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HARMONIC POLYNOMIALS AND GENERALIZATIONS OF

OSTROWSKI–GRÜSS TYPE INEQUALITY AND TAYLOR FORMULA

K. M. AWAN, J. PEČARIĆ AND A. VUKELIĆ

(Communicated by A. Aglić Aljinović)

Abstract. Some generalizations of Ostrowski-Grüss type inequality and Taylor formula are given,
by using harmonic sequences of polynomials. We use inequalities for the Čebyšev functional in
terms of the first derivative (see [6]), for some new bounds for the remainders.

1. Introduction

Let the polynomials Pk(t), k � 0 satisfy the following condition

P′
k(t) = Pk−1(t), k � 1; P0(t) = 1. (1.1)

For a sequence (Pk(t) , k � 0) of polynomials satisfying the condition (1.1), we say that
it is a harmonic sequence of polynomials. From (1.1), by an easy induction it follows
that every harmonic sequence of polynomials must be of the form

Pk(t) =
k

∑
i=0

ci

(k− i)!
tk−i, k � 0,

where (ck,k � 0) is a sequence of real numbers such that c0 = 1. In fact, ck = Pk(0),
k � 0. Especially, we have P0(t) = 1, P1(t) = t + c1 , P2(t) = 1

2 t2 + c1t + c2.

EXAMPLE 1. For fixed x ∈ R define

Pk(t) =
1
k!

(t− x)k, k � 0.

Then (Pk(t),k � 0) is a harmonic sequence of polynomials.

EXAMPLE 2. Similarly, for fixed x ∈ R define

Pk(t) =
1
k!

(
t− a+ x

2

)k

, k � 0.

Then (Pk(t),k � 0) is also a harmonic sequence of polynomials.
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EXAMPLE 3. Here we have the well known Bernoulli polynomials Bk(t). These
polynomials can be defined by the expansion

xetx

ex −1
=

∞

∑
k=0

Bk(t)
k!

xk, |x| < 2π , t ∈ R.

We have

B0(t) = 1, B1(t) = t− 1
2
, B2(t) = t2− t +

1
6
, B3(t) = t3− 3

2
t2 +

1
2
t, · · · .

The numbers Bk := Bk(0) are called Bernoulli numbers. The polynomials Bk(t) and
the numbers Bk have many interesting properties. It can be shown that the polyno-
mials Bk(t) are uniquely determined by the following two properties ([[1], 23.1.5 and
23.1.6]):

B′
k(t) = kBk−1(t), k ∈ N; B0(t) = 1 (1.2)

and
Bk(t +1)−Bk(t) = ktk−1, k ∈ N. (1.3)

Let Pk(t) = 1
k!Bk(t), k � 0, then from (1.1) it follows that (Pk(t),k � 0) is harmonic

sequence of polynomials.

EXAMPLE 4. Instead of Bernoulli polynomials Bk(t) we can have Euler polyno-
mials Ek(t) which have the properties similar to those of Bernoulli polynomials. Euler
polynomials can be defined by the expansion

2etx

ex +1
=

∞

∑
n=0

Ek(t)
k!

xk, |x| < π , t ∈ R.

We have

E0(t) = 1, E1(t) = t− 1
2
, E2(t) = t2− t, E3(t) = t3− 3

2
t2 +

1
4
, · · · .

It can be shown that the polynomials Ek(t) are uniquely determined by the following
two properties ([[1], 23.1.5 and 23.1.6]):

E ′
k(t) = kEk−1(t), k ∈ N; E0(t) = 1 (1.4)

and
Ek(t +1)+Ek(t) = 2tk, k ∈ N. (1.5)

Pk = Ek(t)
k! , k � 0 is harmonic sequence of polynomials.

REMARK 1. In [4] Cerone defined polynomials Pk(t) as

P′
k(t) = ξkPk−1(t), P0(t) = 1, t ∈ R. (1.6)

When ξk = k , then such functions satisfying (1.6) were defined by Appell in 1980,
[3] and are known as Appell polynomials. For ξk = 1 we have harmonic polynomials.
Polynomials satisfying (1.6) will be termed Appell-like polynomials.
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For two Lebesgue integrable functions f ,g : [a,b] → R , consider the Čebyšev
functional:

T ( f ,g) :=
1

b−a

∫ b

a
f (t)g(t)dt − 1

b−a

∫ b

a
f (t)dt · 1

b−a

∫ b

a
g(t)dt. (1.7)

In [6] the authors proved the following theorems:

THEOREM 1. Let f ,g : [a,b]→R be two absolutely continuous functions on [a,b]
with

(·−a)(b−·)( f ′)2,(·−a)(b−·)(g′)2 ∈ L[a,b].

Then we have the inequality

|T ( f ,g)| � 1√
2

[T ( f , f )]
1
2

1√
b−a

(∫ b

a
(x−a)(b− x)

[
g′(x)

]2
dx

) 1
2

(1.8)

� 1
2(b−a)

(∫ b

a
(x−a)(b− x)

[
f ′(x)

]2
dx

) 1
2

×
(∫ b

a
(x−a)(b− x)

[
g′(x)

]2
dx

) 1
2

.

The constant 1√
2

and 1
2 are best possible in (1.8).

THEOREM 2. Assume that g : [a,b] → R is monotonic nondecreasing on [a,b]
and f : [a,b] → R is absolutely continuous with f ′ ∈ L∞[a,b] . Then we have the in-
equality

|T ( f ,g)| � 1
2(b−a)

|| f ′||∞
∫ b

a
(x−a)(b− x)dg(x). (1.9)

The constant 1
2 is best possible.

In this paper we will show some generalizations of inequalities of Ostrowski-Grüss
type and generalizations of Taylor’s formula using sequences of harmonic polynomials.
We will use the above theorems to get some new bounds for the remainders.

2. On some identities related to Ostrowski inequality

The well-known Ostrowski inequality (see, for example [18]) states that if f ∈
C1([a,b]) , x ∈ [a,b] , then∣∣∣∣ 1

b−a

∫ b

a
f (y)dy− f (x)

∣∣∣∣�
(

1
4

+
(x− (a+b)/2)2

(b−a)2

)
‖ f ′‖∞. (2.1)

G. V. Milovanović and J. Pečarić in [17] and A. M. Fink in [14] (see also [18], p.
470) have considered generalizations of Ostrowski inequality in the form∣∣∣∣∣1n

[
f (x)+

n−1

∑
k=1

Fk(x)

]
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣∣� K(n, p,x)‖ f (n)‖p, (2.2)
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where Fk(x) is defined by

Fk(x) =
n− k

k!(b−a)

[
f (k−1)(a)(x−a)k− f (k−1)(b)(x−b)k

]
. (2.3)

For n = 1 the sum above is defined to be zero.
In fact, G. V. Milovanović and J. Pečarić have proved that ([18]):

K(n,∞,x) =
(x−a)n+1 +(b− x)n+1

n(n+1)!(b−a)
, (2.4)

while A. M. Fink proved that

K(n, p,x) =
[(x−a)np′+1 +(b− x)np′+1]1/p′

n!(b−a)
B((n−1)p′+1, p′+1)1/p′, (2.5)

where 1 < p � ∞, 1/p+1/p′ = 1, B is the beta function, and

K(n,1,x) =
(n−1)n−1

nnn!(b−a)
max[(x−a)n,(b− x)n]. (2.6)

In [7], the authors gave some generalizations of previous results:
Let (Pn,n � 0) be a harmonic sequence of polynomials. Furthermore, let I ⊂ R

be a segment and f : I → R such that f (n−1) is Lipschitzian or has bounded variation
on I , for some n � 1. Then, using notations

F̃k :=
(−1)k(n− k)

b−a

[
Pk(a) f (k−1)(a)−Pk(b) f (k−1)(b)

]
and

k(t,x) =
{

t −a, t ∈ [a,x]
t −b, t ∈ (x,b] ,

the following identity holds:

1
n

[
f (x)+

n−1

∑
k=1

(−1)kPk(x) f (k)(x)+
n−1

∑
k=1

F̃k

]
− 1

b−a

∫ b

a
f (t)dt (2.7)

=
(−1)n−1

n(b−a)

∫ b

a
Pn−1(t)k(t,x)d f (n−1)(t).

The sums above are defined to be zero for n = 1.
For the harmonic sequence of polynomials from Example 1 relation (2.7) becomes

1
n

[
f (x)+

n−1

∑
k=1

Fk(x)

]
− 1

b−a

∫ b

a
f (t)dt (2.8)

=
1

n!(b−a)

∫ b

a
(x− t)n−1k(t,x)d f (n−1)(t),
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where Fk(x) is defined by (2.3).
Ostrowski inequality has been also generalized by Anastassiou [2]. He proved that

if f ∈Cn+1([a,b]) for n ∈ N and x ∈ [a,b] fixed, then

∣∣∣∣ 1
b−a

∫ b

a
f (y)dy− f (x)

∣∣∣∣� 1
b−a

[
n

∑
k=1

| f (k)(x)|
(k+1)!

∣∣∣(b− x)k+1− (a− x)k+1
∣∣∣

+
‖ f (n+1)‖∞

(n+2)!
(
(x−a)n+2 +(b− x)n+2)] .

This reduces to the Ostrowski inequality in the extreme case n = 0, when the sum
becomes empty and so vanishes identically.

Another form of this has been obtained by Cerone, Dragomir and Roumeliotis [5],
who have shown that∣∣∣∣∣
∫ b

a
f (t)dt −

n−1

∑
k=0

(b− x)k+1 +(−1)k(x−a)k+1

(k+1)!
f (k)(x)

∣∣∣∣∣
� ‖ f (n)‖∞

(n+1)!

∣∣(x−a)n+1 +(b− x)n+1
∣∣� ‖ f (n)‖∞(b−a)n+1

(n+1)!
. (2.9)

In [19] the authors gave further generalizations of the above results.
Let the sequel (Pn(x)),(Qn(x)) denote sequences of harmonic polynomials. Set

Sn(t,x) :=
{

Pn(t), t ∈ [a,x]
Qn(t), t ∈ (x,b]. (2.10)

Then,

(−1)n
∫ b

a
Sn(t,x)d f (n−1)(t) = In(x), (2.11)

where

In(x) :=
n

∑
k=1

(−1)k
[
Qk(b) f (k−1)(b)+ (Pk(x)−Qk(x)) f (k−1)(x)

−Pk(a) f (k−1)(a)
]
+
∫ b

a
f (t)dt.

With the convention that the empty sum represents zero, the same definition gives
I0(x) =

∫ b
a f (t)dt .

The special case (see Example 1)

Pn(t) := (t−a)n/n! Qn(t) := (t−b)n/n!, (2.12)

arises in the literature. The corresponding values of In(x) for these choices we denote
by I∗n (x) , so that

I∗n (x) =
∫ b

a
f (t)dt +

n

∑
k=1

(−1)k

k!

[
(x−a)k− (x−b)k

]
f (k−1)(x).
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In following (see [21]) we will show a generalizations of the above results using
more than two sequences of harmonic polynomials.

Let σ = {a = x0 < x1 < .. .xn−1 < xn = b} be a subdivision of the interval [a,b] .
Set

Sm(t,σ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1m(t), t ∈ [a,x1]
P2m(t), t ∈ (x1,x2]
...
Pnm(t), t ∈ (xn−1,xn],

where (Pjm)m are sequences of harmonic polynomials. By successive integration by
parts we have whenever the integrals exist that

(−1)m
∫ b

a
Sm(t,σ)d f (m−1)(t) =

∫ b

a
f (t)dt +

m

∑
k=1

(−1)k
[
Pnk(b) f (k−1)(b)

+
n−1

∑
j=1

(Pjk(x j)−Pj+1,k(x j)) f (k−1)(x j)−P1k(a) f (k−1)(a)

]
. (2.13)

The right-hand side of the previous identity is denoted by Im(σ) .

3. Generalizations of inequalities of Ostrowski-Grüss type

There have been several extensions of the Ostrowski inequality. It has been shown
in [15] that if f is differentiable on (a,b) and f ′ is integrable and satisfies

γ � f ′(t) � Γ for all t ∈ [a,b],

then∣∣∣∣ f (x)− 1
b−a

∫ b

a
f (t)dt − f (b)− f (a)

b−a

(
x− a+b

2

)∣∣∣∣� 1

4
√

3
(b−a)(Γ− γ), (3.1)

for all x ∈ [a,b] . A version of this estimate occurs in [10], but without the
√

3 on the
right.

Here we give generalizations of above result (see [20]) using sequences of har-
monic polynomials defining in previous section by (2.10).

THEOREM 3. Suppose f : [a,b] → R is such that f (n) is integrable with

γ � f (n)(t) � Γ for all t ∈ [a,b].

Put
Un(x) := [Qn+1(b)−Qn+1(x)+Pn+1(x)−Pn+1(a)]/(b−a).

Then for any x ∈ [a,b] ,∣∣∣In(x)− (−1)nUn(x)
[
f (n−1)(b)− f (n−1)(a)

]∣∣∣� 1
2
K(Γ− γ)(b−a),
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where

K :=
{

1
b−a

[∫ x

a
P2

n (t)dt +
∫ b

x
Q2

n(t)dt

]
− [Un(x)]2

} 1
2

.

COROLLARY 1. Under the assumptions of Theorem 3,∣∣∣∣∣ 1
b−a

∫ b

a
f (t)dt +

n

∑
k=1

(−1)k

k!(b−a)

[
(b−B)k f (k−1)(b)

+((x−A)k − (x−B)k) f (k−1)(x)− (a−A)k f (k−1)(a)
]

− (−1)n( f (n−1)(b)− f (n−1)(a))
(n+1)!(b−a)2 [(b−B)n+1− (x−B)n+1

+(x−A)n+1− (a−A)n+1]
∣∣� 1

2
(Γ− γ)K1

for all x ∈ [a,b] and A,B ∈ R , where

K1 :=
1
n!

(
(x−A)2n+1− (a−A)2n+1 +(b−B)2n+1− (x−B)2n+1

(2n+1)(b−a)

−
(

(b−B)n+1− (x−B)n+1 +(x−A)n+1− (a−A)n+1

(n+1)(b−a)

)2
)1/2

.

In [11], Dragomir proved some of above results in terms of the Euclidian norm of
f (n) which is valid for a larger class of mappings, i.e., for the mappings f for which
f (n) is unbounded on (a,b) but f (n) ∈ L2[a,b] .

THEOREM 4. Assume that the mapping f : [a,b] → R is such that f (n−1) is ab-
solutely continuous on [a,b] and f (n) ∈ L2[a,b] , (n � 1). Then we have the inequality∣∣∣In(x)− (−1)n(b−a)Un(x) f (n−1) [a,b]

∣∣∣
� K(b−a)

[
1

(b−a)
‖ f (n)‖2

2−
(

f (n) [a,b]
)2
] 1

2

(3.2)

for all x ∈ [a,b] , where K,γ and Γ are as in Theorem 3 and

f (n−1)[a,b] =
f (n−1)(b)− f (n−1)(a)

b−a

is the divided difference.

Now, we will apply the Grüss type inequalities from Theorem 1 and Theorem 2 in
pointing out different bounds for the remainder for identities (2.7) and identities (2.11).

Using Theorem 1 for identity (2.7) we get the following Grüss type inequality:
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THEOREM 5. Let f : [a,b] → R be such that f (n) is absolutely continuous and
(Pn,n � 0) be a harmonic sequence of polynomials. Then we define the remainder

Fn( f ;a,b) (3.3)

= f (x)+
n−1

∑
k=1

(−1)kPk(x) f (k)(x)+
n−1

∑
k=1

F̃k − n
b−a

∫ b

a
f (t)dt

+
(−1)n

b−a
[Pn(x)(b−a)−Pn+1(b)+Pn+1(a)] f (n−1)[a,b]

and Fn( f ;a,b) satisfies the estimation

|Fn( f ;a,b)|

� 1√
2(b−a)

[∫ b

a
(Pn−1(t)k(t,x))

2 dt− [Pn(x)(b−a)−Pn+1(b)+Pn+1(a)]2

b−a

] 1
2

×
(∫ b

a
(t−a)(b− t)

[
f (n+1)(t)

]2
dt

) 1
2

(3.4)

for any x ∈ [a,b] .

Proof. If we apply Theorem 1 for f → k(·,x)Pn−1, g → f (n) , we deduce∣∣∣∣ 1
b−a

∫ b

a
Pn−1(t)k(t,x) f (n)(t)dt− 1

b−a

∫ b

a
Pn−1(t)k(t,x)dt · 1

b−a

∫ b

a
f (n)(t)dt

∣∣∣∣
� 1√

2
[T (k(·,x)Pn−1,k(·,x)Pn−1)]

1
2

× 1√
b−a

(∫ b

a
(t −a)(b− t)

[
f (n+1)(t)

]2
dt

) 1
2

, (3.5)

where

T (k(·,x)Pn−1,k(·,x)Pn−1)=
1

b−a

∫ b

a
(Pn−1(t)k(t,x))

2 dt−
[
Pn(x)−Pn+1(b)−Pn+1(a)

b−a

]2

.

Using (2.7) and (3.5), we deduce the representation (3.3) and the bound (3.4). �

REMARK 2. Using Theorem 5 for the harmonic sequence of polynomials from
Example 1 we get:

Fn( f ;a,b) (3.6)

= f (x)+
n−1

∑
k=1

(−1)kPk(x) f (k)(x)+
n−1

∑
k=1

Fk − n
b−a

∫ b

a
f (t)dt

+
1

(n+1)!(b−a)
[
(x−b)n+1− (x−a)n+1] f (n−1)[a,b]
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and

|Fn( f ;a,b)|

� 1√
2(b−a)

[
(x−a)2n+1− (x−b)2n+1

[(n−1)!]2(2n+1)(2n−1)n
− 1

b−a

[
(x−a)n+1− (x−b)n+1

(n+1)!

]2
] 1

2

×
(∫ b

a
(t−a)(b− t)

[
f (n+1)(t)

]2
dt

) 1
2

.

The following Grüss type inequality also holds.

THEOREM 6. Let f : [a,b] → R be such that f (n) is absolutely continuous and
f (n+1) � 0 on [a,b] and (Pn,n � 0) be a harmonic sequence of polynomials. Then we
have the representation (3.3) and the remainder Fn( f ;a,b) satisfies the bound

|Fn( f ;a,b)| � ||k(·,x)Pn−2 +Pn−1||∞
{

f (n−1)(a)+ f (n−1)(b)
2

− f (n−2)[a,b]

}
(3.7)

for any x ∈ [a,b] .

Proof. If we apply Theorem 2 for f → k(·,x)Pn−1, g → f (n) , we deduce∣∣∣∣ 1
b−a

∫ b

a
Pn−1(t)k(t,x) f (n)(t)dt− 1

b−a

∫ b

a
Pn−1(t)k(t,x)dt · 1

b−a

∫ b

a
f (n)(t)dt

∣∣∣∣
� 1

2(b−a)
||k(·,x)Pn−2 +Pn−1||∞

(∫ b

a
(t −a)(b− t) f (n+1)(t)dt

)1/2

. (3.8)

Since ∫ b

a
(t−a)(b− t) f (n+1)(t)dt

=
∫ b

a
f (n)(t)[2t− (a+b)]dt

= (b−a)
[
f (n−1)(b)+ f (n−1)(a)

]
−2
(

f (n−2)(b)− f (n−2)(a)
)

.

Using the representation (3.3) and the inequality (3.8), we deduce (3.7). �

REMARK 3. Using Theorem 6 for the harmonic sequence of polynomials from
Example 1 we get:

|Fn( f ;a,b)|� 1
(n−2)!

max
x∈[a,b]

{|b−x|n−1, |x−a|n−1}
{

f (n−1)(a)+ f (n−1)(b)
2

− f (n−2)[a,b]

}
.

Using Theorem 1 for identity (2.11) we get the following Grüss type inequality:
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THEOREM 7. Let f : [a,b] → R be such that f (n) is absolutely continuous and
(Pn,n � 0) and (Qn,n � 0) be harmonic sequences of polynomials as in (2.10). Then
we have

An( f ;a,b) (3.9)

=
n

∑
k=1

(−1)k
[
Qk(b) f (k−1)(b)+ (Pk(x)−Qk(x)) f (k−1)(x)

−Pk(a) f (k−1)(a)
]
+
∫ b

a
f (t)dt

+(−1)n−1 [Pn+1(x)−Qn+1(x)+Qn+1(b)−Pn+1(a)] f (n−1)[a,b]

and An( f ;a,b) satisfies the estimation

|An( f ;a,b)|

� 1√
2

[∫ b

a
S2

n(t)dt− [Pn+1(x)−Qn+1(x)+Qn+1(b)−Pn+1(a)]2

b−a

] 1
2

×
(∫ b

a
(t −a)(b− t)

[
f (n+1)(t)

]2
dt

) 1
2

(3.10)

for any x ∈ [a,b] .

Proof. If we apply Theorem 1 for f → Sn−1(·,x), g → f (n) , we deduce∣∣∣∣ 1
b−a

∫ b

a
Sn(t,x) f (n)(t)dt− 1

b−a

∫ b

a
Sn(t,x) · 1

b−a

∫ b

a
f (n)(t)dt

∣∣∣∣
� 1√

2
[T (Sn(·,x),Sn(·,x))]

1
2

× 1√
b−a

(∫ b

a
(t−a)(b− t)

[
f (n+1)(t)

]2
dt

) 1
2

, (3.11)

where

T (Sn(·,x),Sn(·,x))=
1

b−a

∫ b

a
S2

n(t,x)dt−
[
Pn+1(x)−Qn+1(x)+Qn+1(b)−Pn+1(a)

b−a

]2
.

Using (2.11) and (3.11), we deduce the representation (3.9) and the bound (3.10). �

REMARK 4. Using Theorem 7 for the harmonic sequence of polynomials from
Example 1 we get:

An( f ;a,b) (3.12)

=
∫ b

a
f (t)dt +

n

∑
k=1

(−1)k

k!

[
(x−a)k − (x−b)k

]
f (k−1)(x)

+
(−1)n−1

(n+1)!
[
(x−a)n+1− (x−b)n+1] f (n−1)[a,b]
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and

|An( f ;a,b)|

� 1√
2

[
(x−a)2n+1− (x−b)2n+1

(n!)2(2n+1)
− 1

b−a

[
(x−a)n+1− (x−b)n+1

(n+1)!

]2
] 1

2

×
(∫ b

a
(t−a)(b− t)

[
f (n+1)(t)

]2
dt

) 1
2

.

The following Grüss type inequality also holds.

THEOREM 8. Let f : [a,b] → R be such that f (n) is absolutely continuous and
f (n+1) � 0 on [a,b] and (Sn,n � 0) be a harmonic sequence of polynomials defined
with (2.10). Then we have the representation (3.9) and the remainder An( f ;a,b) satis-
fies the bound

|An( f ;a,b)| � (b−a)||Sn−1||∞
{

f (n−1)(a)+ f (n−1)(b)
2

− f (n−2)[a,b]

}
, (3.13)

for any x ∈ [a,b] .

Proof. If we apply Theorem 2 for f → Sn(·,x), g → f (n) , we deduce∣∣∣∣ 1
b−a

∫ b

a
Sn(t,x) f (n)(t)dt− 1

b−a

∫ b

a
Sn(t,x)dt · 1

b−a

∫ b

a
f (n)(t)dt

∣∣∣∣
� 1

2(b−a)
||Sn−1||∞

(∫ b

a
(t−a)(b− t) f (n+1)(t)dt

)1/2

. (3.14)

Using the representation (3.9) and the inequality (3.14), we deduce (3.13). �

REMARK 5. Using Theorem 8 for the harmonic sequence of polynomials from
Example 1 we get:

|An( f ;a,b)|� b−a
(n−1)!

max
x∈[a,b]

{|b−x|n−1, |x−a|n−1}
{

f (n−1)(a)+ f (n−1)(b)
2

− f (n−2)[a,b]

}
.

4. On generalizations of Ostrowski-Grüss inequality via Euler harmonic
identities

In this section (see [9]) we use Euler identities involving harmonic sequence of
polynomials to show some generalizations of Ostrowski inequality.

Assume that (Pk(t),k � 0) is a harmonic sequence of polynomials i.e. the se-
quence of polynomials satisfying the condition (1.1). Define P∗

k (t), k � 0 to be periodic
functions of period 1, related to Pk(t), k � 0 as

P∗
k (t) = Pk(t), 0 � t < 1, P∗

k (t +1) = P∗
k (t), t ∈ R. (4.1)
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Thus, P∗
0 (t) = 1, while for k � 1, P∗

k (t) is continuous on R\Z and has a jump of

αk = Pk(0)−Pk(1) (4.2)

at every integer t, whenever αk 	= 0. Note that α1 =−1, since P1(t) = t +c1, for some
c1 ∈ R. Also, note that from (1.1) it follows

P∗′
k (t) = P∗

k−1(t), k � 1, t ∈ R\Z. (4.3)

Let a,b∈R, a < b and f : [a,b]→R be such that f (n−1) is a function of bounded
variation on [a,b] for some n � 1. For every x ∈ [a,b] and 1 � m � n we introduce the
following notations

T̃m(x) =
m

∑
k=1

(b−a)k−1Pk

(
x−a
b−a

)[
f (k−1)(b)− f (k−1)(a)

]
, (4.4)

with convention T̃0(x) = 0, and

τm(x) =
m

∑
k=2

(b−a)k−1αk f (k−1)(x), (4.5)

with convention τ1(x) = 0.

THEOREM 9. Let (Pk,k � 0) be a harmonic sequence of polynomials and f :
[a,b] → R such that f (n−1) is a continuous function of bounded variation on [a,b] for
some n � 1. Then for every x ∈ [a,b]

f (x) =
1

b−a

∫ b

a
f (t)dt + T̃n(x)+ τn(x)+ R̃1

n(x), (4.6)

f (x) =
1

b−a

∫ b

a
f (t)dt + T̃n−1(x)+ τn(x)+ R̃2

n(x), (4.7)

where T̃n(x) and τn(x) are defined by (4.4) and (4.5), respectively, and

R̃1
n(x) = −(b−a)n−1

∫
[a,b]

P∗
n

(
x− t
b−a

)
d f (n−1)(t),

R̃2
n(x) = −(b−a)n−1

∫
[a,b]

[
P∗

n

(
x− t
b−a

)
−Pn

(
x−a
b−a

)]
d f (n−1)(t).

Let (Pk,k � 0) is as in Example 3, then we get (see [8]):

T̃m(x) =
m

∑
k=1

(b−a)k−1

k!
Bk

(
x−a
b−a

)[
f (k−1)(b)− f (k−1)(a)

]
,

τm(x) = 0, m � n,

R̃1
n(x) = − (b−a)n−1

n!

∫
[a,b]

B∗
n

(
x− t
b−a

)
d f (n−1)(t),

R̃2
n(x) = − (b−a)n−1

n!

∫
[a,b]

[
B∗

n

(
x− t
b−a

)
−Bn

(
x−a
b−a

)]
d f (n−1)(t).
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Also from Example 1 we have

Pk(0) =
1
k!

(−γ)k, Pk(1) =
1
k!

(1− γ)k.

Therefore, in this case

αk = Pk(0)−Pk(1) =
1
k!

[
(−γ)k − (1− γ)k

]
, k � 1.

Further, we have

T̃m(x) =
m

∑
k=1

(b−a)k−1

k!

(
x−a
b−a

− γ
)k [

f (k−1)(b)− f (k−1)(a)
]

and

τm(x) =
m

∑
k=2

(b−a)k−1

k!

[
(−γ)k − (1− γ)k

]
f (k−1)(x),

for every x ∈ [a,b] .
Using Theorem 1 for identity (4.6) we get the following Grüss type inequality:

THEOREM 10. Let f : [a,b] → R be such that f (n) is absolutely continuous and
(P∗

n ,n � 0) be defined as in (4.1). Then we have

En( f ;a,b) (4.8)

= f (x)− 1
b−a

∫ b

a
f (t)dt − T̃n(x)+ τn(x)

−(b−a)n
[
P∗

n+1

(
x−b
b−a

)
−P∗

n+1

(
x−a
b−a

)]
f (n−1)[a,b]

and En( f ;a,b) satisfies the estimation

|En( f ;a,b)|

� (b−a)n−1
√

2

[∫ b

a

[
P∗

n

(
x− t
b−a

)]2

dt−
[
P∗

n+1

(
x−a
b−a

)
−P∗

n+1

(
x−b
b−a

)]2] 1
2

×
(∫ b

a
(t−a)(b− t)

[
f (n+1)(t)

]2
dt

) 1
2

(4.9)

for any x ∈ [a,b] .

Proof. If we apply Theorem 1 for f → P∗
n

(
x−·
b−a

)
, g → f (n) , we deduce∣∣∣∣ 1

b−a

∫ b

a
P∗

n

(
x− t
b−a

)
f (n)(t)dt− 1

b−a

∫ b

a
P∗

n

(
x− t
b−a

)
dt · 1

b−a

∫ b

a
f (n)(t)dt

∣∣∣∣
� 1√

2

[
T

(
P∗

n

(
x−·
b−a

)
,P∗

n

(
x−·
b−a

))] 1
2

× 1√
b−a

(∫ b

a
(t−a)(b− t)

[
f (n+1)(t)

]2
dt

) 1
2

, (4.10)
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where

T

(
P∗

n

(
x−·
b−a

)
,P∗

n

(
x−·
b−a

))
=

1
b−a

∫ b

a

[
P∗

n

(
x− t
b−a

)]2
dt

−
[
P∗

n+1

(
x−a
b−a

)
−P∗

n+1

(
x−b
b−a

)]2

.

Using (4.6) and (4.10), we deduce the representation (4.8) and the bound (4.9). �
The following Grüss type inequality also holds.

THEOREM 11. Let f : [a,b]→R be such that f (n+1) is absolutely continuous and
f (n) � 0 on [a,b] and (P∗

n ,n � 0) be defined in (4.1). Then we have the representation
(4.8) and the remainder En( f ;a,b) satisfies the bound

|En( f ;a,b)| � (b−a)n

∣∣∣∣
∣∣∣∣P∗

n−1

(
x−·
b−a

)∣∣∣∣
∣∣∣∣
∞

{
f (n−1)(a)+ f (n−1)(b)

2
− f (n−2)[a,b]

}
(4.11)

for any x ∈ [a,b] .

Proof. If we apply Theorem 2 for f → P∗
n

(
x−·
b−a

)
, g → f (n) , we deduce∣∣∣∣ 1

b−a

∫ b

a
P∗

n

(
x− t
b−a

)
f (n)(t)dt− 1

b−a

∫ b

a
P∗

n

(
x− t
b−a

)
dt · 1

b−a

∫ b

a
f (n)(t)dt

∣∣∣∣
� 1

2(b−a)

∣∣∣∣
∣∣∣∣P∗

n−1

(
x−·
b−a

)∣∣∣∣
∣∣∣∣
∞

(∫ b

a
(t −a)(b− t) f (n+1)(t)dt

)1/2

. (4.12)

Using the representation (4.8) and the inequality (4.12), we deduce (4.11). �

5. On estimation of the remainder in generalized Taylor’s formula

S. S. Dragomir in [12] has obtained the following result:

THEOREM 12. Let f : I → R , I ⊂ R , is a closed interval, a ∈ I be such that f (n)

is absolutely continuous. Then we have the Taylor’s perturbed formula:

f (x) = Tn( f ;a,x)+
(x−a)n+1

(n+1)!
f (n) [a,x]+Gn( f ;a,x), (5.1)

where

Tn( f ;a,x) :=
n

∑
k=0

(x−a)k

k!
f (k)(a). (5.2)

The remainder Gn( f ;a,x) satisfies the estimation:

|Gn( f ;a,x)| � (x−a)n+1

4(n!)
[Γ(x)− γ(x)], (5.3)
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where
Γ(x) := sup

t∈[a,x]
f (n+1)(t), γ(x) := inf

t∈[a,x]
f (n+1)(t) (5.4)

for all x � a, x ∈ I.

In this section we will show improvement and generalization of this (see [16]). At
first we consider a formula which can be regarded as generalized Taylor’s formula.

THEOREM 13. Let (Pk,k � 0) be a harmonic sequence of polynomials, Further,
let I ⊂ R be a closed interval and a ∈ I. If f : I → R is any function such that, for
some n ∈ N, f (n) is absolutely continuous, then for any x ∈ I

f (x) = f (a)+
n

∑
k=1

(−1)k+1
[
Pk(x) f (k)(x)−Pk(a) f (k)(a)

]
+Rn( f ;a,x), (5.5)

where

Rn( f ;a,x) = (−1)n
∫ x

a
Pn(t) f (n+1)(t)dt. (5.6)

We can call (5.5) the generalized Taylor’s formula. Namely, if we use polynomials
from Example 1 we get the classical Taylor’s formula:

f (x) = f (a)+
n

∑
k=1

(x−a)k

k!
f (k)(a)+RT

n ( f ;a,x), (5.7)

where

RT
n ( f ;a,x) :=

1
n!

∫ x

a
(x− t)n f (n+1)(t)dt. (5.8)

For Example 2 we have

f (x) = TM
n ( f ;a,x)+RM

n ( f ;a,x),

where

TM
n ( f ;a,x) := f (a)+

n

∑
k=1

(x−a)k

2kk!

[
f k(a)− (−1)

k
f k(x)

]
(5.9)

and

RM
n ( f ;a,x) :=

(−1)n

n!

∫ x

a

(
t− a+ x

2

)n

f (n+1)(t)dt. (5.10)

Here we give another special case of (5.5) by using Bernoulli polynomials (see
Example 3). If we set

Pn(t) =
(x−a)n

n!
Bn

(
t−a
x−a

)
, n ∈ N, P0(t) = 1,

we can apply (5.5) to obtain

f (x) = f (a)+
n

∑
k=1

(−1)k+1 (x−a)k

k!

[
Bk(1) f (k)(x)−Bk(0) f (k)(a)

]
+RB

n( f ;a,x),
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where

RB
n ( f ;a,x) := (−1)n (x−a)n

n!

∫ x

a
Bn

(
t−a
x−a

)
f (n+1)(t)dt. (5.11)

We have that Bn(1)−Bn(0) = 0, for n 	= 1, that is Bn(1) = Bn(0) = Bn, for n 	= 1.
Also, B1(1) = −B1(0) = 1/2 so that we have

f (x) = f (a)+
x−a

2

[
f ′(x)+ f ′(a)

]
+

n

∑
k=2

(−1)k+1 (x−a)k

k!
Bk

[
f (k)(x)− f (k)(a)

]
+RB

n ( f ;a,x).

Finally, we can use the fact that B2k+1 = 0 for k = 1,2, · · · , ([[1], 23.1.19]), so that

f (x) = TB
n ( f ;a,x)+RB

n ( f ;a,x),

where

TB
n ( f ;a,x) := f (a)+

x−a
2

[
f ′(x)+ f ′(a)

]− [ n
2 ]

∑
k=1

(x−a)2k

(2k)!
B2k

[
f (2k)(x)− f (2k)(a)

]
(5.12)

and RB
n ( f ;a,x) is given by (5.11). (Here, as well as in the rest of section, [z] denotes

the greatest integer less than or equal to z .)
Using Euler polynomials from Example 4 we see that

Pn(t) =
(x−a)n

n!
En

(
t−a
x−a

)
, n ∈ N, P0(t) = 1

is a harmonic sequence of polynomials so that (5.5) yields

f (x) = f (a)+
n

∑
k=1

(−1)k+1 (x−a)k

k!

[
Ek(1) f (k)(x)−Ek(0) f (k)(a)

]
+RE

n ( f ;a,x),

where

RE
n ( f ;a,x) := (−1)n (x−a)n

n!

∫ x

a
En

(
t−a
x−a

)
f (n+1)(t)dt. (5.13)

Further, since ([[1], 23.1.20])

En(0) = −En(1) = − 2
n+1

(2n+1−1)Bn+1, for n ∈ N,

we get

f (x) = f (a)+2
n

∑
k=1

(−1)k+1 (x−a)k(2k+1−1)
(k+1)!

Bk+1

[
f (k)(x)+ f (k)(a)

]
+RE

n ( f ;a,x).
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Finally, since B2k+1 = 0 for k = 1,2, · · · , we get

f (x) = TE
n ( f ;a,x)+RE

n ( f ;a,x),

where

TE
n ( f ;a,x) := f (a)+2

[ n+1
2 ]

∑
k=1

(x−a)2k−1(4k −1)
(2k)!

B2k

[
f (2k−1)(x)+ f (2k−1)(a)

]
(5.14)

and RE
n ( f ;a,x) is given by (5.13).

Now we show the generalization of the result stated in Theorem 12. As we shall
see, this result also improves the estimation (5.3).

THEOREM 14. Let (Pk,k � 0) be a harmonic sequence of polynomials. Let I ⊂R

be a closed interval and a ∈ I . Suppose f : I → R, is such that f (n) is absolutely
continuous. Then for any x ∈ I we have the generalized Taylor’s perturbed formula:

f (x) = T̃n( f ;a,x)+ (−1)n [Pn+1(x)−Pn+1(a)] f (n) [a,x]+ G̃n( f ;a,x), (5.15)

where

T̃n( f ;a,x) = f (a)+
n

∑
k=1

(−1)k+1
[
Pk(x) f (k)(x)−Pk(a) f (k)(a)

]
. (5.16)

For x � a the remainder G̃( f ;a,x) satisfies the estimation

∣∣G̃( f ;a,x)
∣∣ � x−a

2

√
T (Pn,Pn)[Γ(x)− γ(x)], (5.17)

where Γ(x) and γ(x) are defined by (5.4)

In [13] Dragomir improved the inequality (5.17).

THEOREM 15. Assume that (Pn,n � 0) is a sequence of harmonic polynomials
and f : I → R is such that f (n) is absolutely continuous and f (n+1) ∈ L2(I) . If x � a,
then we have the inequality

∣∣G̃n( f ;a,x)
∣∣� (x−a)[T (Pn,Pn)]

1
2

[
1

x−a
‖ f (n+1)‖2

2−
(

f (n) [a,x]
)2
] 1

2

.

Using Theorem 1 for identity (5.5) we get the following Grüss type inequality:

THEOREM 16. Let f : I → R be such that f (n+1) is absolutely continuous, a ∈ I
and (Pn,n � 0) be a harmonic sequence of polynomials. Then we have

RTn( f ;a,x) (5.18)

= f (x)− f (a)−
n

∑
k=1

(−1)k+1
[
Pk(x) f (k)(x)−Pk(a) f (k)(a)

]
−(−1)n [Pn+1(x)−Pn+1(a)] f (n)[a,x]



314 K. M. AWAN, J. PEČARIĆ AND A. VUKELIĆ

and RTn( f ;a,x) satisfies the estimation

|RTn( f ;a,x)|

� 1√
2

[∫ x

a
P2

n (t)dt− [Pn+1(x)−Pn+1(a)]2

x−a

] 1
2

×
(∫ x

a
(t−a)(x− t)

[
f (n+2)(t)

]2
dt

) 1
2

(5.19)

for any x ∈ I .

Proof. If we apply Theorem 1 for f → Pn , g → f (n+1) , we deduce∣∣∣∣ 1
x−a

∫ x

a
Pn(t) f (n+1)(t)dt− 1

x−a

∫ x

a
Pn(t)dt · 1

x−a

∫ x

a
f (n+1)(t)dt

∣∣∣∣
� 1√

2
[T (Pn,Pn)]

1
2

1√
x−a

(∫ x

a
(t−a)(x− t)

[
f (n+2)(t)

]2
dt

) 1
2

, (5.20)

where

T (Pn,Pn) =
1

x−a

∫ x

a
P2

n (t)dt−
[
Pn+1(x)−Pn+1(a)

x−a

]2

.

Using (5.5) and (5.20), we deduce the representation (5.18) and the bound (5.19). �
The following Grüss type inequality also holds.

THEOREM 17. Let f : I → R be such that f (n+2) is absolutely continuous and
f (n+1) � 0 on I and (Pn,n � 0) be a harmonic sequence of polynomials. If a ∈ I then
we have the representation (5.18) and the remainder RTn( f ;a,x) satisfies the bound

|RTn( f ;a,x)| � (x−a)||Pn−1||∞
{

f (n)(x)+ f (n)(a)
2

− f (n−1)[a,x]

}
, (5.21)

for any x ∈ I .

Proof. If we apply Theorem 2 for f → Pn , g → f (n+1) , we deduce∣∣∣∣ 1
x−a

∫ x

a
Pn(t) f (n+1)(t)dt− 1

x−a

∫ x

a
Pn(t)dt · 1

x−a

∫ x

a
f (n+1)(t)dt

∣∣∣∣
� 1

2(x−a)
||Pn−1||∞

(∫ x

a
(t −a)(x− t) f (n+2)(t)dt

)1/2

. (5.22)

Using the representation (5.18) and the inequality (5.22), we deduce (5.21). �

REMARK 6. Using Theorem 16 and Theorem 17 for the harmonic sequence of
polynomials from Example 1 we get the results from [6].
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The results from following lemma are proved in [16].

LEMMA 1. (i) If Pn(t) = 1
n!

(
t − a+x

2

)n
, then

x∫
a

P2
n (t)dt =

(x−a)2n+1

(n!)2(2n+1)22n

and

‖Pn−1‖∞ =
1

(n−1)!

(
x− a+ x

2

)n−1

=
(x−a)n−1

2n−1(n−1)!
.

(ii) Let Pn(t) = (x−a)n

n! Bn
(

t−a
x−a

)
, where Bn(t) are Bernoulli polynomials. Then

x∫
a

P2
n (t)dt =

(x−a)2n+1

(2n)!
|B2n| .

(iii) Let Pn(t) = (x−a)n

n! En
(

t−a
x−a

)
, where En(t) are Euler polynomials. Then

x∫
a

P2
n (t)dt =

4(x−a)2n+1(4n+1−1)
(2n+2)!

|B2n+2| .

COROLLARY 2. Let f : I →R be such that f (n+1) is absolutely continuous, a∈ I .
Then we have

(i) If TM
n ( f ;a,x) is defined by (5.9), then

f (x) = TM
n ( f ;a,x)+

(x−a)n+1(1+(−1)n)
2n+1(n+1)!

f (n)[a,x]+RTM
n ( f ;a,x),

|RTM
n ( f ;a,x)| � (x−a)n

2nn!

√
x−a

2(2n+1)
− (x−a)(1+(−1)n)

4(n+1)2

×
⎛
⎝ x∫

a

(t−a)(x− t)
[
f (n+2)(t)

]2
dt

⎞
⎠

1/2

,

and for f (n+2) � 0

|RTM
n ( f ;a,x)| � (x−a)n

2n−1(n−1)!

{
f (n)(x)+ f (n)(a)

2
− f (n−1)[a,x]

}
.

(ii) If TB
n ( f ;a,x) is defined by (5.12), then

f (x) = TB
n ( f ;a,x)+RTB

n ( f ;a,x)
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and

|RTB
n ( f ;a,x)| � 1√

2

[
(x−a)2n+1

(2n)!
|B2n|

]1/2
⎛
⎝ x∫

a

(t−a)(x− t)
[
f n+2(t)

]2
dt

⎞
⎠

1/2

.

(iii) If TE
n ( f ;a,x) is defined by (5.14), then

f (x) = TE
n ( f ;a,x)+ (−1)n 4(x−a)n+1(2n+2−1)

(n+2)!
Bn+2 f (n)[a,x]+RTE

n ( f ;a,x)

and

∣∣RTE
n ( f ;a,x)

∣∣ � 2(x−a)n+ 1
2

[
4n+1−1
(2n+2)!

|Bn+2|− 4(2n+2−1)2

((n+2)!)2
B2

n+2

]1/2

×
⎛
⎝ x∫

a

(t−a)(x− t)
[
f n+2(t)

]2
dt

⎞
⎠

1/2

.

Proof. (i) Set Pn = 1
n!

(
t − a+x

2

)n . We have

Pn+1(x)−Pn+1(a) = (−1)n (x−a)n+1 [1+(−1)n+1]
2n+1(n+1)!

.

Now apply Theorem 16, Theorem 17 and Lemma 1(i).

(ii) Set Pn(t) = (x−a)n

n! Bn
(

t−a
x−a

)
. We have

Pn+1(x)−Pn+1(a) =
(x−a)n+1

(n+1)!
[Bn+1 (1)−Bn+1 (0)] = 0.

Now apply Theorem 16 and Lemma 1(ii).

(iii) Set Pn(t) = (x−a)n

n! En
(

t−a
x−a

)
. We have

Pn+1(x)−Pn+1(a) =
(x−a)n+1

(n+1)!
[En+1 (1)−En+1 (0)]

=
(x−a)n+1

(n+1)!
2En+1(1) =

4(x−a)n+1

(n+2)!
(
2n+2−1

)
Bn+2.

Now apply Theorem 16 and Lemma 1(iii). �

5.1. Special case for logarithmic function

Consider the logarithmic function f : (0,+∞) → R , f (t) = ln t . Then we have

f (n)(t) =
(−1)n−1(n−1)!

tn
, t > 0, n ∈ N.
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So that

x∫
a

(t−a)(x− t)[ f (n+2)(t)]
2
dt (5.23)

= ((n+1)!)2
[

1
2n+1

(
1

x2n+1 −
1

a2n+1

)

− a+ x
2(n+1)

(
1

x2n+2 −
1

a2n+2

)
+

ax
2n+3

(
1

x2n+3 −
1

a2n+3

)]

Now, let us observe four different cases.
Case 1. Let Pn(t) is as in Example 1. An easy calculation gives (see [6])

lnx = lna+
n

∑
k=1

(−1)k+1 (x−a)k

kak
+

(a− x)n

n(n+1)

(
1
an −

1
xn

)
+RTn(ln;a,x).

Using the results from [6] and (5.23) we get the estimation

|RTn(ln;a,x)| � n ·n!√
2(2n+1)

|x−a|n− 1
2

(
1

2n+1

(
1

x2n+1 −
1

a2n+1

)

− a+ x
2(n+1)

(
1

x2n+2 −
1

a2n+2

)
+

ax
2n+3

(
1

x2n+3 −
1

a2n+3

)) 1
2

.

Case 2. Let Pn(t) is as in Example 2. In this case we have

lnx = lna+
n

∑
k=1

(x−a)k

k2k

[
1
xk +

(−1)k−1

ak

]

+
1+(−1)n

n(n+1)2n+1

(
1
an −

1
xn

)
(x−a)n +RTM

n (ln;a,x),

where by Corollary 2 (i) and by (5.23) the remainder RTM
n (ln;a,x) satisfies the estima-

tion

|RTM
n (ln;a,x)|

� (x−a)n(n+1)
2n

√
x−a

2(2n+1)
− (x−a)[1+(−1)n]

4(n+1)2

(
1

2n+1

(
1

x2n+1 −
1

a2n+1

)

− a+ x
2(n+1)

(
1

x2n+2 −
1

a2n+2

)
+

ax
2n+3

(
1

x2n+3 −
1

a2n+3

)) 1
2

.

Case 3. Let Pn(t) is as in Example 3. We easily calculate

lnx = lna+
x2 −a2

2ax
− 1

2


 n
2 �

∑
k=1

B2k

k

(
1

a2k
− 1

x2k

)
(x−a)2k +RTB

n (ln;a,x),
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where by Corollary 2 (ii) and by (5.23) the remainder RTB
n (ln;a,x) satisfies the estima-

tion

|RTB
n (ln;a,x)

� 1√
2

[
(x−a)2n+1(n+1)!

(2n)!
|B2n|

] 1
2

(n+1)!
(

1
2n+1

(
1

x2n+1 −
1

a2n+1

)

− a+ x
2(n+1)

(
1

x2n+2 −
1

a2n+2

)
+

ax
2n+3

(
1

x2n+3 −
1

a2n+3

)) 1
2

.

Case 4. Let Pn(t) is as in Example 4. We easily calculate

lnx = lna+

 n+1

2 �
∑
k=1

(4k −1)B2k

k(2k−1)

(
1

a2k−1 +
1

x2k−1

)
(x−a)2k−1

+
4(2n+2−1)Bn+2

n(n+1)(n+2)

(
1
an −

1
xn

)
(x−a)n +RTE

n (ln;a,x),

where by Corollary 2 (iii) and by (5.23) the remainder RTE
n (ln;a,x) satisfies the esti-

mation

|RTE
n (ln;a,x)

� 2(x−a)n+ 1
2

[
4n+1−1
(2n+2)!

|Bn+2|− 4(2n+2−1)2

((n+2)!)2
B2

n+2

]1/2

(n+1)!

×
(

1
2n+1

(
1

x2n+1 −
1

a2n+1

)
− a+ x

2(n+1)

(
1

x2n+2 −
1

a2n+2

)

+
ax

2n+3

(
1

x2n+3 −
1

a2n+3

)) 1
2

.
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