r . Then the operator MP
Ω is bounded from

Mp,ϕ1,P(Rn) to Mp,ϕ2,P(Rn) .

5. Parabolic fractional integral operator with rough kernels in the spaces Mp,ϕ,P

5.1. Spanne type result

LEMMA 5.1. Suppose that 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ) , is At -

homogeneous of degree zero. Let 1 � p < γ
α , and 1

q = 1
p − α

γ . Then for all f ∈ Lloc
p (Rn)

there hold the inequalities

‖IP
Ω,α f‖Lq(E (x0,r)) � r

γ
q

∫ ∞

2kr
t−

γ
q−1‖ f‖Lp(E (x0,t))dt, p > 1

and

‖IP
Ω,α f‖WLq(E (x0,r)) � r

γ
q

∫ ∞

2kr
t−

γ
q−1‖ f‖L1(E (x0,t))dt, p = 1. (5.1)
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Proof. For a given ball E = E (x0,r) f, we represent f as

f = f1 + f2, f1(y) = f (y)χ2kE (y), f2(y) = f (y)χ�(2kE )
(y), r > 0,

and have
‖IP

Ω,α f‖Lq(E ) � ‖IP
Ω,α f1‖Lq(E ) +‖IP

Ω,α f2‖Lq(E ).

Since f1 ∈ Lp(Rn) , by the boundedness of IP
Ω,α from Lp(Rn) to Lq(Rn) it follows

that
‖IP

Ω,α f1‖Lq(E ) � ‖IP
Ω,α f1‖Lq(Rn) � C‖ f1‖Lp(Rn) = C‖ f‖Lp(2kE ).

Observe that the conditions x ∈ E , y ∈ �
(2kE ) imply

1
2k

ρ(x0− y) � ρ(x− y) � 3k
2

ρ(x0− y).

We then get

|IP
Ω,α f2(x)| � 2γ−αc1

∫
�(2kE )

| f (y)||Ω(x− y)|
ρ(x0− y)γ−α dy.

By Fubini’s theorem we have

∫
�(2kE )

| f (y)||Ω(x− y)|
ρ(x0− y)γ−α dy ≈

∫
�(2kE )

| f (y)||Ω(x− y)|
∫ ∞

ρ(x0−y)

dt
tγ+1−α dy

≈

∫ ∞

2kr

∫
2kr�ρ(x0−y)<t

| f (y)||Ω(x− y)|dy
dt

tγ+1−α

�
∫ ∞

2kr

∫
E (x0,t)

| f (y)||Ω(x− y)|dy
dt

tγ+1−α .

Applying Hölder’s inequality with (3.1) taken into account, we get

∫
�(2kE )

| f (y)||Ω(x− y)|
ρ(x0− y)γ−α dy

�
∫ ∞

2kr
‖ f‖Lp(E (x0,t)) ‖Ω(x−·)‖L γ

γ−α
(E (x0,t)) |E (x0,t)|

α
γ − 1

p
dt

tγ+1−α

�
∫ ∞

2kr
‖ f‖Lp(E (x0,t))

dt

t
γ
q +1

.

Moreover, for all p ∈ [1,∞) the inequality

‖IP
Ω,α f2‖Lq(E ) � r

γ
q

∫ ∞

2kr
‖ f‖Lp(E (x0,t))

dt

t
γ
q+1

. (5.2)

is valid. Thus

‖IP
Ω,α f‖Lq(E ) � ‖ f‖Lp(2kE ) + r

γ
q

∫ ∞

2kr
‖ f‖Lp(E (x0,t))

dt

t
γ
q +1

.
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On the other hand,

‖ f‖Lp(2kE ) ≈ r
γ
q ‖ f‖Lp(2kE )

∫ ∞

2kr

dt

t
γ
q +1

� r
γ
q

∫ ∞

2kr
‖ f‖Lp(E (x0,t))

dt

t
γ
q +1

. (5.3)

Thus

‖IP
Ω,α f‖Lq(E ) � r

γ
q

∫ ∞

2kr
‖ f‖Lp(E (x0,t))

dt

t
γ
q +1

.

Finally, in the case p = 1 by the weak (1,q)-boundedness of IP
Ω,α and the in-

equality (5.3) it follows that

‖IP
Ω,α f1‖WLq(E ) � ‖IP

Ω,α f1‖WLq(Rn) � ‖ f1‖L1(Rn)

= ‖ f‖L1(2kE ) � r
γ
q

∫ ∞

2kr
‖ f‖L1(E (x0,t))

dt

t
γ
q+1

. (5.4)

Then from (5.2) and (5.4) we get the inequality (5.1). �

THEOREM 5.1. Suppose that 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ) is At -

homogeneous of degree zero. Let 1 � p < γ
α , 1

q = 1
p − α

γ , and the pair (ϕ1,ϕ2) satisfy
the condition ∫ ∞

r

ess inf
t<τ<∞

ϕ1(x,τ)τ
n
p

t
γ
q +1

dt � Cϕ2(x,r), (5.5)

where C does not depend on x and r . Then the operator IP
Ω,α is bounded from Mp,ϕ1,P

to Mq,ϕ2,P for p > 1 and from M1,ϕ1,P to WMq,ϕ2,P for p = 1 .

Proof. By Lemma 5.1 and Theorem 2.5 with v2(r) = ϕ2(x0,r)−1 , v1(r) =
ϕ1(x0,r)−1r−

γ
p and w(r) = r−

γ
q we have for p > 1

‖IP
Ω,α f‖Mq,ϕ2,P � sup

r>0
ϕ2(x0,r)−1

∫ ∞

r
‖ f‖Lp(E (x0,t))

dt

t
γ
q +1

� sup
r>0

ϕ1(x0,r)−1 r−
γ
p ‖ f‖Lp(E (x0,r)) = ‖ f‖Mp,ϕ1,P

and for p = 1

‖IP
Ω,α f‖WMq,ϕ2 ,P � sup

r>0
ϕ2(x0,r)−1

∫ ∞

r
‖ f‖L1(E (x0,t))

dt

t
γ
q +1

� sup
r>0

ϕ1(x0,r)−1 r−γ ‖ f‖Lp(E (x0,r)) = ‖ f‖M1,ϕ1,P . �

REMARK 5.2. Note that, in the case Ω ≡ 1 and P = I Theorem 5.1 was proved
in [17]. Also in the case P = I Theorem 5.1 was proved in [18]. The condition (5.5) in
Theorem 5.1 is weaker than condition (2.4) in Theorem 2.3 (see [17]).
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REMARK 5.3. The condition (4.5) is weaker than (5.5). Indeed, (5.5) implies
(4.5):

ϕ2(x,r) �
∫ ∞

r

ess inf
t<τ<∞

ϕ1(x,τ)τ
γ
p

t
γ
q +1

dt

�
∫ ∞

s

ess inf
t<τ<∞

ϕ1(x,τ)τ
γ
p

t
γ
q +1

dt

� ess inf
s<τ<∞

ϕ1(x,τ)τ
γ
p

∫ ∞

s
t−

γ
q−1dt

≈

ess inf
s<τ<∞

ϕ1(x,τ)τ
γ
p

t
γ
q

,

where we took s ∈ (r,∞) , so that

sup
s>r

ess inf
s<τ<∞

ϕ1(x,τ)τ
γ
p

t
γ
q

� ϕ2(x,r).

On the other hand the functions ϕ1(x,t) = t−α and ϕ2(x,t) = 1 satisfy the condition
(4.5), but do not satisfy the condition (5.5).

5.2. Adams type result

The following is a result of Adams type ([1]) for the fractional integral operator.

THEOREM 5.2. Suppose that the function Ω ∈ Ls(Sρ) , 1 < s � ∞ is At -homoge-
neous of degree zero. Let s′ < p < q < ∞ , 0 < α < γ

p and let ϕ(x,t) satisfy the
conditions

sup
r<t<∞

t−γ ess inf
t<τ<∞

ϕ(x,τ)τγ � Cϕ(x,r) (5.6)

and ∫ ∞

r
tα−1ϕ(x,t)

1
p dt � Cr−

α p
q−p , (5.7)

where C does not depend on x ∈ R
n and r > 0 . Then the operator IP

Ω,α is bounded
from M

p,ϕ
1
p ,P

(Rn) to M
q,ϕ

1
q ,P

(Rn) .

Proof. Let f ∈ M
p,ϕ

1
p ,P

(Rn) . Write f = f1 + f2 , where f1 = f χE (x,2kr) and

f2 = f χ�(E (x,2kr))
.

For IP
Ω,α f2(y) with y ∈ E from (5.2) we have

IP
Ω,α( f2)(y) �

∫ ∞

2kr
tγ−α

∫
E (x,t)

| f (z)|dz

�
∫ ∞

2kr
t−

γ
q−1‖ f‖Lp(E (x,t))dt. (5.8)
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Then from (5.8) by the condition (5.7) we get

IP
Ω,α f (y) � rα MP f (y)+

∫ ∞

2kr
t−

γ
q−1‖ f‖Lp(E (x,t))dt

� rα MP
Ω f (y)+‖ f‖M

p,ϕ
1
p ,P

∫ ∞

2kr
tα−1ϕ(x,t)

1
p dt

� rα MP
Ω f (y)+ r−

α p
q−p ‖ f‖M

p,ϕ
1
p ,P

.

Choose now r =
( ‖ f‖M

p,ϕ1/p,P

MP
Ω f (y)

) q−p
αq

and get

IP
Ω,α f (y) � (MP

Ω f (y))
p
q ‖ f‖1− p

q
M

p,ϕ
1
p ,P

.

Hence the statement of the theorem follows in view of the boundedness of the maximal
operator MP

Ω in M
p,ϕ

1
p ,P

(Rn) provided by Theorem 4.2 in virtue of condition (5.6).

Therefore,

‖IP
Ω,α f‖M

q,ϕ
1
q ,P

= sup
x∈Rn, t>0

ϕ(x,t)−
1
q t−

γ
q ‖IP

Ω,α f‖Lq(E (x,t))

� ‖ f‖1− p
q

M
p,ϕ

1
p ,P

sup
x∈Rn, t>0

ϕ(x,t)−
1
q t−

γ
q ‖MP

Ω f‖
p
q

Lp(E (x,t))

= ‖ f‖1− p
q

M
p,ϕ

1
p ,P

(
sup

x∈Rn, t>0
ϕ(x,t)−

1
p t−

γ
p ‖MP

Ω f‖Lp(E (x,t))

) p
q

= ‖ f‖1− p
q

M
p,ϕ

1
p ,P

‖MP
Ω f‖

p
q
M

p,ϕ
1
p ,P

� ‖ f‖M
p,ϕ

1
p ,P

. �

In the case ϕ(x,r) = rλ−γ , 0 < λ < γ from Theorem 5.2 we get the following
Adams type result [1] for the parabolic fractional maximal and integral operators with
rough kernels.

COROLLARY 5.2. Suppose that the function Ω∈Ls(Sρ) , 1 < s � ∞ is At -homoge-
neous of degree zero. Let 0 < α < γ , s′ < p < q < ∞ , 0 < λ < γ−α p and 1

p − 1
q = α

γ−λ .

Then the operators MP
Ω,α and IP

Ω,α are bounded from Mp,λ ,P(Rn) to Mq,λ ,P(Rn) .
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