
Journal of
Mathematical

Inequalities

Volume 9, Number 2 (2015), 571–586 doi:10.7153/jmi-09-49

GENERALIZATION OF LEVINSON’S INEQUALITY

IMRAN ABBAS BALOCH, JOSIP PEČARIĆ AND MARJAN PRALJAK

(Communicated by P. R. Mercer)

Abstract. Mercer [5] gave a generalization of Levinson’s inequality that replaces the assump-
tion of symmetry of the two sequences with a weaker assumptions of equality of variances.
Witkowski [10] further loosened this assumption and extended the result to the class of 3-convex
functions.

We generalize these results to a newly defined, larger class of functions. We also prove the
converse in case the function is continuous. In particular, we show that if Levinson’s inequality
holds under Mercer’s assumptions, then the function is 3-convex.

1. Introduction

A well-known inequality due to Levinson [4] is given in the following theorem.

THEOREM 1.1. If f : (0,2c) → R satisfies f ′′′ � 0 and pi,xi,yi , i = 1,2, . . . ,n,
are such that pi > 0 , ∑n

i=1 pi = 1 , 0 � xi � c and

x1 + y1 = x2 + y2 = . . . = xn + yn = 2c, (1)

then the inequality
n

∑
i=1

pi f (xi)− f (x) �
n

∑
i=1

pi f (yi)− f (y) (2)

holds, where x = ∑n
i=1 pixi and y = ∑n

i=1 piyi denote the weighted arithmetic means.

The assumptions on the differentiability of f can be weakened by working with
the divided differences. A k th order divided difference of a function f : I → R , where
I is an interval in R , at distinct points x0, ...,xk ∈ I is defined recursively by

[xi] f = f (xi), for i = 0, ...,k

and

[x0, ...,xk] f =
[x1, ...,xk] f − [x0, ...,xk−1] f

xk − x0
.
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A function f : I → R is called k -convex if [x0, ...,xk] f � 0 for all choices of k + 1
distinct points x0, ...,xk ∈ I . If the k th derivative f (k) of a k -convex function exists,
then f (k) � 0, but f (k) may not exist (for properties of divided differences and k -convex
functions see [8]).

Popoviciu [9] showed that in Theorem 1.1 it is enough to assume that f is 3-
convex. Bullen [1] gave another proof of Popoviciu’s result, as well as a converse
of Levinson’s inequality (rescaled to a general interval [a,b]). Bullen’s result is the
following:

THEOREM 1.2. (a) If f : [a,b] → R is 3-convex and pi,xi,yi , i = 1,2, . . . ,n, are
such that pi > 0 , ∑n

i=1 pi = 1 , a � xi,yi � b, (1) holds (for some c ∈ [a,b]) and

max(x1, ...,xn) � min(y1, ...,yn), (3)

then (2) holds.
(b) If for a continuous function f inequality (2) holds for all n , all c ∈ [a,b] , all 2n
distinct points satisfying (1) and (3) and all weights pi > 0 such that ∑n

i=1 pi = 1 , then
f is 3-convex.

Pečarić [6] proved that one can weaken the assumption (3) and still guarantee that
inequality (2) holds, i. e. the following result holds

THEOREM 1.3. If f : [a,b]→R is 3-convex and pi,xi,yi , i = 1,2, . . . ,n, are such
that pi > 0 , ∑n

i=1 pi = 1 , a � xi,yi � b, (1) holds (for some c ∈ [a,b]) and

xi + xn−i+1 � 2c,

pixi + pn−i+1xn−i+1

pi + pn−i+1
� c,

for i = 1,2, . . . ,n, (4)

then (2) holds.

The inequality from Theorem 1.3 for uniform weights pi = 1
n was proven by

Lawrence and Segalman [3]. A shorter proof of Lawrence and Segalman’s result for a
wider class of functions was obtained by Pečarić [7]. More recently, Hussain, Pečarić
and Perić [2] gave a refinement of the inequality from Theorem 1.3.

All of the generalizations of Levinson’s inequality mentioned so far assume that
(1) holds, i. e. that the distribution of the points xi is equal to the distribution of the
points yi reflected around the point c ∈ [a,b] . Recently, Mercer [5] made a significant
improvement by replacing this condition of symmetric distribution with the weaker one
that the variances of the two sequences are equal.

THEOREM 1.4. If f : [a,b]→ R satisfies f ′′′ � 0 and pi,xi,yi , i = 1,2, . . . ,n, are
such that pi > 0 , ∑n

i=1 pi = 1 , a � xi,yi � b, (3) holds and

n

∑
i=1

pi(xi − x)2 =
n

∑
i=1

pi(yi− y)2, (5)

then (2) holds.
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Witkowski [10] showed that, similarly as before, the assumptions on differentia-
bility of f can be weakened and for Theorem 1.4 to hold it is enough to assume that f
is 3-convex. Furthermore, Witkowski weakened the assumption (5) as well and showed
that equality of variances can be replaced by inequality in certain direction.

THEOREM 1.5. If f : (a,b) → R is 3-convex, pi > 0 for i = 1,2, ...,n, ∑n
i=1 pi =

1 , a � xi,yi � b are such that (3) holds and

(a) f ′′−(maxxi) > 0 and
n

∑
i=1

pi(xi − x)2 �
n

∑
i=1

pi(yi − y)2,

or

(b) f ′′+(minyi) < 0 and
n

∑
i=1

pi(xi − x)2 �
n

∑
i=1

pi(yi − y)2,

or
(c) f ′′−(maxxi) � 0 � f ′′+(minyi),

then (2) holds.

Witkowski [10] also gave the result for 3-concave functions.

THEOREM 1.6. If f : (a,b)→R is 3-concave, pi > 0 for i = 1,2, ...,n, ∑n
i=1 pi =

1 , a � xi,yi � b are such that

(a) f ′′−(maxxi) < 0 and
n

∑
i=1

pi(xi − x)2 �
n

∑
i=1

pi(yi − y)2,

or

(b) f ′′+(minyi) > 0 and
n

∑
i=1

pi(xi − x)2 �
n

∑
i=1

pi(yi − y)2,

or
(c) f ′′−(minyi) � 0 � f ′′+(maxxi),

then (2) holds with the reverse inequality.

In this paper we will build on and extend the methods of Witkowski [10]. We will
introduce a new class of functions K c

1 (a,b) that extends 3-convex functions and can
be interpreted as functions that are “3-convex at point c”. We will prove some of the
properties of this new class, in particular that a function is 3-convex on an interval if and
only if it is 3-convex at every point of the interval. The main result of this paper is that
K c

1 (a,b) is the largest class of functions for which Levinson’s inequality holds under
Mercer’s assumptions, i. e. that f ∈ K c

1 (a,b) if and only if inequality (2) holds for
arbitrary weights pi > 0, ∑n

i=1 pi = 1, and sequences xi and yi that satisfy xi � c � yi

for i = 1,2, . . . ,n . Analogues results for the reverse of inequality (2) and the class
K c

2 (a,b) of functions that are “3-concave at point c” hold.
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2. Main results

We will generalize Theorem 1.4 by weakening the assumptions on the function f .
Before stating our main results, we will introduce a new class of functions and show
some of its properties.

DEFINITION 2.1. Let f : (a,b) → R be a function and c ∈ (a,b) . We say that
f ∈K c

1 (a,b) ( f ∈K c
2 (a,b)) if there exists a constant A such that the function F(x) =

f (x)− A
2 x2 is concave (convex) on (a,c] and convex (concave) on [c,b) .

REMARK 2.2. If f ∈ K c
i (a,b) , i = 1,2, and f ′′(c) exists, then f ′′(c) = A . We

will show this for f ∈ K c
1 (a,b) : due to the concavity and convexity of F for every

distinct points x j ∈ (a,c] and y j ∈ [c,b) , j = 1,2,3, we have

[x1,x2,x3]F = [x1,x2,x3] f −A/2 � 0 � [y1,y2,y3] f −A/2 = [y1,y2,y3]F.

Therefore, if f ′′−(c) and f ′′+(c) exist, letting x j ↗ c and y j ↘ c , we get

f ′′−(c) � A � f ′′+(c).

�

REMARK 2.3. If f : (a,b)→R is 3-convex (3-concave), then f ∈K c
1 (a,b) ( f ∈

K c
2 (a,b)) for every c ∈ (a,b) . Indeed, if f is 3-convex, then f ′, f ′′− and f ′′+ exist and

f ′ is convex (see [8]). Hence, for every α1,α2 ∈ (a,c] and β1,β2 ∈ [c,b) it holds

f ′(α2)− f ′(α1)
α2 −α1

� f ′′−(c) � f ′′+(c) � f ′(β2)− f ′(β1)
β2−β1

.

Therefore, for every A ∈ [ f ′′−(c), f ′′+(c)] the function F(x) = f (x)− A
2 x2 satisfies

F ′(α2)−F ′(α1)
α2 −α1

� 0 � F ′(β2)−F ′(β1)
β2−β1

,

so F ′ is nonincreasing on (a,c] and nondecreasing on [c,b) . The next theorem shows
that this property characterizes 3-convex (3-concave) functions.

On the other hand, f (x)= x4 is an example of a function that belongs to K 2
1 (−1,3) ,

but is not 3-convex on (−1,3) . Furthermore, f (x) = |x| is an example of a function
that belongs to K 0

1 (−1,1) , but f is not differentiable at zero, a point in the interval
(−1,1) . �

THEOREM 2.4. If f ∈ K c
1 (a,b) ( f ∈ K c

2 (a,b)) for every c ∈ (a,b) , then f is
3-convex (3-concave).

Proof. We will give the proof for f ∈ K c
1 (a,b) . It is enough to prove that f ′

exists and is convex. For this purpose we will use the following characterization of
convexity (see [8]): g is convex if and only if the function

(x,y) �→ [x,y]g =
g(x)−g(y)

x− y
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is nondecreasing in both variables.
For every c∈ (a,b) there exists constant Ac such that the function Fc(x) = f (x)−

Ac
2 x2 is concave on (a,c] and convex on [c,b) . Therefore F ′

c− and F ′
c+ exist and

F ′
c−(x) � F ′

c+(x) for x ∈ (a,c) and F ′
c−(x) � F ′

c+(x) for x ∈ (c,b) . Since the function
x �→ Ac

2 x2 is differentiable, f ′− and f ′+ also exist. Let x ∈ (a,b) be arbitrary and c1 <
x < c2 . We have f ′−(x) � f ′+(x) due to convexity of Fc1 and f ′−(x) � f ′+(x) due to
concavity of Fc2 , so f ′ exists. Furthermore, due to concavity and convexity of Fc we
also have, for every x1 �= x2 � c � y1 �= y2 ,

F ′
c(x2)−F ′

c(x1)
x2− x1

=
f ′c(x2)− f ′c(x1)

x2− x1
−Ac � 0 � f ′c(y2)− f ′c(y1)

y2− y1
−Ac =

F ′
c(y2)−F ′

c(y1)
y2− y1

.

In particular, for z1 < z2 < z3

f ′(z2)− f ′(z1)
z2 − z1

� Az2 � f ′(z3)− f ′(z2)
z3 − z2

. (6)

Now, let x1,x2,y ∈ (a,b) be arbitrary. If y < x1 < x2 , applying (6) we get

f ′(x1)− f ′(y)
x1− y

� Ax1 � f ′(x2)− f ′(x1)
x2 − x1

=
f ′(x2)− f ′(y)

x2 − x1
− f ′(x1)− f ′(y)

x2 − x1
.

By multiplying the above inequality with x2−x1
x2−y > 0 and rearranging we get

f ′(x1)− f ′(y)
x1 − y

� f ′(x2)− f ′(y)
x2− y

.

We can treat the cases x1 < y < x2 and x1 < x2 < y similarly and conclude that the
function (x,y) �→ [x,y] f ′ is nondecreasing in x . By symmetry, the same thing holds for
y and the proof is finished. �

REMARK 2.5. Taking into account Remark 2.3 and Theorem 2.4, we can describe
the property from the definition of K c

1 (a,b) as “3-convexity at point c”. Therefore,
we have shown that a function f is 3-convex on (a,b) if and only if it is 3-convex at
every c ∈ (a,b) .

The following theorem is our main result and it generalizes Theorem 1.4.

THEOREM 2.6. Let a < xi � c � yi < b, pi > 0 for i = 1,2, ...,n, ∑n
i=1 pi = 1

and (5) holds. If f ∈ K c
1 (a,b) , then inequality (2) holds and if f ∈ K c

2 (a,b) , then (2)
holds with reverse sign of inequality.

Proof. For 0 � t � 1, let xi(t) = x+ t(xi− x) and yi(t) = y+ t(yi− y) . We define
the function

U(t) =
n

∑
i=1

pi f (yi(t))− f (y)−
n

∑
i=1

pi f (xi(t))+ f (x).
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We will first show that for f ∈K c
1 (a,b) the function U is convex. Let t1, t2, t3 ∈ [0,1] ,

ti �= t j for i �= j , and xi �= x. Since F(x) = f (x)− A
2 x2 is concave on (a,c]

0 � [xi(t1),xi(t2),xi(t3)]F =
F(xi(t1))

(xi(t1)− xi(t2))(xi(t1)− xi(t3))

+
F(xi(t2))

(xi(t2)− xi(t3))(xi(t2)− xi(t1))
+

F(xi(t3))
(xi(t3)− xi(t1))(xi(t3)− xi(t2))

=
f (xi(t1))− A

2 (xi(t1))2

(t1 − t2)(t1 − t3)(xi − x)2 +
f (xi(t2))− A

2 (xi(t2))2

(t2 − t3)(t2 − t1)(xi − x)2

+
f (xi(t3))− A

2 (xi(t3))2

(t3 − t1)(t3 − t2)(xi − x)2

Therefore

f (xi(t1))
(t1− t2)(t1 − t3)

+
f (xi(t2))

(t2− t3)(t2 − t1)
+

f (xi(t3))
(t3− t1)(t3 − t2)

− A
2

[
(xi(t1))2

(t1 − t2)(t1− t3)
+

(xi(t2))2

(t2 − t3)(t2− t1)
+

(xi(t3))2

(t3 − t1)(t3− t2)

]
� 0 (7)

holds for xi �= x . If xi = x then (7) also holds with left-hand side equal to zero.
Similarly, since F is convex on [c,b) the inequality

f (yi(t1))
(t1− t2)(t1 − t3)

+
f (yi(t2))

(t2− t3)(t2 − t1)
+

f (yi(t3))
(t3− t1)(t3 − t2)

− A
2

[
(yi(t1))2

(t1 − t2)(t1− t3)
+

(yi(t2))2

(t2 − t3)(t2− t1)
+

(yi(t3))2

(t3 − t1)(t3− t2)

]
� 0 (8)

holds for every yi and distinct points t1,t2,t3 ∈ [0,1] .
Now, consider

[t1, t2, t3]U =
U(t1)

(t1− t2)(t1 − t3)
+

U(t2)
(t2− t3)(t2 − t1)

+
U(t3)

(t3− t1)(t3 − t2)

=
1

(t1 − t2)(t1 − t3)

( n

∑
i=1

pi f (yi(t1))− f (y)−
n

∑
i=1

pi f (xi(t1))+ f (x)
)

+
1

(t2− t3)(t2− t1)

( n

∑
i=1

pi f (yi(t2))− f (y)−
n

∑
i=1

pi f (xi(t2))+ f (x)
)

+
1

(t3− t1)(t3− t2)

( n

∑
i=1

pi f (yi(t3))− f (y)−
n

∑
i=1

pi f (xi(t3))+ f (x)
)

=
n

∑
i=1

pi

[
f (yi(t1))

(t1− t2)(t1 − t3)
+

f (yi(t2))
(t2 − t3)(t2 − t1)

+
f (yi(t3))

(t3 − t1)(t3 − t2)

]
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−
n

∑
i=1

pi

[
f (xi(t1))

(t1 − t2)(t1 − t3)
+

f (xi(t2))
(t2 − t3)(t2 − t1)

+
f (xi(t3))

(t3− t1)(t3 − t2)

]

−( f (y)− f (x))
[

1
(t1− t2)(t1 − t3)

+
1

(t2 − t3)(t2 − t1)
+

1
(t3 − t1)(t3 − t2)

]

=
n

∑
i=1

pi

[
f (yi(t1))

(t1 − t2)(t1 − t3)
+

f (yi(t2))
(t2 − t3)(t2 − t1)

+
f (yi(t3))

(t3 − t1)(t3 − t2)

−A
2

(
(yi(t1))2

(t1 − t2)(t1 − t3)
+

(yi(t2))2

(t2− t3)(t2 − t1)
+

(yi(t3))2

(t3− t1)(t3 − t2)

)]

+
A
2

n

∑
i=1

pi

(
(yi(t1))2

(t1 − t2)(t1 − t3)
+

(yi(t2))2

(t2 − t3)(t2 − t1)
+

(yi(t3))2

(t3 − t1)(t3 − t2)

)

+
n

∑
i=1

pi

[
A
2

(
(xi(t1))2

(t1 − t2)(t1− t3)
+

(xi(t2))2

(t2 − t3)(t2− t1)
+

(xi(t3))2

(t3 − t1)(t3− t2)

)

− f (xi(t1))
(t1− t2)(t1 − t3)

+
f (xi(t2))

(t2− t3)(t2 − t1)
+

f (xi(t3))
(t3− t1)(t3 − t2)

]

−A
2

n

∑
i=1

pi

(
(xi(t1))2

(t1 − t2)(t1 − t3)
+

(xi(t2))2

(t2 − t3)(t2 − t1)
+

(xi(t3))2

(t3 − t1)(t3 − t2)

)

� A
2

n

∑
i=1

pi

(
(yi(t1))2− (xi(t1))2

(t1− t2)(t1 − t3)
+

(yi(t2))2 − (xi(t2))2

(t2 − t3)(t2 − t1)
+

(yi(t3))2 − (xi(t3))2

(t3− t1)(t3 − t2)

)
(9)

where the last inequality follows from (7) and (8). Notice that

n

∑
i=1

pixi(t j)2 =
n

∑
i=1

pi
(
x2 +2t jx(xi − x)+ t2j (xi − x)2)

= x2 + t2j
n

∑
i=1

pi(xi − x)2 (10)

and, similarly,
n

∑
i=1

piyi(t j)2 = y2 + t2j
n

∑
i=1

pi(yi − y)2 (11)

Subtracting (10) from (11) and taking into account assumption (5) we have

n

∑
i=1

pi
(
yi(t j)2 − xi(t j)2) = y2 − x2,

so the last line in (9) is equal to

A
2

(
y2− x2)[ 1

(t1 − t2)(t1 − t3)
+

1
(t2 − t3)(t2 − t1)

+
1

(t3 − t1)(t3 − t2)

]
= 0.

Therefore [t1, t2, t3]U � 0 for every choice of t j, j = 1,2,3, so U is convex.
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Next we will show that the right hand derivative of U at zero is nonnegative.
Firstly, since F(x) = f (x)− A

2 x2 is concave on (a,c] and convex on [c,b) , both F ′−
and F ′

+ exist and are nonincreasing on (a,c) with F ′− � F ′
+ and nondecreasing on

(c,b) with F ′− � F ′
+ . Since x �→ A

2 x2 is differentiable, f ′− and f ′+ also exist and

F ′
−(x) = f ′−(x)−Ax and F ′

+(x) = f ′+(x)−Ax. (12)

Notice that, as t ↘ 0, the expression yi(t) = y + t(yi− y) increases (decreases) to
y for yi < y (yi > y ) and yi(t) ≡ y when yi = y . The analogous claim holds for xi(t)
and x . Since U(0) = 0 we have

U ′
+(0) = lim

t↘0

U(t)
t

= lim
t↘0

[ n

∑
i=1

pi
f (yi(t))− f (y)

t
−

n

∑
i=1

pi
f (xi(t))− f (x)

t

]

= lim
t↘0

[ n

∑
i=1

pi
f (y + t(yi− y))− f (y)

t(yi− y)
(yi− y)

−
n

∑
i=1

pi
f (x + t(xi− x))− f (x)

t(xi− x)
(xi − x)

]

= f ′−(y) ∑
yi<y

pi(yi − y)+ f ′+(y) ∑
yi>y

pi(yi− y)

− f ′−(x) ∑
xi<x

pi(xi − x)− f ′+(x) ∑
xi>x

pi(xi − x)

= F ′
−(y) ∑

yi<y

pi(yi− y)+F ′
+(y) ∑

yi>y

pi(yi − y)+Ay
n

∑
i=1

pi(yi − y)

−F ′
−(x) ∑

xi<x

pi(xi − x)−F ′
+(x) ∑

xi>x

pi(xi − x)−Ax
n

∑
i=1

pi(xi − x)

= F ′
−(y)

n

∑
i=1

pi(yi − y)+
(
F ′

+(y)−F ′
−(y)

)
∑

yi>y

pi(yi− y)

−F ′
−(x)

n

∑
i=1

pi(xi − x)− (
F ′

+(x)−F ′
−(x)

)
∑

xi>x

pi(xi − x)

=
(
F ′

+(y)−F ′
−(y)

)
∑

yi>y

pi(yi − y)− (
F ′

+(x)−F ′
−(x)

)
∑

xi>x

pi(xi− x) � 0,

where the last inequality follows since y ∈ (c,b) and x ∈ (a,c) (if y = c or x = c ,
then the sequences yi = y and xi = x are constant and inequality (2) is trivial).

Therefore, for f ∈ K c
1 (a,b) the function U is convex and U ′

+(0) � 0, so U(0) �
U(1) , which is inequality (2). The proof for f ∈ K c

2 (a,b) is analogous with U being
concave and U+(0) � 0. �

The following theorem shows that for continuous functions inequality (2) charac-
terizes the class K c

i (a,b) , i = 1,2.
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THEOREM 2.7. Let f : (a,b) → R be continuous and c ∈ (a,b) . If inequality (2)
(the reverse of (2)) holds for every n ∈ N and sequences pi,xi,yi , i = 1, ...,n, such
that pi > 0 , ∑n

i=1 pi = 1 , a < xi � c � yi < b and (5) holds, then f ∈ K c
1 (a,b) ( f ∈

K c
2 (a,b)).

Proof. We will give the proof for f ∈ K c
1 (a,b) . Throughout the proof it is as-

sumed that the x ’s are in (a,c] and the y’s in [c,b) .
Let n = 2, x1 �= x3 and 0 < p < 1. Then for x2 = px1 +(1− p)x3 it holds x2 �= x1 ,

x2 �= x3 and

p f (x1)+ (1− p) f (x3)− f (px1 +(1− p)x3) = p(1− p)(x3− x1)2[x1,x2,x3] f . (13)

Furthermore

p(x1 − x2)2 +(1− p)(x3− x2)2 = p(1− p)(x3− x1)2,

so condition (5) applied to points x1,x3 and y1,y3 , with p1 = p , p2 = 1− p , is equiv-
alent to

|x3− x1| = |y3− y1|. (14)

If (14) holds, then (13) and (5) imply that

[x1,x2,x3] f � [y1,y2,y3] f , (15)

where y2 is the point such that

x3− x2

x3− x1
=

y3− y2

y3− y1
∈ (0,1). (16)

Most of the proof will consist in showing that (15) holds for arbitrary x′i s and y′i s,
i = 1,2,3. For clarity of presentation we will break the proof into several steps.

Step 1: If x3− x1 = k(y3 − y1) for some k ∈ Z\{0} and (16) holds, then

[x3,x3−qd] f − [x1 +(1−q)d,x1] f
d

�
(
2|k|−1

)
[y1,y2,y3] f ,

where q = (y3− y2)/(y3− y1) and d = y3− y1 if k ∈ N and d = y1 − y3 if −k ∈ N .

We will prove the claim for k ∈ N and the other case is analogous. Denote z2 j =
x1 + jd and z2 j+1 = x1 + (1− q)d + jd . Notice that |z j+1 − z j−1| = |y3 − y1| and
(z2 j − z2 j−1)/(z2 j − z2 j−2) = (z2 j − z2 j−1)/(z2 j+1 − z2 j−1) = q , so (14) and (16) are
satisfied and we can apply (15) to get [z j−1,z j,z j+1] f � [y1,y2,y3] f . Summing these
inequalities for j = 1, ...,2k−1 we get

2k−1

∑
j=1

[z j−1,z j,z j+1] f =
1
d

2k−1

∑
j=1

(
[z j,z j+1] f − [z j−1,z j] f

)
=

=
[z2k,z2k−1] f − [z1,z0] f

d
�

(
2k−1

)
[y1,y2,y3] f .
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Since z2k = x3 , z2k−1 = x3 −qd , z1 = x1 +(1−q)d and z0 = x1 , the claim follows.

Step 2: If x3− x1 = k(y3 − y1) for some k ∈ Z\{0} and (16) holds, then (15) holds.

Again we will prove the case k ∈ N , with the other case proven analogously. De-
note d = y3 − y1 , q = (y3 − y2)/(y3 − y1) , z j = x3 − jqd , z̃ j = x1 + j(1− q)d . Since
z j − z̃ j = (k− j)d , z j −qd = z j+1 and z̃ j +(1−q)d = z̃ j , applying the inequality from
Step 1 for j = 0,1, ...,k−1 and summing up we get

1
d

( k−1

∑
j=0

[z j,z j+1] f −
k−1

∑
j=0

[z̃ j, z̃ j+1] f
)

� [y1,y2,y3] f
k−1

∑
j=0

(
2(k− j)−1). (17)

Denote x2 = qx1 +(1−q)x3 and notice that zk = z̃k = x2 , x3−x2 = kqd and x2−x1 =
k(1−q)d . Since ∑k

j=1(2 j−1) = k2 ,

k−1

∑
j=0

[z j,z j+1] f =
1
qd

k−1

∑
j=0

(
f (z j)− f (z j+1)

)
=

f (x3)− f (x2)
qd

and, similarly, ∑k−1
j=0[z̃ j, z̃ j+1] f = f (x2)− f (x1)

(1−q)d , dividing the inequality (17) by k2 we get
the claim.

Step 3: If m(x3− x1) = k(y3 − y1) for some m ∈ N , k ∈ Z\{0} and (16) holds, then

(
2m−1

)
[x1,x2,x3] f � [y3,y3− pd] f − [y1 +(1− p)d,y1] f

d
,

where p = (x3− x2)/(x3− x1) and d = (x3 − x1)/k .

Denote z2 j = y1 + jd and z2 j+1 = y1 + (1− p)d + jd . Notice that x3 − x1 =
k(z j+1 − z j−1) and (z2 j − z2 j−1)/(z2 j − z2 j−2) = (z2 j − z2 j−1)/(z2 j+1− z2 j−1) = p , so
we can apply inequality from Step 2 to get [x1,x2,x3] f � [z j−1,z j,z j+1] f . Summing
these inequalities for j = 1, ...,2m−1 we get

(
2m−1

)
[x1,x2,x3] f �

2m−1

∑
j=1

[z j−1,z j,z j+1] f =

=
1
d

2m−1

∑
j=1

(
[z j,z j+1] f − [z j−1,z j] f

)
=

[z2m,z2m−1] f − [z1,z0] f
d

.

Since z2k = y3 , z2k−1 = y3 − pd , z1 = y1 +(1− p)d and z0 = y1 , the claim follows.

Step 4: If the ratio (x3− x1)/(y3− y1) is rational and (16) holds, then (15) holds.

There exist m ∈ N , k ∈ Z\{0} such that m(x3 − x1) = k(y3 − y1) . Denote d =
(x3 − x1)/k , p = (x3 − x2)/(x3 − x1) , z j = y3 − jpd , z̃ j = y1 + j(1− p)d . Since z j −
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z̃ j = (m− j)d , z j − pd = z j+1 and z̃ j +(1− p)d = z̃ j , applying the inequality from
Step 3 for j = 0,1, ...,m−1 and summing up we get

[x1,x2,x3] f
m−1

∑
j=0

(
2(m− j)−1) � 1

d

(m−1

∑
j=0

[z j,z j+1] f −
k−1

∑
j=0

[z̃ j, z̃ j+1] f
)

. (18)

Denote y2 = py1 +(1− p)y3 and notice that zk = z̃k = y2 , y3−y2 = mpd and y2−y1 =
m(1− p)d . Since ∑m

j=1(2 j−1) = m2 ,

m−1

∑
j=0

[z j,z j+1] f =
1
pd

m−1

∑
j=0

(
f (z j)− f (z j+1)

)
=

f (y3)− f (y2)
pd

and, similarly, ∑m−1
j=0 [z̃ j, z̃ j+1] f = f (y2)− f (y1)

(1−p)d , dividing the inequality (18) by m2 we get
the claim.

Step 5: If the ratio (x3− x1)/(y3− y1) is an arbitrary real number and (16) holds, then
(15) holds.

Since f is continuous, for fixed z1 the mapping (z2,z3) �→ [z1,z2,z3] f is contin-
uous. Therefore, for any ε > 0 there exists a small enough neighbourhood around the
point (y2,y3) ∈ R

2 such that for any point (ỹ2, ỹ3) in the neighbourhood [y1,y2,y3] f −
[y1, ỹ2, ỹ3] f > −ε . Moreover, we can choose the points ỹ2 and ỹ3 in such a way that
the ratio (x3 − x1)/(ỹ3 − y1) is rational and x3−x2

x3−x1
= ỹ3−ỹ2

ỹ3−y1
. Therefore, applying the

inequality from Step 4 we obtain

0 � [y1, ỹ2, ỹ3] f − [x1,x2,x3] f < [y1,y2,y3] f + ε − [x1,x2,x3] f .

Letting ε ↘ 0 we get the claim.

Step 6: (15) holds for arbitrary x’s and y’s.

Let us, for q ∈ (0,1) , denote the set

Dq = {p ∈ (0,1) : for any x’s and y’s such that p =
x3− x2

x3− x1

and q =
y3− y2

y3− y1
inequality (15) holds}.

Our goal is to prove that Dq = (0,1) for every q ∈ (0,1) . We will first show that Dq

is dense in (0,1) . So far, in Step 5, we have shown that q ∈ Dq . Next, let p ∈ Dq and
(x3− x2)/(x3− x1) = 1− p . Since (x1− x2)/(x1− x3) = p and the divided differences
are symmetric in x ’s (i. e. [x1,x2,x3] f = [x3,x2,x1] f ) it follows that 1− p∈ Dq .

Next we will show that if p1, p2 ∈ Dq , then p = p1 · p2 ∈ Dq . We will make use
of the following identity

[x1,x2,x3] f = (1−α)[x1, x̃,x3] f + α[x̃,x2,x3] f , where α =
x2− x̃
x2− x1

. (19)
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Notice that, when x̃ is between x1 and x2 , then 0 < α < 1. Let x1,x2,x3 and x̃ be
such that p = (x3 − x2)/(x3 − x1) and p1 = (x3 − x̃)/(x3 − x1) , with p < p1 (i.e. x̃ is
between x1 and x2 ). Then p2 = (x3 − x2)/(x3 − x̃) and, since p1, p2 ∈ Dq , applying
(19) we get

[x1,x2,x3] f = (1−α)[x1, x̃,x3] f + α[x̃,x2,x3] f � [y1,y2,y3] f .

Therefore p ∈ Dq . Since q ∈ Dq , by properties proven so far, we have that for
every k,m ∈ N , numbers qk,1− qk,(1− qk)m ∈ Dq . It is enough to prove that the
numbers of the latter form are dense in (0,1) . Let p ∈ (0,1) and ε > 0 be arbitrary.
Then p̃∈ (p−ε, p+ε) if and only if log p̃∈ (d,e) , where d = log(p−ε) , e = log(p+
ε) . One can choose large enough k such that r = 1−qk satisfies | logr| < e−d . For
such r there exists m such that m logr ∈ (d,e) , i. e. (1−qk)m ∈ (p− ε, p+ ε) .

Let x ’s and y’s be arbitrary with q = (y3− y2)/(y3− y1) and p = (x3− x2)/(x3−
x1) in (0,1) . Since Dq is dense, there exists p̃ ∈ Dq arbitrarily close to p , i. e. x̃ =
p̃x1 +(1− p̃)x3 is arbitrarily close to x2 . Applying again identity (19) we get

[x1,x2,x3] f = (1−α)[x1, x̃,x3] f + α[x̃,x2,x3] f �
� (1−α)[y1,y2,y3] f + α[x̃,x2,x3] f . (20)

As x̃ is approaching x2 , α is approaching zero and, moreover, the second term on the
right hand side of (20) is also approaching zero since

|α[x̃,x2,x3] f | = |α|
∣∣∣ [x2,x3] f − [x̃,x2] f

x3 − x̃

∣∣∣ � |α|
∣∣∣ [x2,x3] f

x3− x̃

∣∣∣+ | f (x2)− f (x̃)|
|(x3− x̃)(x2− x1)|

and f is continuous. Therefore, from (20) we conclude that (15) holds.

Step 7: f ∈ K c
1 (a,b) .

Since inequality (15) holds for arbitrary xi ’s and yi ’s, i = 1,2,3, the supremum of
the expression on the left hand side is less then or equal to the infimum of the expression
on the right hand side. Let A be an arbitrary real number such that

sup
x1,x2,x3

[x1,x2,x3] f � A � inf
y1,y2,y3

[y1,y2,y3] f

and let F(x) = f (x)− A
2 x2 . The function F satisfies

[x1,x2,x3]F = [x1,x2,x3] f −A � 0 � [y1,y2,y3] f −A = [y1,y2,y3]F,

so f ∈ K c
1 (a,b) . �

REMARK 2.8. If we assume additional assumptions on the differentiability of f ,
then the proof of Theorem 2.7 becomes significantly shorter. For example, if we assume
that f has a continuous first derivative, then we first prove, as in Theorem 2.7, that
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for x1,x2,y1,y2 and p ∈ (0,1) such that x1 �= x2 and |x2 − x1| = |y2 − y1| , with x =
px1 +(1− p)x2 and y = py1 +(1− p)y3 , the inequality

[x1,x,x2] f � [y1,y,y2] f (21)

holds. Letting p ↘ 0 in (21) we obtain

f ′(x2)− f (x2)− f (x1)
x2−x1

x2 − x1
�

f ′(y2)− f (y2)− f (y1)
y2−y1

y2 − y1
(22)

and letting p ↗ 1 in (21) we obtain

f (x2)− f (x1)
x2−x1

− f ′(x1)

x2− x1
�

f (y2)− f (y1)
y2−y1

− f ′(y1)

y2− y1
. (23)

Adding (22) and (23) we get that

f ′(x2)− f ′(x1)
x2− x1

� f ′(y2)− f ′(y1)
y2− y1

(24)

if |x2 − x1| = |y2 − y1| . Suppose, next, that x2 − x1 = k(y2 − y1) for some k ∈ N .
Denoting d = y2 − y1 and zi = x1 + i · d and applying inequality (24) for zi − zi−1 =
y2− y1 for i = 1, ...,k and summing up we get

k

∑
i=1

f ′(zi)− f ′(zi−1)
d

� k
f ′(y2)− f ′(y1)

y2 − y1

and, dividing by k , we see that (24) holds in this case as well. The case m(x2 − x1) =
k(y2 − y1) for some k,m ∈ N is treated similarly and (24) for arbitrary x ’s and y’s
follows by continuity of f ′ . Now, let A be any number such that

sup
x1 �=x2

f ′(x2)− f ′(x1)
x2− x1

� A � inf
y1 �=y2

f ′(y2)− f ′(y1)
y2 − y1

and F(x) = f (x)− A
2 x2 .Then F satisfies

F ′(x2)−F ′(x1)
x2− x1

� 0 � F ′(y2)−F ′(y1)
y2− y1

,

so F ′ is nonincreasing on (a,c] and nondecreasing on [c,b) and f ∈ K c
1 (a,b) .

If we assume the existence of the second derivative f ′′ , then the proof is shortened
more. For arbitrary x ∈ (a,c] and y ∈ [c,b) there exists small enough Δ > 0 such that
the points x−2Δ and y+2Δ are in (a,b) . From (21) we conclude that

[x−2Δ,x−Δ,x] f � [y,y+ Δ,y+2Δ] f

and letting Δ ↘ 0 we get that

f ′′(x) � f ′′(y) for a < x � c � y < b.
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Therefore, the function F(x) = f (x)− 1
2 f ′′(c) satisfies

F ′′(x) � 0 � F ′′(y) for a < x � c � y < b,

so f ∈ K c
1 (a,b) .

�

The following result is the converse of Theorem 1.4 and states that Levinson’s
inequality under Mercer’s conditions holds if and only if f is 3-convex.

COROLLARY 2.9. Let f : (a,b)→ R be continuous. If inequality (2) (the reverse
of (2)) holds for every n ∈ N and sequences pi,xi,yi , i = 1, ...,n, such that pi > 0 ,
∑n

i=1 pi = 1 , a < xi,yi < b and (3) and (5) hold, then f is 3-convex (3-concave).

Proof. By Theorem2.7, f ∈K c
1 (a,b) ( f ∈K c

2 (a,b)) for every c∈ (a,b) . There-
fore, by Theorem 2.4, f is 3-convex (3-concave). �

The next result weakens the assumption (5) and is a generalization of Theorem
1.5.

THEOREM 2.10. Let f : (a,b) → R and, for i = 1,2, ...,n, pi > 0 , ∑n
i=1 pi = 1 ,

a � xi,yi � b are such that (3) holds and f ∈ K c
1 (a,b) for some c ∈ [maxxi,minyi] .

Then, if

(a) f ′′−(maxxi) � 0 and
n

∑
i=1

pi(xi − x)2 �
n

∑
i=1

pi(yi − y)2,

or

(b) f ′′+(minyi) � 0 and
n

∑
i=1

pi(xi − x)2 �
n

∑
i=1

pi(yi − y)2,

or
(c) f ′′−(maxxi) < 0 < f ′′+(minyi) and f is 3-convex

then (2) holds.

Proof. If we subtract (10) from (11) without assuming (5) and insert the obtained
identity into (9) we get that (9) is equal to

A
2

( n

∑
i=1

pi(yi − y)2 −
n

∑
i=1

pi(xi− x)2)[ t21
(t1 − t2)(t1 − t3)

+
t22

(t2 − t3)(t2 − t1)
+

+
t23

(t3 − t1)(t3 − t2)

]
=

A
2

( n

∑
i=1

pi(yi − y)2 −
n

∑
i=1

pi(xi− x)2). (25)

Similarly as in Remark 2.2, we can show that for distinct points x̃ j ∈ (a,maxxi] and
ỹ j ∈ [minyi,b) , j = 1,2,3, we have

[x̃1, x̃2, x̃3] f � A � [ỹ1, ỹ2, ỹ3] f .
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Letting x̃ j ↗ maxxi and ỹ j ↘ minyi we get

f ′′−(maxxi) � A � f ′′+(minyi).

Therefore, if the assumption (a) or (b) holds, from (25) we can still deduce convexity
of the function U as in the proof of Theorem 2.6. If the assumption (c) holds, then f ′′−
is left-continuous, f ′′+ is right-continuous, they are both nondecreasing and f ′′− � f ′′+ .
Therefore there exists c̃ ∈ [maxxi,minyi] such that f ∈ K c̃

1 (a,b) with the associated
constant Ã = 0 and we can again deduce convexity of U .

The proof that U ′
+(0) � 0 is the same as in Theorem 2.6 and we conclude that (2)

holds. �

The generalization of Theorem 1.6 is proven in the same way and we only give its
statement.

THEOREM 2.11. Let f : (a,b) → R and, for i = 1,2, ...,n, pi > 0 , ∑n
i=1 pi = 1 ,

a � xi,yi � b are such that (3) holds and f ∈ K c
2 (a,b) for some c ∈ [maxxi,minyi] .

Then, if

(a) f ′′−(maxxi) � 0 and
n

∑
i=1

pi(xi − x)2 �
n

∑
i=1

pi(yi − y)2,

or

(b) f ′′+(minyi) � 0 and
n

∑
i=1

pi(xi − x)2 �
n

∑
i=1

pi(yi − y)2,

or
(c) f ′′−(maxxi) < 0 < f ′′+(minyi) and f is 3-concave

then the reverse of (2) holds.

Following the idea of Witkowski [10] we can apply the Hermite-Hadamard in-
equality to the convex function U and obtain the following refinement of the Levinson
inequality.

COROLLARY 2.12. Let a < xi � c � yi < b, pi > 0 for i = 1,2, ...,n, ∑n
i=1 pi = 1

and (5) holds. If f ∈ K c
1 (a,b) , then the following inequalities hold

0 �
n

∑
i=1

pi f (
yi + y

2
)− f (y)−

n

∑
i=1

pi f (
xi + x

2
)+ f (x)

�
n

∑
i=1

pi

∫ yi
y f (t)dt

yi − y
− f (y)−

n

∑
i=1

pi

∫ xi
x f (t)dt
xi− x

+ f (x)

� 1
2
[

n

∑
i=1

pi f (yi)− f (y)−
n

∑
i=1

pi f (xi)+ f (x)]

If f ∈ K c
2 (a,b) , then the reversed inequalities hold.
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Note that the rightmost inequality can be rewritten in a nice symmetric form

n

∑
i=1

pi

(
f (xi)+ f (x)

2
−

∫ xi
x f (t)dt
xi− x

)
�

n

∑
i=1

pi

(
f (yi)+ f (y)

2
−

∫ yi
y f (t)dt

yi− y

)
,

while the leftmost inequality is

n

∑
i=1

pi

(∫ xi
x f (t)dt
xi − x

− f

(
xi + x

2

))
�

n

∑
i=1

pi

(∫ yi
y f (t)dt

yi− y
− f

(
yi + y

2

))
.
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