TWO–WEIGHT INEQUALITIES FOR HARDY OPERATOR AND COMMUTATORS

WENMING LI, TINGTING ZHANG AND LIMEI XUE

(Communicated by J. Pečarić)

Abstract. For the maximal operator N related to the Hardy operator P and its adjoint Q, we give the characterizations for weights (u, v) such that N is bounded from $L^p(v)$ to $L^{p, \infty}(u)$ and from $L^p(v)$ to $L^p(u)$ respectively. We also obtain some A_p type conditions which are sufficient for the two-weight inequalities for the Hardy operator P, the adjoint operator Q and the commutators of these operators with CMO functions.

1. Introduction

Let P and Q be the Hardy operator and its adjoint on $(0, \infty)$,

$$Pf(x) = \frac{1}{x} \int_0^x f(y) dy, \quad Qf(x) = \int_x^\infty \frac{f(y)}{y} dy.$$

Hardy [8, 9] established the Hardy integral inequalities

$$\int_0^\infty |Pf(y)|^p dy \leq p' p \int_0^\infty |f(y)|^p dy, \quad p > 1,$$

and

$$\int_0^\infty |Qf(y)|^p dy \leq p' p \int_0^\infty |f(y)|^p dy, \quad p > 1,$$

where $p' = p/(p - 1)$.

The two inequalities above go by the name of Hardy’s integral inequalities. For the earlier development of this kind of inequality and many applications in analysis, see [10, 15].

The Calderón operator S is defined as $S = P + Q$ and plays a significant role in the theory of real interpolation, see [1]. Duoandikoetxea, Martín-Reyes and Ombrosi in [7] introduced the maximal operator N related to the Calderón operator and obtained a

Keywords and phrases: Hardy operator, Calderón operator, commutator, two-weight inequality, maximal function.

Supported by the Natural Science Foundation of Hebei Province (A2014205069, A2015403040) and Postdoctoral Science Foundation of Hebei Province (B2013003007).
new characterization for the weighted inequalities on S. Given a measurable function f on $(0, \infty)$, the maximal operator N is defined as

$$\text{NF}(x) = \sup_{t > x} \frac{1}{t} \int_0^t |f(y)|dy.$$

Notice that NF is a decreasing function, and that $|Pf| \leq NF \leq S(|f|)$ for any f.

Let $1 \leq p < \infty$, we say b is a one-side dyadic CMOp function, if

$$\sup_{j \in \mathbb{Z}} \left(\frac{1}{2^j} \int_0^{2^j} |b(y) - b_{[0,2^j]}|^p dy \right)^{1/p} = \|b\|_{\text{CMO}^p} < \infty,$$

where $b_{[0,2^j]} = \frac{1}{2^j} \int_0^{2^j} f(x)dx$, we then say that $b \in \text{CMO}^p$.

It is easy to see $\text{BMO}(0,\infty) \subseteq \text{CMO}^p$, where $1 \leq p < \infty$. $\text{CMO}^q \not\subseteq \text{CMO}^p$ for $1 \leq p < q < \infty$.

Let b be a locally integrable function on $(0, \infty)$, we define the commutators of the Calderón operator S with b as $S_b = P_b + Q_b$, where

$$P_b f(x) = \frac{1}{x} \int_0^x (b(x) - b(y)) f(y)dy, \quad Q_b f(x) = \int_x^\infty \frac{(b(x) - b(y)) f(y)}{y}dy.$$

Long and Wang in [12] established the Hardy’s integral inequalities for commutators generated by P and Q with one-sided dyadic CMO functions.

For operator T such as N, P, Q, S and S_b, it is natural to consider the problem of characterizing the pairs (u,v) of nonnegative measurable functions such that

$$(\int_0^\infty |T f(y)|^q u(y)dy)^{1/q} \leq C \left(\int_0^\infty |f(y)|^p v(y)dy \right)^{1/p}$$

holds with a positive constant C independent of f, where $0 < p, q < \infty$.

For $p > 1$, Muckenhoupt in [14] proved that P is bounded from $L^p(v)$ to $L^p(u)$ if and only if there exists $C > 0$ such that for all $t > 0$ it holds that

$$(\int_t^\infty u(y) \frac{dy}{yp})^{1/p} (\int_0^t v^{-p'}(y)dy)^{1/p'} \leq C.$$

Bradley [2] and Maz’ya [13] obtained the similar results for the case $1 < p \leq q < \infty$. For operator Q, they also obtained the similar results.

For $1 < p < \infty$, we say a pair of weights (u,v) satisfies the two-weight $A_{p,0}$ condition, denoted $(u,v) \in A_{p,0}$, if

$$[u,v]_p = \sup_{t > 0} \left(\frac{1}{t} \int_0^t u(y)dy \right) \left(\frac{1}{t} \int_0^t v(y)^{-p'/p'} dy \right)^{p/p'} < \infty.$$

For $p = 1$, we write $(u,v) \in A_{1,0}$, for the class of nonnegative functions such that $Nu(y) \leq Cv(y)$, $a.e.$ and $[u,v]_1$ denotes the constant for which the inequality holds.
When \(u = v \), the classes of \(A_{p,0} \) weights were introduced by Duoandikoetxea, Martin-Reyes and Ombrosi in [7]. They proved that the Calderón operator \(S \) are bounded on \(L^p(w) \) if and only if \(w \in A_{p,0} \) when \(p > 1 \). For \(N \), the result is same.

In this paper, we obtain the characterizations for weights \((u, v)\) such that \(N \) is bounded from \(L^p(v) \) to \(L^{p,\infty}(u) \) and from \(L^p(v) \) to \(L^p(u) \) respectively. We also give some \(A_p \) type conditions which are sufficient for the two-weight strong \((p, p)\) inequalities for the operators \(P, P_b, Q \) and \(Q_b \). Our conditions differ from the conditions in Muckenhoupt in [14], Bradley [2] and Maz’ya [13].

Theorem 1.1. For \(1 \leq p < \infty \), \(N \) is bounded from \(L^p(v) \) to \(L^{p,\infty}(u) \) if and only if \((u, v) \in A_{p,0} \). More precisely,

\[
\sup_{\lambda > 0} \lambda u(\{x : N f(x) > \lambda \})^{1/p} \leq \|u\|_p \|f\|_{L^p(v)}.
\]

Theorem 1.2. For \(1 < p < \infty, 0 < q < \infty \), \(N \) is bounded from \(L^p(v) \) to \(L^q(u) \) if and only if for any \(t > 0 \), \((u, v)\) satisfies

\[
\left(\int_0^t [N^q(\chi_{(0,b)}(y))] v(y) dy \right)^{1/q} \leq C \left(\int_0^t v(y)^{1-p'} dy \right)^{1/p} < \infty.
\]

But for \(1 < p < \infty \), \(N \) is not bounded from \(L^p(v) \) to \(L^p(u) \) if \((u, v) \in A_{p,0} \), the proof is same as the case for the Hardy-Littlewood maximal function on \(\mathbb{R}^n \), see [6]. Notice that \(|Pf| \leq Nf \leq |f|\), by Theorem 1.1, we have that \((u, v) \in A_{p,0} \) is necessary but not sufficient for \(S \) is bounded from \(L^p(v) \) to \(L^p(u) \).

Theorem 1.3. Let \(1 < p < \infty \).

1. If \((u, v)\) is a pair of weights for which there exists \(r > 1 \) such that, for every \(t > 0 \),

\[
\left(\frac{1}{t} \int_0^t u(y) dy \right) \left(\frac{1}{t} \int_0^t v(y)^{-r/p'} dy \right)^{p'/r'} \leq C < \infty.
\]

Then

\[
\int_0^\infty |Pf(x)|^p u(x) dx \leq C \int_0^\infty |f(x)|^p v(x) dx.
\]

2. If \((u, v)\) is a pair of weights for which there exists \(r > 1 \) such that, for every \(t > 0 \),

\[
\left(\frac{1}{t} \int_0^t u(y)^r dy \right)^{1/r} \left(\frac{1}{t} \int_0^t v(y)^{-p'/r'} dy \right)^{p'/r'} \leq C < \infty.
\]

Then

\[
\int_0^\infty |Qf(x)|^p u(x) dx \leq C \int_0^\infty |f(x)|^p v(x) dx.
\]

Theorem 1.4. Let \(1 < p < \infty \), \(b \in \text{CMO}^{r, \max\{p, p'\}} \) and \((u, v)\) be a pair of weights for which there exists \(r > 1 \) such that for every \(t > 0 \),

\[
\left(\frac{1}{t} \int_0^t u(y)^r dy \right)^{1/r} \left(\frac{1}{t} \int_0^t v(y)^{-r/p'} dy \right)^{p'/r'} \leq C < \infty.
\]
then
\[\int_0^\infty |P_b f(x)|^p u(x) dx \leq C \int_0^\infty |f(x)|^p v(x) dx, \quad (1.8) \]

and
\[\int_0^\infty |Q_b f(x)|^p u(x) dx \leq C \int_0^\infty |f(x)|^p v(x) dx. \quad (1.9) \]

2. The Proofs of Theorem 1.1 and Theorem 1.2

In the proofs of Theorem 1.1 and Theorem 1.2, we need the maximal operator \(N_g \) associated to a fixed positive measurable function \(g \). We defined \(N_g \) as
\[
N_g f(x) = \sup_{t > x} \frac{\int_0^t |f(y)| g(y) dy}{\int_0^t g(y) dy}.
\]

Theorem 2.1. [7] \textit{Let \(g \) be a nonnegative measurable function such that \(0 < g(0, b) = \int_0^b g(y) dy < \infty \) for all \(b > 0 \).}

(i) \(N_g \) is of weak type \((1, 1)\) with respect to the measure \(g(t) dt \). Actually,
\[
\int \{x : N_g f(x) > \lambda\} g(y) dy \leq \frac{1}{\lambda} \int \{x : N_g f(x) > \lambda\} |f(y)| g(y) dy
\]
for all \(\lambda > 0 \) and all measurable functions \(f \).

(ii) \(N_g \) is of strong type \((p, p)\), \(1 < p < \infty \), with respect to the measure \(g(t) dt \). More precisely,
\[
\int_0^\infty |N_g f(y)|^p g(y) dy \leq (p')^p \int_0^\infty |f(y)|^p g(y) dy.
\]

Proof of Theorem 1.1. For \(1 \leq p < \infty \), the proof for the necessity of \(A_{p,0} \) weights is standard, we omitted here. For sufficiency, we observe that \(Nf \) is decreasing and continuous. Therefore, if \(\{x : Nf(x) > \lambda\} \) is not empty, then it is a bounded interval \((0, d)\), thus
\[
d\lambda = \int_0^d |f(y)| dy.
\]

Then
\[
\lambda u(\{x : Nf(x) > \lambda\})^{1/p} = \lambda \left(\int_0^d u(y) dy \right)^{1/p}
\leq \frac{1}{d} \left(\int_0^d |f(y)|^p v(y) dy \right)^{1/p} \left(\int_0^d u(y) dy \right)^{1/p} \left(\int_0^d v(y)^{-p'/p'} dy \right)^{1/p'}
\leq [u, v]_{p'}^{1/p} \left(\int_0^d |f(y)|^p v(y) dy \right)^{1/p}.
\]

This ends the proof. \(\square \)
Proof of Theorem 1.2. Denote \(\sigma = v^{1-p'} \). The necessity of (1.2) follows by a standard argument if we substitute \(f = \sigma \chi_{(0, b)} \) into \(\|Nf\|_{L^q(\nu)} \leq C\|f\|_{L^p(v)} \).

To show that (1.2) is sufficient, fix a bounded nonnegative function \(f \) with compact support. Since \(Nf \) is decreasing and continuous, for each \(k \in \mathbb{Z} \), if \(\{ x \in (0, \infty) : Nf(x) > 2^k \} \) is not empty, then there exists \(d_k \) such that \(\{ x \in (0, \infty) : Nf(x) > 2^k \} = (0, d_k) \). Thus \(0 < d_{k+1} \leq d_k \), \(\Omega_k = \{ x \in (0, \infty) : 2^k < Nf(x) \leq 2^{k+1} \} = [d_{k+1}, d_k) \) and

\[
2^k d_k = \int_0^{d_k} f(y)dy.
\]

Fix a large integer \(K > 0 \), which will go to infinity later, and let \(\Lambda_K = \{ k \in \mathbb{Z} : |k| \leq K \} \). We have

\[
\mathcal{J}_K = \int_{-K}^{K} (Nf(y))^q u(y)dy \leq \sum_{k=-K}^{K} 2^{(k+1)q} \int_{d_k}^{d_{k+1}} u(y)dy
\]

\[
= 2^q \sum_{k=-K}^{K} \int_{d_k}^{d_{k+1}} u(y)dy \left(\frac{1}{d_k} \int_0^{d_k} f(y)dy \right)^q
\]

\[
= 2^q \sum_{k=-K}^{K} \int_{d_k}^{d_{k+1}} u(y)dy \left(\frac{1}{d_k} \int_0^{d_k} \sigma(y)dy \right)^q \left(\frac{\int_0^{d_k} (f \sigma^{-1})(y) \sigma(y)dy}{\int_0^{d_k} \sigma(y)dy} \right)^q
\]

\[
= 2^q \int_{\mathbb{Z}} T_K (f \sigma^{-1})^q dv,
\]

where \(v \) is the measure on \(\mathbb{Z} \) given by

\[
v(k) = \int_{d_{k+1}}^{d_k} u(y)dy \left(\frac{1}{d_k} \int_0^{d_k} \sigma(y)dy \right)^q,
\]

and, for every measurable function \(h \), the operator \(T_K \) is defined by

\[
T_K h(k) = \frac{\int_0^{d_k} h(y) \sigma(y)dy}{\int_0^{d_k} \sigma(y)dy} \chi_{\Lambda_K}(k).
\]

If we prove that \(T_K \) is uniformly bounded from \(L^p((0, \infty), \sigma) \) to \(L^q(\mathbb{Z}, v) \) independently of \(K \), we shall obtain

\[
\mathcal{J}_K \leq C \int_{\mathbb{Z}} T_K (f \sigma^{-1})^q dv \leq C \left(\int_0^\infty [(f \sigma^{-1})(y)]^p \sigma(y)dy \right)^{q/p}
\]

\[
= C \left(\int_0^\infty f(y)^p v(y)dy \right)^{q/p}.
\]

The uniformity in \(K \) of this estimate and the monotone convergence theorem will lead to the desired inequality.

Now we prove that \(T_K \) is a bounded operator from \(L^p((0, \infty), \sigma) \) to \(L^q(\mathbb{Z}, v) \). It is clear that \(T_K : L^\infty((0, \infty), \sigma) \rightarrow L^\infty(\mathbb{Z}, v) \) with constant less than or equal 1. The Marcinkiewicz interpolation theorem says that it is enough to prove the uniform boundedness of the operators \(T_K \) from \(L^1((0, \infty), \sigma) \) to \(L^q/p, \infty(\mathbb{Z}, v) \). For this, fix \(h \geq 0 \) a
bounded function with compact support and put \(F_\lambda = \{ k \in \mathbb{Z} : T_K h(k) > \lambda \} = \{ |k| \leq K : T_K h(k) > \lambda \} \), and \(k_0 = \min \{ k : k \in F_\lambda \} \). Using (1.2), we have

\[
\nu(F_\lambda) = \sum_{k \in F_\lambda} \int_{dk} \left(\frac{1}{dk} \int_0^{dk} \sigma(y) dy \right)^q u(x) dx
\]

\[
\leq \sum_{k \in F_\lambda} \int_{dk} \left(N(\sigma \chi_{(0,dk)}) (x)^q u(x) dx \right)
\]

\[
\leq \int_{0}^{dk} \left(N(\sigma \chi_{(0,dk)}) (x)^q u(x) dx \right)
\]

\[
\leq C \left(\int_0^{dk} h(y) \sigma(y) dy \right)^{q/p}
\]

\[
\leq C \left(\frac{1}{k} \int_0^{dk} h(y) \sigma(y) \sigma(y) dy \right)^{q/p}
\]

\[
\leq C \left(\frac{1}{k} \int_0^{dk} h(y) \sigma(y) dy \right)^{q/p},
\]

where the constant \(C \) does not depend on \(K \). This ends the proof. \(\square \)

3. The Proofs of Theorem 1.3 and Theorem 1.4

Lemma 3.1. [12] Let \(b \in \text{CMO}^1 \), \(j, k \in \mathbb{Z} \), then

\[
|b(t) - b_{(0,2^{j+1})}| \leq |b(t) - b_{(0,2^{k+1})}| + 2|j - k||b|_{\text{CMO}^1}.
\]

Proof of Theorem 1.3. We first prove (1.4). By Hölder inequality and condition (1.3), we have

\[
\int_0^\infty |Pf(x)|^p u(x) dx
\]

\[
= \sum_{j = -\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \frac{1}{x} \int_0^x f(y) dy \right|^p u(x) dx
\]

\[
\leq \sum_{j = -\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \frac{1}{2^j} \sum_{k = -\infty}^{j} \int_{2^k}^{2^{k+1}} |f(y)| dy \right|^p u(x) dx
\]

\[
\leq \sum_{j = -\infty}^{\infty} \left(\frac{1}{2^j} \sum_{k = -\infty}^{j} \left(\int_{2^k}^{2^{k+1}} |f(y)|^p v(y) dy \right)^{1/p} \left(\int_{2^k}^{2^{k+1}} v(y)^{1/p'} dy \right)^{1/p'} \right)^p \int_{2^j}^{2^{j+1}} u(x) dx
\]

\[
\leq \sum_{j = -\infty}^{\infty} \frac{1}{2^j} \int_{2^j}^{2^{j+1}} u(x) dx
\]

\[
\times \left(\sum_{k = -\infty}^{j} \left(\int_{2^k}^{2^{k+1}} |f(y)|^p v(y) dy \right)^{1/p} \left(\int_{2^k}^{2^{k+1}} v(y)^{-rp'/p} dy \right)^{1/rp'} \left(\int_{2^k}^{2^{k+1}} dy \right)^{1/rp'} \right)^p
\]
Now we prove (1.6). By Hölder inequality and condition (1.5), we have

\[
\int_i^\infty |Qf(x)|^p u(x)dx = \sum_{j=-\infty}^\infty \int_{2j}^{2j+1} \left(\int_{2j}^{2j+1} \frac{f(y)}{y} dy \right)^p u(x)dx
\leq \sum_{j=-\infty}^\infty \int_{2j}^{2j+1} \left(\sum_{k=j}^{2j+1} \frac{1}{2^k} \int_{2k}^{2k+1} |f(y)|^p v(y)dy \right)^p u(x)dx
\leq \sum_{j=-\infty}^\infty \int_{2j}^{2j+1} f(x)^p u(x)dx
\leq C \sum_{j=-\infty}^\infty \left(\sum_{k=j}^{2j+1} 2^{j-k} \left(\int_{2k}^{2k+1} |f(y)|^p v(y)dy \right)^{1/p'} \right)^{1/p'}
\leq C \sum_{j=-\infty}^\infty \left(\sum_{k=j}^{2j+1} 2^{j-k} \left(\int_{2k}^{2k+1} |f(y)|^p v(y)dy \right)^{1/p'} \right)^{1/p'}
\leq C \int_0^\infty |f(y)|^p v(y)dy.
\]

This ends the proof. □

Proof of Theorem 1.4. We first prove (1.8).

\[
\int_0^\infty |P_b f(x)|^p u(x)dx = \sum_{j=-\infty}^\infty \int_{2j}^{2j+1} \left| \frac{1}{x} \int_0^x (b(x) - b(y)) f(y) dy \right|^p u(x)dx
\]
\[\begin{align*} &\leq \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \frac{1}{2^j} \sum_{k=-\infty}^{j} \int_{2^k}^{2^{k+1}} (b(x) - b(y)) f(y) \, dy \right|^p u(x) \, dx \\ &\leq 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \frac{1}{2^j} \sum_{k=-\infty}^{j} \int_{2^k}^{2^{k+1}} (b(x) - b(0,2^{j+1})) f(y) \, dy \right|^p u(x) \, dx \\ &\quad + 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \frac{1}{2^j} \sum_{k=-\infty}^{j} \int_{2^k}^{2^{k+1}} (b(y) - b(0,2^{j+1})) f(y) \, dy \right|^p u(x) \, dx \\ &= I + II. \end{align*} \]

For I, by Hölder inequality and condition (1.7), we have

\[\begin{align*} I &= 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| b(x) - b(0,2^{j+1}) \right|^p u(x) \, dx \left(\sum_{k=-\infty}^{j} \int_{2^k}^{2^{k+1}} |f(y)|^p \, dy \right)^{1/p'} \\ &\leq 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| b(x) - b(0,2^{j+1}) \right|^p u(x) \, dx \left(\int_{2^k}^{2^{k+1}} |f(y)|^p \, dy \right)^{1/p'} \left(\int_{2^k}^{2^{k+1}} u(x) \, dx \right)^{1/p} \\ &\leq C\|b\|_{CMO^{p'}}^{p} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| f(y) \right|^p v(y) \, dy \left(\int_{2^k}^{2^{k+1}} u(x) \, dx \right)^{1/p} \\ &\quad \times \left(\sum_{k=-\infty}^{j} \int_{2^k}^{2^{k+1}} \left| f(y) \right|^p v(y) \, dy \right)^{1/p'} \left(\int_{2^k}^{2^{k+1}} v(y)^{-r'/p' \, dy} \right)^{1/p'} \\ &\leq C\|b\|_{CMO^{p'}}^{p} \sum_{j=-\infty}^{\infty} \left(\sum_{k=-\infty}^{j} \int_{2^k}^{2^{k+1}} \left| f(y) \right|^p v(y) \, dy \right)^{1/p} \\ &\leq C\|b\|_{CMO^{p'}}^{p} \sum_{j=-\infty}^{\infty} \left(\sum_{k=-\infty}^{j} 2^{(k-j)/p'} \int_{2^k}^{2^{k+1}} \left| f(y) \right|^p v(y) \, dy \right)^{1/p} \\ &\leq C\|b\|_{CMO^{p'}}^{p} \int_{0}^{\infty} \left| f(y) \right|^p v(y) \, dy. \end{align*} \]

For II, by Lemma 3.1, we have

\[\begin{align*} II &= 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \sum_{k=-\infty}^{j} \int_{2^k}^{2^{k+1}} (b(y) - b(0,2^{j+1})) \, dy \right|^p u(x) \, dx \\ &\quad + 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \sum_{k=-\infty}^{j} \int_{2^k}^{2^{k+1}} 2(j-k)C\|b\|_{CMO^{1}} \, dy \right|^p u(x) \, dx \\ &= II_1 + II_2. \end{align*} \]
For II_1, by Hölder inequality and condition (1.7), we have

$$\text{II}_1 = 2^{p/p'} \sum_{j=-\infty}^{\infty} \frac{1}{2jp} \int_{2^j}^{2^{j+1}} u(x)dx \left(\sum_{k=-\infty}^{j} \left(\int_{2^k}^{2^{k+1}} |b(y) - b_{(0,2^k+1)}| r^p dy \right)^{1/r'} r' \right)^{1/p'}$$

$$\leq C \|b\|_{\text{CMO}^{p,r}}^p \sum_{j=-\infty}^{\infty} \frac{2^{(j+1)}}{2jp} \left(\sum_{k=-\infty}^{j} 2^{(k+1)(k-j)/r} \left(\int_{2^k}^{2^{k+1}} |f(y)|^p v(y)dy \right)^{1/p} \right)^p$$

For II_2, we have

$$\text{II}_2 = C \|b\|_{\text{CMO}^1}^p \sum_{j=-\infty}^{\infty} \frac{1}{2jp} \int_{2^j}^{2^{j+1}} u(x)dx \left(\sum_{k=-\infty}^{j} (j-k) \left(\int_{2^k}^{2^{k+1}} v(y)^{-r/p'} dy \right)^{1/r'} \right)^{1/p}$$

$$\leq C \|b\|_{\text{CMO}^{p,r}}^p \sum_{j=-\infty}^{\infty} \left(\sum_{k=-\infty}^{j} (j-k) 2^{(j-k)/p} \left(\int_{2^k}^{2^{k+1}} |f(y)|^p v(y)dy \right)^{1/p} \right)^p$$

Now we prove (1.9). We have

$$\int_{\mathbb{R}} |Q_b f(x)|^p u(x)dx$$

$$= \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \int_{x}^{\infty} \frac{(b(x) - b(y))f(y)}{y} dy \right|^p u(x)dx$$

$$\leq \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \sum_{k=j}^{\infty} \frac{1}{2^k} \int_{2^k}^{2^{k+1}} |(b(x) - b(y))f(y)| dy \right|^p u(x)dx$$

$$\leq 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \sum_{k=j}^{\infty} \frac{1}{2^k} \int_{2^k}^{2^{k+1}} |(b(x) - b_{(0,2^k+1)})f(y)| dy \right|^p u(x)dx$$

$$+ 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \sum_{k=j}^{\infty} \frac{1}{2^k} \int_{2^k}^{2^{k+1}} |(b(y) - b_{(0,2^k+1)})f(y)| dy \right|^p u(x)dx$$

$$= J + J'$$
For J, by Hölder inequality and condition (1.7), we have

\[
J = 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} |b(x) - b_{(0,2^{j+1})}|^p u(x) dx \left(\sum_{k=j}^{\infty} \frac{1}{2^k} \int_{2^k}^{2^{k+1}} |f(y)|dy \right)^p
\]

\[
\leq 2^{p/p'} \sum_{j=-\infty}^{\infty} \left(\int_{0}^{2^{j+1}} |b(x) - b_{(0,2^{j+1})}|^{p'} dx \right)^{1/p'} \left(\int_{0}^{2^{j+1}} u(x)^r dx \right)^{1/r} \times \left(\sum_{k=j}^{\infty} \frac{1}{2^k} \int_{2^k}^{2^{k+1}} |f(y)|^{p} v(y)dy \right)^{1/p} \left(\int_{2^k}^{2^{k+1}} v(y)^{-p'/r} dy \right)^{1/p'}
\]

\[
\leq C \|b\|_{\text{CMO}^{p'}} \sum_{j=-\infty}^{\infty} \int_{0}^{2^{j+1}} |f(y)|^{p} v(y)dy
\]

For JJ, by Lemma 3.1, we have

\[
JJ = 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \sum_{k=j}^{\infty} \frac{1}{2^k} \int_{2^k}^{2^{k+1}} |(b(y) - b_{(0,2^{k+1})})f(y)|dy \right|^p u(x) dx
\]

\[
+2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left| \sum_{k=j}^{\infty} \frac{1}{2^k} \int_{2^k}^{2^{k+1}} 2(k-j)C \|b\|_{\text{CMO}^{p'}} |f(y)|dy \right|^p u(x) dx
\]

\[
= JJ_1 + JJ_2.
\]

For JJ_1, by Hölder inequality and condition (1.7), we have

\[
JJ_1 = 2^{p/p'} \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} u(x) dx \left| \sum_{k=j}^{\infty} \frac{1}{2^k} \int_{2^k}^{2^{k+1}} |(b(y) - b_{(0,2^{k+1})})f(y)|dy \right|^p
\]

\[
\leq C \sum_{j=-\infty}^{\infty} 2^{j/r'} \left(\int_{0}^{2^{j+1}} u(x)^r dx \right)^{1/r} \left(\sum_{k=j}^{\infty} \frac{1}{2^k} \int_{2^k}^{2^{k+1}} |b(y) - b_{(0,2^{k+1})}|^{r'} dy \right)^{1/r'} \times \left(\int_{2^k}^{2^{k+1}} |f(y)|^{p} v(y)dy \right)^{1/p} \left(\int_{2^k}^{2^{k+1}} v(y)^{-r'/p} dy \right)^{1/p'}
\]

\[
\leq C \|b\|_{\text{CMO}^{p'}} \sum_{j=-\infty}^{\infty} 2^{j/r'} \sum_{k=j}^{\infty} \frac{2^{k+1}}{r'} \left(\int_{2^k}^{2^{k+1}} |f(y)|^{p} v(y)dy \right)^{1/p} \left(\int_{2^k}^{2^{k+1}} v(y)^{-r'/p} dy \right)^{1/p'}
\]
\[\leq C\|b\|_{CMO^{p'}}^p \sum_{j=-\infty}^{\infty} \left(\sum_{k=j}^{\infty} 2^{j-1} \left(\int_{2^k}^{2^{k+1}} |f(y)|^p v(y) dy \right)^{1/p} \right)^p \]
\[\leq C\|b\|_{CMO^{p'}}^p \int_0^\infty |f(y)|^p v(y) dy. \]

For JJ2, we have
\[JJ2 = C\|b\|_{CMO^1}^p \sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} u(x) dx \left(\sum_{k=j}^{\infty} 2^{j-1} \left(\int_{2^k}^{2^{k+1}} |f(y)|^p v(y) dy \right)^{1/p} \right)^p \]
\[\times \left(\int_{2^k}^{2^{k+1}} v(y)^{-p'/p} dy \right)^{1/p'} \]
\[\leq C\|b\|_{CMO^{p'}}^p \sum_{j=-\infty}^{\infty} \left(\sum_{k=j}^{\infty} (k-j) 2^{j-1} \left(\int_{2^k}^{2^{k+1}} |f(y)|^p v(y) dy \right)^{1/p} \right)^p \]
\[\leq C\|b\|_{CMO^{p'}}^p \int_0^\infty |f(y)|^p v(y) dy. \]

This ends the proof. \(\square\)

\textit{Acknowledgement.} The authors are grateful to the referee for invaluable comments and suggestions.

\textbf{REFERENCES}

(Wenming Li
College of Mathematics and Information Science
Hebei Normal University
Shijiazhang, 050016, Hebei, P. R. China
e-mail: lwmingg@sina.com

Tingting Zhang
College of Mathematics and Information Science
Hebei Normal University
Shijiazhang, 050016, Hebei, P. R. China,
e-mail: 15803219861@163.com

Limei Xue
School of Mathematics and Science
Shijiazhuang University of Economics
Shijiazhuang 050031, Hebei, P. R. China
e-mail: xuelimei@126.com)