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INEQUALITIES FOR THE FROBENIUS NORM

YANG PENG

(Communicated by J. Pečarić)

Abstract. In this note, we present a refinement of Heinz inequality for the Frobenius norm and
discuss the relationship between our result and some existing inequalities

1. Introduction

Let Mn be the space of n× n complex matrices and ‖·‖ stand for any unitarily
invariant norm on Mn . So, ‖UAV‖ = ‖A‖ for all A ∈ Mn and for all unitary matrices
U, V ∈ Mn . For A = (ai j) ∈ Mn , the Frobenius norm of A is defined by

‖A‖F =

(
n

∑
i, j=1

∣∣ai j
∣∣2)1/2

.

The Frobenius norm is also called Hilbert-Schmidt norm. It plays a basic role in matrix
analysis and it is known that the Frobenius norm is unitarily invariant.

Let a and b be nonnegative real numbers. The geometric and arithmetic means
are defined as follows:

G(a,b) =
√

ab, A(a,b) =
a+b

2
.

The Heinz means are defined as

Hv (a,b) =
avb1−v +a1−vbv

2
, 0 � v � 1.

It is easy to see that as a function of v , Hv (a,b) is convex and attains its minimum at
v = 1

2 . So,
G(a,b) � Hv (a,b) � A(a,b) , 0 � v � 1. (1)

A matrix version of inequality (1) was proved in [2, Theorem 2] which says that if
A, B, X ∈ Mn such that A and B are positive semidefinite and if 0 � v � 1, then

2
∥∥∥A1/2XB1/2

∥∥∥�
∥∥AvXB1−v +A1−vXBv

∥∥� ‖AX +XB‖ . (2)
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The second part of inequality (2) is known as Heinz inequality for matrices. For more
information on Heinz inequality for matrices the reader is referred to [3–5].

Let A, B, X ∈ Mn such that A and B are positive semidefinite and suppose that

f (v) =
∥∥AvXB1−v +A1−vXBv

∥∥
F , 0 � v � 1.

It is known [1, p. 265] that f is a continuous convex function on [0,1] . Kittaneh and
Manasrah [4, Theorem 3.4] proved that if 0 � v � 1, then

f (v)+2r0

(√
‖AX‖F −

√
‖XB‖F

)2

� ‖AX +XB‖F , (3)

where r0 = min{v, 1− v} . Inequality (3) is a refinement of Heinz inequality for the
Frobenius norm.

In section 2, we first show a refinement of Heinz inequality for the Frobenius norm.
After that, we discuss the relationship between our result and inequality (3).

2. Main results

THEOREM 2.1. Let A,X ,B ∈ Mn such that A and B are positive semidefinite. If
0 � v � 1 , then

f (v)+4r0

⎛
⎝ 1∫

0

f (v)dv−2
∥∥∥A1/2XB1/2

∥∥∥
F

⎞
⎠� ‖AX +XB‖F , (4)

where r0 = min{v, 1− v} .

Proof. Let

a =
(√

‖AX‖F −
√
‖XB‖F

)2

.

Since f is continuous convex on [0,1] , we have:
Step 1. By inequality (3), we obtain

1∫
0

f (v)dv+a

1∫
0

2r0dv � ‖AX +XB‖F .

That is,
1∫

0

f (v)dv+
a
2

� ‖AX +XB‖F ,

which is equivalent to

2
∥∥∥A1/2XB1/2

∥∥∥
F

+

⎛
⎝ 1∫

0

f (v)dv−2
∥∥∥A1/2XB1/2

∥∥∥
F

+
a
2

⎞
⎠� ‖AX +XB‖F . (5)
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Step 2. By inequality (5) and a similar argument as presented in [4, Theorem 3.4],
we have

f (v)+2r0

⎛
⎝ 1∫

0

f (v)dv−2
∥∥∥A1/2XB1/2

∥∥∥
F

+
a
2

⎞
⎠� ‖AX +XB‖F . (6)

Step 3. By inequality (6), we get

1∫
0

f (v)dv+

⎛
⎝ 1∫

0

f (v)dv−2
∥∥∥A1/2XB1/2

∥∥∥
F

+
a
2

⎞
⎠ 1∫

0

2r0dv � ‖AX +XB‖F

That is,

3
2

1∫
0

f (v)dv−
∥∥∥A1/2XB1/2

∥∥∥
F

+
a
4

� ‖AX +XB‖F ,

which is equivalent to

2
∥∥∥A1/2XB1/2

∥∥∥
2
+

⎛
⎝3

2

1∫
0

f (v)dv−3
∥∥∥A1/2XB1/2

∥∥∥
F

+
a
4

⎞
⎠� ‖AX +XB‖F . (7)

Step 4. By inequality (7) and a similar argument as presented in [4, Theorem 3.4],
we have

f (v)+2r0

⎛
⎝3

2

1∫
0

f (v)dv−3
∥∥∥A1/2XB1/2

∥∥∥
F

+
a
4

⎞
⎠� ‖AX +XB‖F . (8)

Step 5. By inequality (8), we obtain

1∫
0

f (v)dv+

⎛
⎝3

2

1∫
0

f (v)dv−3
∥∥∥A1/2XB1/2

∥∥∥
F

+
a
4

⎞
⎠ 1∫

0

2r0dv � ‖AX +XB‖F .

That is,

7
4

1∫
0

f (v)dv− 3
2

∥∥∥A1/2XB1/2
∥∥∥

F
+

a
8

� ‖AX +XB‖F ,

which is equivalent to

2
∥∥∥A1/2XB1/2

∥∥∥
F

+

⎛
⎝7

4

1∫
0

f (v)dv− 7
2

∥∥∥A1/2XB1/2
∥∥∥

F
+

a
8

⎞
⎠� ‖AX +XB‖F . (9)

Step 6. By inequality (9) and a similar argument as presented in [4, Theorem 3.4],
we have

f (v)+2r0

⎛
⎝7

4

1∫
0

f (v)dv− 7
2

∥∥∥A1/2XB1/2
∥∥∥

F
+

a
8

⎞
⎠� ‖AX +XB‖F . (10)
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...

Step n = 2k+1. By the same method above, we get

2
∥∥∥A1/2XB1/2

∥∥∥
F

+

⎛
⎝2n−1

2n−1

1∫
0

f (v)dv− 2n+1−2
2n−1

∥∥∥A1/2XB1/2
∥∥∥

F
+

a
2n

⎞
⎠� ‖AX +XB‖F .

(11)
Step n = 2k + 2. By inequality (11) and a similar argument as presented in [4,

Theorem 3.4], we have

f (v)+2r0

⎛
⎝2n−1

2n−1

1∫
0

f (v)dv− 2n+1 −2
2n−1

∥∥∥A1/2XB1/2
∥∥∥

F
+

a
2n

⎞
⎠� ‖AX +XB‖F .

(12)
Then, taking the limit n → ∞ side by side in (12), we have

f (v)+4r0

⎛
⎝ 1∫

0

f (v)dv−2
∥∥∥A1/2XB1/2

∥∥∥
F

⎞
⎠� ‖AX +XB‖F .

This completes the proof. �

REMARK 2.1. By inequality (2), we know that

1∫
0

f (v)dv � 2
∥∥∥A1/2XB1/2

∥∥∥
F

.

So, inequality (4) is a refinement of Heinz inequality.

REMARK 2.2. Inequality (4) has been obtained by Zou and He [6, Theorem 2.1].
Here, we give a new proof.

In view of inequalities (3) and (4), we want to know the relationship between them.
We may ask whether one of the the following inequalities holds:

2

⎛
⎝ 1∫

0

f (v)dv−2
∥∥∥A1/2XB1/2

∥∥∥
F

⎞
⎠�

(√
‖AX‖F −

√
‖XB‖F

)2

, (13)

2

⎛
⎝ 1∫

0

f (v)dv−2
∥∥∥A1/2XB1/2

∥∥∥
F

⎞
⎠�

(√
‖AX‖F −

√
‖XB‖F

)2

. (14)

The answer is no. We have the following result.
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THEOREM 2.2. Inequalities (13) and (14) are not always true.

Proof. Firstly, we give an example to show that (13) is not always true. In fact, if
we choose

A =
[

8.6897 3.3580
3.3580 1.4082

]
, X =

[
3.6696 1.3801
2.682 1.8423

]
, B =

[
0.9331 1.6242
1.6242 18.2135

]
.

then, we have

2
(∥∥∥A1/4XB3/4 +A3/4XB1/4

∥∥∥
F
−2
∥∥∥A1/2XB1/2

∥∥∥
F

)
= 5.5623

and (√
‖AX‖F −

√
‖XB‖F

)2

= 0.0124.

Applying the Hermite-Hadamard inequality for convex function f on each of the subin-
tervals

[
0, 1

2

]
and

[
1
2 ,1
]

and summing up side by side, we have

f

(
1
4

)
�

1∫
0

f (v)dv.

So,

2

⎛
⎝ 1∫

0

f (v)dv−2
∥∥∥A1/2XB1/2

∥∥∥
F

⎞
⎠� 5.5623 � 0.0124.

On the other hand, the following example shows that (14) does not hold. Zou [5,
Theorem 3.1] proved that

1∫
0

f (v)dv � 4
3

∥∥∥A1/2XB1/2
∥∥∥

F
+

1
3
‖AX +XB‖F ,

which implies

2

⎛
⎝ 1∫

0

f (v)dv−2
∥∥∥A1/2XB1/2

∥∥∥
F

⎞
⎠� 2

3
‖AX +XB‖− 4

3

∥∥∥A1/2XB1/2
∥∥∥

F
.

Let

A =
[

0.3486 0.3686
0.3686 0.4376

]
, X =

[
0.4756 0.7881
0.3625 0.7803

]
, B =

[
0.2574 0.2898
0.2898 0.3274

]
.

Then, we have

‖AX +XB‖F = 1.6591 � 1.8265 = 2
∥∥∥A1/2XB1/2

∥∥∥
F

+
3
2

(√
‖AX‖F −

√
‖XB‖F

)2

,

it follows that inequality (14) is not true for these matrices. This completes the proof. �
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