ADDITIVE ρ–FUNCTIONAL INEQUALITIES
IN NON–ARCHIMEDEAN NORMED SPACES

CHOONKIL PARK

(Communicated by A. Gilányi)

Abstract. In this paper, we solve the additive ρ-functional inequalities

$$\|f(x+y) - f(x) - f(y)\| \leq \|\rho \left(2f\left(\frac{x+y}{2}\right) - f(x) - f(y)\right)\| \quad (0.1)$$

and

$$\|2f\left(\frac{x+y}{2}\right) - f(x) - f(y)\| \leq \|\rho (f(x+y) - f(x) - f(y))\|, \quad (0.2)$$

where ρ is a fixed non-Archimedean number with $|\rho| < 1$.

Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of additive ρ-functional equations associated with the additive ρ-functional inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and preliminaries

A valuation is a function $|\cdot|$ from a field K into $[0, \infty)$ such that 0 is the unique element having the 0 valuation, $|rs| = |r| \cdot |s|$ and the triangle inequality holds, i.e.,

$$|r+s| \leq |r| + |s|, \quad \forall r, s \in K.$$

A field K is called a valued field if K carries a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle inequality is replaced by

$$|r+s| \leq \max\{|r|, |s|\}, \quad \forall r, s \in K,$$

then the function $|\cdot|$ is called a non-Archimedean valuation, and the field is called a non-Archimedean field. Clearly $|1| = |1| = 1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. A trivial example of a non-Archimedean valuation is the function $|\cdot|$ taking everything except for 0 into 1 and $|0| = 0$.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call it simply a field.

Keywords and phrases: Hyers-Ulam stability, additive ρ-functional equation, additive ρ-functional inequality, non-Archimedean normed space.

This work was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299).
DEFINITION 1.1. ([7]) Let X be a vector space over a field K with a non-Archimedean valuation $| \cdot |$. A function $\| \cdot \| : X \to [0, \infty)$ is said to be a non-Archimedean norm if it satisfies the following conditions:

(i) $\|x\| = 0$ if and only if $x = 0$;
(ii) $\|rx\| = |r|\|x\|$ ($r \in K, x \in X$);
(iii) the strong triangle inequality $\|x + y\| \leq \max\{\|x\|, \|y\|\}, \quad \forall x, y \in X$ holds. Then $(X, \| \cdot \|)$ is called a non-Archimedean normed space.

DEFINITION 1.2. (i) Let $\{x_n\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\{x_n\}$ is called Cauchy if for a given $\varepsilon > 0$ there is a positive integer N such that

$$\|x_n - x_m\| \leq \varepsilon$$

for all $n, m \geq N$.

(ii) Let $\{x_n\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\{x_n\}$ is called convergent if for a given $\varepsilon > 0$ there are a positive integer N and an $x \in X$ such that

$$\|x_n - x\| \leq \varepsilon$$

for all $n \geq N$. Then we call $x \in X$ a limit of the sequence $\{x_n\}$, and denote by $\lim_{n \to \infty} x_n = x$.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-Archimedean Banach space.

The functional equation

$$f(x + y) = f(x) + f(y)$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Rassias [10] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [3] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

The functional equation

$$f \left(\frac{x + y}{2} \right) = \frac{1}{2} f(x) + \frac{1}{2} f(y)$$

is called the Jensen equation.

In [4], Gilányi showed that if f satisfies the functional inequality

$$\|2f(x) + 2f(y) - f(xy^{-1})\| \leq \|f(xy)\|$$

(1.1)
then f satisfies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1}).$$

In [8], Park defined additive ρ-functional inequalities and additive ρ-functional equations and proved the Hyers-Ulam stability of the additive ρ-functional inequalities and the additive ρ-functional equations in (Archimedean) Banach spaces.

In Section 2, we solve the additive functional inequality (0.1) and prove the Hyers-Ulam stability of the additive functional inequality (0.1) in non-Archimedean Banach spaces. We moreover prove the Hyers-Ulam stability of an additive functional equation associated with the functional inequality (0.1) in non-Archimedean Banach spaces.

In Section 3, we solve the additive functional inequality (0.2) and prove the Hyers-Ulam stability of the additive functional inequality (0.2) in non-Archimedean Banach spaces. We moreover prove the Hyers-Ulam stability of an additive functional equation associated with the functional inequality (0.2) in non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is a non-Archimedean Banach space. Let $|\rho| \neq 1$ and let ρ be a non-Archimedean number with $|\rho| < 1$.

2. Additive ρ-functional inequality (0.1)

We solve the additive ρ-functional inequality (0.1) in non-Archimedean normed spaces.

Lemma 2.1. Let G be an Abelian semigroup with division by 2. A mapping $f : G \rightarrow Y$ satisfies

$$\|f(x + y) - f(x) - f(y)\| \leq \rho \left(2f\left(\frac{x+y}{2} \right) - f(x) - f(y) \right) \quad (2.1)$$

for all $x, y \in G$ if and only if $f : G \rightarrow Y$ is additive.

Proof. Assume that $f : G \rightarrow Y$ satisfies (2.1).

Letting $x = y = 0$ in (2.1), we get

$$\|f(0)\| \leq 0.$$

So $f(0) = 0$.

Letting $y = x$ in (2.1), we get

$$\|f(2x) - 2f(x)\| \leq 0$$

and so $f(2x) = 2f(x)$ for all $x \in G$. Thus

$$f\left(\frac{x}{2} \right) = \frac{1}{2}f(x) \quad (2.2)$$
for all \(x \in G \).

It follows from (2.1) and (2.2) that
\[
\|f(x+y) - f(x) - f(y)\| \leq \|\rho \left(2f\left(\frac{x+y}{2}\right) - f(x) - f(y)\right)\|
\]
\[
= |\rho|\|f(x+y) - f(x) - f(y)\|
\]
and so
\[
f(x+y) = f(x) + f(y)
\]
for all \(x, y \in G \).

The converse is obviously true. \(\square \)

Corollary 2.2. Let \(G \) be an Abelian semigroup with division by 2. A mapping \(f : G \to Y \) satisfies
\[
f(x+y) - f(x) - f(y) = \rho \left(2f\left(\frac{x+y}{2}\right) - f(x) - f(y)\right)
\]
(2.3)
for all \(x, y \in G \) if and only if \(f : G \to Y \) is additive.

We prove the Hyers-Ulam stability of the additive \(\rho \)-functional inequality (2.1) in Banach spaces.

Theorem 2.3. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping such that
\[
\|f(x+y) - f(x) - f(y)\| \leq \|\rho \left(2f\left(\frac{x+y}{2}\right) - f(x) - f(y)\right)\| + \theta(\|x\|^r + \|y\|^r)
\]
(2.4)
for all \(x, y \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that
\[
\|f(x) - A(x)\| \leq \frac{2\theta}{2r} \|x\|^r
\]
(2.5)
for all \(x \in X \).

Proof. Letting \(y = x \) in (2.4), we get
\[
\|f(2x) - 2f(x)\| \leq 2\theta \|x\|^r
\]
(2.6)
for all \(x \in X \). So
\[
\|f(x) - 2f\left(\frac{x}{2}\right)\| \leq \frac{2}{2r} \theta \|x\|^r
\]
for all $x \in X$. Hence
\begin{equation}
\left\| 2^l f \left(\frac{x}{2^l} \right) - 2^m f \left(\frac{x}{2^m} \right) \right\|
\leq \max \left\{ \left\| 2^l f \left(\frac{x}{2^l} \right) - 2^{l+1} f \left(\frac{x}{2^{l+1}} \right) \right\|, \ldots, \left\| 2^{m-1} f \left(\frac{x}{2^{m-1}} \right) - 2^m f \left(\frac{x}{2^m} \right) \right\| \right\}
\end{equation}
\begin{equation}
= \max \left\{ \left\| 2^l f \left(\frac{x}{2^l} \right) - 2 f \left(\frac{x}{2^{l+1}} \right) \right\|, \ldots, \left\| 2^{m-1} f \left(\frac{x}{2^{m-1}} \right) - 2 f \left(\frac{x}{2^m} \right) \right\| \right\}
\end{equation}
\begin{equation}
\leq \max \left\{ \left\| 2^l f \left(\frac{x}{2^l} \right) - 2 f \left(\frac{x}{2^{l+1}} \right) \right\|, \ldots, \left\| 2^{m-1} f \left(\frac{x}{2^{m-1}} \right) - 2 f \left(\frac{x}{2^m} \right) \right\| \right\}
\end{equation}
\begin{equation}
= \frac{2 \theta}{\left\| x \right\|} \left\| x \right\|^{r}
\end{equation}
for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (2.7) that the sequence $\{2^k f \left(\frac{x}{2^k} \right) \}$ is Cauchy for all $x \in X$. Since Y is a non-Archimedean Banach space, the sequence $\{2^k f \left(\frac{x}{2^k} \right) \}$ converges. So one can define the mapping $A : X \to Y$ by
\begin{equation}
A(x) := \lim_{k \to \infty} 2^k f \left(\frac{x}{2^k} \right)
\end{equation}
for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (2.7), we get (2.5).

Now, let $T : X \to Y$ be another additive mapping satisfying (2.5). Then we have
\begin{equation}
\left\| A(x) - T(x) \right\| = \left\| 2^q A \left(\frac{x}{2^q} \right) - 2^q T \left(\frac{x}{2^q} \right) \right\|
\leq \max \left\{ \left\| 2^q A \left(\frac{x}{2^q} \right) - 2^q f \left(\frac{x}{2^q} \right) \right\|, \left\| 2^q T \left(\frac{x}{2^q} \right) - 2^q f \left(\frac{x}{2^q} \right) \right\| \right\}
\leq \frac{2 \theta}{\left\| x \right\|} \left\| x \right\|^{r},
\end{equation}
which tends to zero as $q \to \infty$ for all $x \in X$. So we can conclude that $A(x) = T(x)$ for all $x \in X$. This proves the uniqueness of A.

It follows from (2.4) that
\begin{equation}
\left\| A(x+y) - A(x) - A(y) \right\| = \lim_{n \to \infty} \left\| 2^n \left(f \left(\frac{x+y}{2^n} \right) - f \left(\frac{x}{2^n} \right) - f \left(\frac{y}{2^n} \right) \right) \right\|
\leq \lim_{n \to \infty} \left\| 2^n \left(f \left(\frac{x+y}{2^n} \right) - f \left(\frac{x}{2^n} \right) - f \left(\frac{y}{2^n} \right) \right) \right\|
\leq \lim_{n \to \infty} \frac{2^n \theta}{\left\| x \right\|^{r} + \left\| y \right\|^{r}}
\end{equation}
\begin{equation}
+ \lim_{n \to \infty} \frac{\left\| x \right\|^{r} + \left\| y \right\|^{r}}{\left\| x \right\|^{r} + \left\| y \right\|^{r}}
\end{equation}
\begin{equation}
= \left\| \rho \left(2 A \left(\frac{x+y}{2} \right) - A(x) - A(y) \right) \right\|
\end{equation}
for all $x, y \in X$. So
\begin{equation}
\left\| A(x+y) - A(x) - A(y) \right\| \leq \left\| \rho \left(2 A \left(\frac{x+y}{2} \right) - A(x) - A(y) \right) \right\|
\end{equation}
for all $x, y \in X$. By Lemma 2.1, the mapping $A : X \to Y$ is additive. □
THEOREM 2.4. Let $r > 1$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping satisfying (2.4). Then there exists a unique additive mapping $A : X \to Y$ such that

$$\|f(x) - A(x)\| \leq \frac{2\theta}{|2|^{r}}\|x\|^{r}$$

(2.8)

for all $x \in X$.

Proof. It follows from (2.6) that

$$\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{2\theta}{|2|^{r}}\|x\|^{r}$$

for all $x \in X$. Hence

$$\left\| \frac{1}{2^{r}} f(2^{l} x) - \frac{1}{2^{m}} f(2^{m} x) \right\| \leq \max \left\{ \left\| \frac{1}{2^{r}} f(2^{l} x) - \frac{1}{2^{l+1}} f(2^{l+1} x) \right\|, \ldots, \left\| \frac{1}{2^{m-1}} f(2^{m-1} x) - \frac{1}{2^{m}} f(2^{m} x) \right\| \right\}$$

(2.9)

$$= \max \left\{ \frac{1}{|2|^{r}} \left\| f(2^{l} x) - f(2^{l+1} x) \right\|, \ldots, \frac{1}{|2|^{m-1}} \left\| f(2^{m-1} x) - f(2^{m} x) \right\| \right\}$$

$$\leq \max \left\{ \frac{|2|^{r}}{|2|^{l+1}}, \ldots, \frac{|2|^{r(m-1)}}{|2|^{m+1}} \right\} 2\theta \|x\|^{r}$$

$$= \frac{2\theta}{|2|^{(1-r)l+1}}\|x\|^{r}$$

for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (2.9) that the sequence $\left\{ \frac{1}{2^{m}} f(2^{m} x) \right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{ \frac{1}{2^{m}} f(2^{m} x) \right\}$ converges. So one can define the mapping $A : X \to Y$ by

$$A(x) := \lim_{n \to \infty} \frac{1}{2^{n}} f(2^{n} x)$$

for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (2.9), we get (2.8).

The rest of the proof is similar to the proof of Theorem 2.3. □

Let $A(x, y) := f(x + y) - f(x) - f(y)$ and $B(x, y) := \rho \left(2 f \left(\frac{x+y}{2} \right) - f(x) - f(y) \right)$ for all $x, y \in X$.

For $x, y \in X$ with $\|A(x, y)\| \leq \|B(x, y)\|$, $\|A(x, y)\| - \|B(x, y)\| \leq \|A(x, y) - B(x, y)\|$.

For $x, y \in X$ with $\|A(x, y)\| > \|B(x, y)\|$, $\|A(x, y)\| = \|A(x, y) - B(x, y) + B(x, y)\|$$\leq \max \{ \|A(x, y) - B(x, y)\|, \|B(x, y)\| \}$$= \|A(x, y) - B(x, y)\|$$\leq \|A(x, y) - B(x, y)\| + \|B(x, y)\|$,
since \(\|A(x,y)\| > \|B(x,y)\| \). So we have
\[
\|f(x+y) - f(x) - f(y)\| - \|\rho \left(2f \left(\frac{x+y}{2} \right) - f(x) - f(y) \right)\| \\
\leq \left| \|f(x+y) - f(x) - f(y)\| - \rho \left(2f \left(\frac{x+y}{2} \right) - f(x) - f(y) \right)\| \right|.
\]

As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the additive \(\rho \)-functional equation (2.3) in non-Archimedean Banach spaces.

Corollary 2.5. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \rightarrow Y \) be a mapping such that
\[
\|f(x+y) - f(x) - f(y)\| \leq \theta (\|x\|^r + \|y\|^r) \tag{2.10}
\]
for all \(x,y \in X \). Then there exists a unique additive mapping \(A : X \rightarrow Y \) satisfying (2.5).

Corollary 2.6. Let \(r > 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \rightarrow Y \) be a mapping satisfying (2.10). Then there exists a unique additive mapping \(A : X \rightarrow Y \) satisfying (2.8).

3. Additive \(\rho \)-functional inequality (0.2)

We solve the additive \(\rho \)-functional inequality (0.2) in non-Archimedean normed spaces.

Lemma 3.1. Let \(G \) be an Abelian semigroup with division by 2. A mapping \(f : G \rightarrow Y \) satisfies \(f(0) = 0 \) and
\[
\|2f \left(\frac{x+y}{2} \right) - f(x) - f(y)\| \leq \|\rho (f(x+y) - f(x) - f(y))\| \tag{3.1}
\]
for all \(x,y \in G \) if and if \(f : G \rightarrow Y \) is additive.

Proof. Assume that \(f : X \rightarrow Y \) satisfies (3.1).

Letting \(y = 0 \) in (3.1), we get
\[
\|2f \left(\frac{x}{2} \right) - f(x)\| \leq 0 \tag{3.2}
\]
and so \(f \left(\frac{x}{2} \right) = \frac{1}{2} f(x) \) for all \(x \in G \).

It follows from (3.1) and (3.2) that
\[
\|f(x+y) - f(x) - f(y)\| = \|2f \left(\frac{x+y}{2} \right) - f(x) - f(y)\| \\
\leq |\rho| \|f(x+y) - f(x) - f(y)\|
\]
and so
\[f(x + y) = f(x) + f(y) \]
for all \(x, y \in G \).

The converse is obviously true. \(\Box \)

Corollary 3.2. Let \(G \) be an Abelian semigroup with division by 2. A mapping \(f : G \to Y \) satisfies \(f(0) = 0 \) and
\[
2f\left(\frac{x + y}{2}\right) - f(x) - f(y) = \rho(f(x + y) - f(x) - f(y))
\]
(3.3)
for all \(x, y \in G \) if and only if \(f : G \to Y \) is additive.

Now, we prove the Hyers-Ulam stability of the additive \(\rho \)-functional inequality (3.1) in non-Archimedean Banach spaces.

Theorem 3.3. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping with \(f(0) = 0 \) such that
\[
\left\| 2f\left(\frac{x + y}{2}\right) - f(x) - f(y) \right\| \leq \| \rho(f(x + y) - f(x) - f(y)) \| + \theta(\|x\|^r + \|y\|^r)
\]
(3.4)
for all \(x, y \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that
\[
\left\| f(x) - A(x) \right\| \leq \theta \|x\|^r
\]
(3.5)
for all \(x \in X \).

Proof. Letting \(y = 0 \) in (3.4), we get
\[
\left\| f(x) - 2f\left(\frac{x}{2}\right) \right\| = \left\| 2f\left(\frac{x}{2}\right) - f(x) \right\| \leq \theta \|x\|^r
\]
(3.6)
for all \(x \in X \). So
\[
\left\| 2^lf\left(\frac{x}{2^l}\right) - 2^mf\left(\frac{x}{2^m}\right) \right\|
\]
(3.7)
\[
\leq \max\left\{ \left\| 2^lf\left(\frac{x}{2^l}\right) - 2^{l+1}f\left(\frac{x}{2^{l+1}}\right) \right\|, \ldots, \left\| 2^{m-1}f\left(\frac{x}{2^{m-1}}\right) - 2^m f\left(\frac{x}{2^m}\right) \right\| \right\}
\]
\[
= \max\left\{ |2|^l \left\| f\left(\frac{x}{2^l}\right) - 2f\left(\frac{x}{2^{l+1}}\right) \right\|, \ldots, |2|^{m-1} \left\| f\left(\frac{x}{2^{m-1}}\right) - 2f\left(\frac{x}{2^m}\right) \right\| \right\}
\]
\[
\leq \max\left\{ \frac{|2|^l}{2^{l(r-1)}}, \ldots, \frac{|2|^{m-1}}{2^{r(m-1)}} \right\} \theta \|x\|^r
\]
\[
= \frac{\theta}{|2|^{(r-1)l}} \|x\|^r
\]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (3.7) that the sequence \(\{2^kf\left(\frac{x}{2^k}\right)\} \) is Cauchy for all \(x \in X \). Since \(Y \) is a non-Archimedean
Banach space, the sequence \(\{2^k f(x)\} \) converges. So one can define the mapping \(A : X \to Y \) by
\[
A(x) := \lim_{k \to \infty} 2^k f \left(\frac{x}{2^k} \right)
\]
for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.7), we get (3.5).

The rest of the proof is similar to the proof of Theorem 2.3. \(\square \)

Theorem 3.4. Let \(r > 1 \) and \(\theta \) be positive real numbers, and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \) and (3.4). Then there exists a unique additive mapping \(A : X \to Y \) such that
\[
\|f(x) - A(x)\| \leq \frac{|2^r \theta| x}{|2|}|x|^r
\]
for all \(x \in X \).

Proof. It follows from (3.6) that
\[
\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{|2^r \theta| x}{|2|}|x|^r
\]
for all \(x \in X \). Hence
\[
\left\| \frac{1}{2^l} f(2^l x) - \frac{1}{2^m} f(2^m x) \right\| \leq \frac{2^{|r l| \theta |x|}}{2^{|l+1|}} \frac{2^{r (m-1)} \theta |x|}{2^{(m-1)+1}} |x|^r
\]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (3.9) that the sequence \(\{ \frac{1}{2^l} f(2^n x) \} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{ \frac{1}{2^l} f(2^n x) \} \) converges. So one can define the mapping \(A : X \to Y \) by
\[
A(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)
\]
for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.9), we get (3.8).

The rest of the proof is similar to the proof of Theorem 2.3. \(\square \)
Let $A(x, y) := 2f \left(\frac{x+y}{2} \right) - f(x) - f(y)$ and $B(x, y) := \rho (f(x+y) - f(x) - f(y))$ for all $x, y \in X$.

For $x, y \in X$ with $\|A(x, y)\| \leq \|B(x, y)\|$,
\[\|A(x, y)\| - \|B(x, y)\| \leq \|A(x, y) - B(x, y)\| .\]

For $x, y \in X$ with $\|A(x, y)\| > \|B(x, y)\|$,
\[\|A(x, y)\| = \|A(x, y) - B(x, y) + B(x, y)\|\]
\[\leq \max \{\|A(x, y) - B(x, y)\|, \|B(x, y)\|\}\]
\[= \|A(x, y) - B(x, y)\|\]
\[\leq \|A(x, y) - B(x, y)\| + \|B(x, y)\|,\]

since $\|A(x, y)\| > \|B(x, y)\|$. So we have
\[\|2f \left(\frac{x+y}{2} \right) - f(x) - f(y)\| - \|\rho (f(x+y) - f(x) - f(y))\|\]
\[\leq \left\|2f \left(\frac{x+y}{2} \right) - f(x) - f(y) - \rho (f(x+y) - f(x) - f(y))\right\| .\]

As corollaries of Theorems 3.3 and 3.4, we obtain the Hyers-Ulam stability results for the additive ρ-functional equation (3.3) in non-Archimedean Banach spaces.

COROLLARY 3.5. Let $r < 1$ and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping satisfying $f(0) = 0$ and
\[\left\|2f \left(\frac{x+y}{2} \right) - f(x) - f(y) - \rho (f(x+y) - f(x) - f(y))\right\| \leq \theta (\|x\|^r + \|y\|^r)(3.10)\]
for all $x, y \in X$. Then there exists a unique additive mapping $A : X \to Y$ satisfying (3.5).

COROLLARY 3.6. Let $r > 1$ and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping satisfying $f(0) = 0$ and (3.10). Then there exists a unique additive mapping $A : X \to Y$ satisfying (3.8).

REFERENCES

ADDITIVE ρ-FUNCTIONAL INEQUALITIES

(Received April 13, 2014)