SOME INEQUALITIES FOR THE MULTIPLICATIVE SUM ZAGREB INDEX OF GRAPH OPERATIONS

MAHDIEH AZARI AND ALI IRANMANESH

(Communicated by A. Aglić Aljinović)

Abstract. The multiplicative sum Zagreb index is defined for a simple graph G as the product of the terms $d_G(u) + d_G(v)$ over all edges $uv \in E(G)$, where $d_G(u)$ denotes the degree of the vertex u of G. In this paper, we present some lower bounds for the multiplicative sum Zagreb index of several graph operations such as union, join, corona product, composition, direct product, Cartesian product and strong product in terms of the multiplicative sum Zagreb index and the multiplicative Zagreb indices of their components.

1. Introduction

In theoretical Chemistry, the physico–chemical properties of chemical compounds are often modeled by means of molecular–graph–based structure–descriptors, which are also referred to as topological indices [12, 17]. The Zagreb indices are among the oldest topological indices, and were introduced as early as in 1972 [13]. These indices have since been used to study molecular complexity, chirality, ZE–isomerism and hetero–systems. For details on their theory and applications see [1, 4, 5, 6, 15, 21]. Let G be a simple graph with the vertex set $V(G)$ and the edge set $E(G)$. The first and second Zagreb indices of G are denoted by $M_1(G)$ and $M_2(G)$, respectively, and defined as:

$$M_1(G) = \sum_{u \in V(G)} d_G(u)^2$$

and

$$M_2(G) = \sum_{uv \in E(G)} d_G(u)d_G(v),$$

where $d_G(u)$ denotes the degree of the vertex u of G. The first Zagreb index can also be expressed as a sum over edges of G:

$$M_1(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(v)].$$

The multiplicative versions of Zagreb indices were introduced by Todeschini et al. in 2010 [16]. The first and second multiplicative Zagreb indices of G are denoted by $\Pi_1(G)$ and $\Pi_2(G)$, respectively, and defined as:

$$\Pi_1(G) = \prod_{u \in V(G)} d_G(u)^2$$

and

$$\Pi_2(G) = \prod_{uv \in E(G)} d_G(u)d_G(v).$$

Mathematics subject classification (2010): 05C35, 05C76, 05C07.

Keywords and phrases: Degree, lower bound, multiplicative sum Zagreb index, multiplicative Zagreb indices, graph operations.

* Corresponding author.
The second multiplicative Zagreb index can also be expressed as a product over vertices of G [11]:

$$\Pi_2(G) = \prod_{u \in V(G)} d_G(u)^{d_G(u)}.$$

In 2012, Eliasi et al. introduced another multiplicative version of the first Zagreb index called multiplicative sum Zagreb index [9]. The multiplicative sum Zagreb index of G is denoted by $\Pi'_1(G)$ and defined as:

$$\Pi'_1(G) = \prod_{uv \in E(G)} [d_G(u) + d_G(v)].$$

We refer the reader to [10, 18, 19] for mathematical properties and applications of the multiplicative Zagreb indices and multiplicative sum Zagreb index.

It is well-known that many graphs of general and in particular of chemical interest arise from simpler graphs via various graph operations sometimes known as graph products. It is, hence, important to understand how certain invariants of such graph operations are related to the corresponding invariants of their components. In [14], Khalifeh et al. presented some exact formulae for computing the Zagreb indices of some graph operations. In [7], Das et al. obtained some upper bounds for the first and second multiplicative Zagreb indices of various graph operations in terms of the Zagreb indices of their components. In this paper, we present some lower bounds for the multiplicative sum Zagreb index of several graph operations in terms of the multiplicative sum Zagreb index and the first and second multiplicative Zagreb indices of their components. Readers interested in more information on computing topological indices of graph operations can be referred to [2, 3, 8, 20].

2. Main results

In this section, we study the behavior of the multiplicative sum Zagreb index under several graph operations. All considered operations are binary. Hence, we will usually deal with two finite and simple graphs G_1 and G_2. For a given graph G_i, its vertex and edge sets will be denoted by $V(G_i)$ and $E(G_i)$, and its order and size by n_i and m_i, respectively, where $i \in \{1, 2\}$. Throughout the section, we assume that G_1 and G_2 have no isolated vertices.

At first, we recall two well-known inequalities.

Lemma 2.1. (AM-GM inequality) Let x_1, x_2, \ldots, x_n be nonnegative numbers. Then

$$\frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n},$$

with equality if and only if $x_1 = x_2 = \ldots = x_n$.

Lemma 2.2. Let x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n be positive numbers and for every $1 \leq i \leq n$, $x_i \geq y_i$. Then

$$x_1 x_2 \ldots x_n \geq y_1 y_2 \ldots y_n,$$

with equality if and only if for every $1 \leq i \leq n$, $x_i = y_i$.

2.1. Union

The union $G_1 \cup G_2$ of graphs G_1 and G_2 with disjoint vertex sets $V(G_1)$ and $V(G_2)$ is a graph with the vertex set $V(G_1) \cup V(G_2)$ and the edge set $E(G_1) \cup E(G_2)$. The degree of a vertex u of $G_1 \cup G_2$ is equal to the degree of u in the component G_i, $i \in \{1, 2\}$ that contains it.

In the following Theorem, an exact formula is obtained for the multiplicative sum Zagreb index of the union of G_1 and G_2. Its proof follows easily from the definition, so is omitted.

Theorem 2.3. The multiplicative sum Zagreb index of $G_1 \cup G_2$ is given by:

$$\Pi^*_1(G_1 \cup G_2) = \Pi^*_1(G_1) \times \Pi^*_1(G_2).$$

It is clear from Theorem 2.3 that we can restrict our attention to connected graphs, since for a graph with several connected components its multiplicative sum Zagreb index is equal to the product of the indices of its components.

2.2. Join

The join $G_1 + G_2$ of graphs G_1 and G_2 with disjoint vertex sets $V(G_1)$ and $V(G_2)$ is a graph union $G_1 \cup G_2$ together with all the edges joining $V(G_1)$ and $V(G_2)$. The join of two graphs is also known as their sum. The degree of a vertex u of $G_1 + G_2$ is given by:

$$d_{G_1 + G_2}(u) = \begin{cases}
 d_{G_1}(u) + n_2 & u \in V(G_1) \\
 d_{G_2}(u) + n_1 & u \in V(G_2)
\end{cases}.$$

Theorem 2.4. The multiplicative sum Zagreb index of $G_1 + G_2$ satisfies the following inequality:

$$\Pi^*_1(G_1 + G_2) > (2\sqrt{2})^{m_1 + m_2} \sqrt{n_2^{m_1} n_1^{m_2} (3 \sqrt{n_1 + n_2})^{n_1 n_2}} \sqrt{\Pi^*_1(G_1)^{n_2} \Pi^*_1(G_2)^{n_1}}.$$

Proof. Let $G = G_1 + G_2$. By definition of the multiplicative sum Zagreb index, we have:

$$\Pi^*_1(G) = \prod_{uv \in E(G)} \left[d_G(u) + d_G(v) \right]$$

$$= \prod_{uv \in E(G_1)} \left[(d_{G_1}(u) + n_2) + (d_{G_1}(v) + n_2) \right]$$

$$\times \prod_{uv \in E(G_2)} \left[(d_{G_2}(u) + n_1) + (d_{G_2}(v) + n_1) \right]$$

$$\times \prod_{u \in V(G_1)} \prod_{v \in V(G_2)} \left[(d_{G_1}(u) + n_2) + (d_{G_2}(v) + n_1) \right]$$
In the following Corollary, we obtain a lower bound for the multiplicative sum Zagreb index of $K_{1} + G$.

Now by Lemmas 2.1 and 2.2,

$$\Pi_{1}^{*}(G) > \prod_{uv \in E(G_{1})} 2\sqrt{(d_{G_{1}}(u) + d_{G_{1}}(v)) \times 2n_{2}} \prod_{uv \in E(G_{2})} 2\sqrt{(d_{G_{2}}(u) + d_{G_{2}}(v)) \times 2n_{1}}$$

$$\times \prod_{u \in V(G_{1})} \prod_{v \in V(G_{2})} 3^{\frac{1}{2}}d_{G_{1}}(u) \times d_{G_{2}}(v) \times (n_{1} + n_{2})$$

$$= (2\sqrt{2})^{m_{1} + m_{2}} \sqrt{n_{2}^{m_{1}}n_{1}^{m_{2}}} \times (3\sqrt{n_{1} + n_{2}})^{n_{1}n_{2}}$$

$$\times 6 \Pi_{1}(G)^{n_{2}} \Pi_{1}(G)^{m_{1}} \sqrt{\Pi_{1}(G) \Pi_{1}^{*}(G)}.$$

Note that the above inequality is strict. Since if the equality holds then by Lemma 2.2, for every $u \in V(G_{1})$ and $v \in V(G_{2})$,

$$d_{G_{1}}(u) + d_{G_{2}}(v) + (n_{1} + n_{2}) = 3\sqrt{d_{G_{1}}(u) \times d_{G_{2}}(v) \times (n_{1} + n_{2})}.$$

By Lemma 2.1, this implies that for every $u \in V(G_{1})$ and $v \in V(G_{2})$, $d_{G_{1}}(u) = d_{G_{2}}(v) = n_{1} + n_{2}$, which is a contradiction. \square

For a given graph G, the graph $K_{1} + G$ is called the suspension of G, where K_{1} denotes the single vertex graph. In the following Corollary, we obtain a lower bound for the multiplicative sum Zagreb index of the suspension of graphs. Note that in Theorem 2.4, the graphs G_{1} and G_{2} are assumed to have no isolated vertices.

Corollary 2.5. Let G be a finite simple graph of order n and size m. The multiplicative sum Zagreb index of $K_{1} + G$ satisfies the following inequality:

$$\Pi_{1}^{*}(K_{1} + G) > (\sqrt{2})^{2n + 3m} \left(\sqrt{n + 1}\right)^{n} \sqrt{\Pi_{1}(G)} \sqrt{\Pi_{1}^{*}(G)}.$$

2.3. Corona product

The corona product $G_{1} \circ G_{2}$ of graphs G_{1} and G_{2} is a graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2} and joining the i–th vertex of G_{1} to every vertex in i–th copy of G_{2} for $1 \leq i \leq n_{1}$. We denote the i–th copy of G_{2} by $G_{2,i}$, $1 \leq i \leq n_{1}$.

The degree of a vertex u of $G_{1} \circ G_{2}$ is given by:

$$d_{G_{1} \circ G_{2}}(u) = \begin{cases}
 d_{G_{1}}(u) + n_{2} & u \in V(G_{1}) \\
 d_{G_{2}}(u) + 1 & u \in V(G_{2,i}).
\end{cases}$$
In the following Theorem, a lower bound is obtained for the multiplicative sum Zagreb index of the corona product \(G_1 \circ G_2 \) in terms of the order, size, the first multiplicative Zagreb index and the multiplicative sum Zagreb index of \(G_1 \) and \(G_2 \). Its proof is similar to the proof of Theorem 2.4, so is omitted.

Theorem 2.6. The multiplicative sum Zagreb index of \(G_1 \circ G_2 \) satisfies the following inequality:

\[
\Pi^*_1(G_1 \circ G_2) > (2\sqrt{2})^{m_1 + n_1m_2} (\sqrt{n_2})^{m_1} (3\sqrt{n_2} + 1)^{n_1n_2} \sqrt{\Pi_1(G_1)^{n_2}\Pi_1(G_2)^{n_1}}
\]

\[
\times \sqrt{\Pi^*_1(G_1)\Pi^*_1(G_2)^{n_1}}.
\]

2.4. Composition

The composition \(G_1[G_2] \) of graphs \(G_1 \) and \(G_2 \) is a graph with the vertex set \(V(G_1) \times V(G_2) \) and two vertices \((u_1,u_2) \) and \((v_1,v_2) \) are adjacent if and only if \(u_1v_1 \in E(G_1) \) or \(|u_1 = v_1 \text{ and } u_2v_2 \in E(G_2)\). The composition of two graphs is also known as their lexicographic product. The degree of a vertex \(u = (u_1,u_2) \) of \(G_1[G_2] \) is given by:

\[
d_{G_1[G_2]}(u) = n_2d_{G_1}(u_1) + d_{G_2}(u_2).
\]

Theorem 2.7. The multiplicative sum Zagreb index of \(G_1[G_2] \) satisfies the following inequality:

\[
\Pi^*_1(G_1[G_2]) > 3^{n_2m_1}(2\sqrt{2})^{n_1m_2} (\sqrt{n_2})^{3n_1m_2 + 2n_2m_1} \frac{12}{\sqrt{\Pi_1(G_1)^{m_2}\Pi_1(G_2)^{4m_1n_2}}}
\]

\[
\times \left(\sqrt{\Pi^*_1(G_1)\Pi^*_1(G_2)^{n_1}}\right)
\]

Proof. Let \(G = G_1[G_2] \). By definition of the multiplicative sum Zagreb index, we have:

\[
\Pi^*_1(G) = \prod_{(u_1,u_2),(v_1,v_2) \in E(G)} \left[d_G((u_1,u_2)) + d_G((v_1,v_2))\right]
\]

\[
= \prod_{u_1v_1 \in E(G_1)} \prod_{u_2 \in V(G_2)} \prod_{v_2 \in V(G_2)} \left[(n_2d_{G_1}(u_1) + d_{G_2}(u_2)) + (n_2d_{G_1}(v_1) + d_{G_2}(v_2))\right]
\]

\[
\times \prod_{u_1 \in V(G_1)} \prod_{u_2 \in V(G_2)} \prod_{v_2 \in V(G_2)} \left[(n_2d_{G_1}(u_1) + d_{G_2}(u_2)) + (n_2d_{G_1}(u_1) + d_{G_2}(v_2))\right]
\]

\[
= \prod_{u_1v_1 \in E(G_1)} \prod_{u_2 \in V(G_2)} \prod_{v_2 \in V(G_2)} \left[n_2(d_{G_1}(u_1) + d_{G_1}(v_1)) + d_{G_2}(u_2) + d_{G_2}(v_2)\right]
\]

\[
\times \prod_{u_1 \in V(G_1)} \prod_{u_2 \in V(G_2)} \prod_{v_2 \in V(G_2)} \left[2n_2d_{G_1}(u_1) + (d_{G_2}(u_2) + d_{G_2}(v_2))\right].
\]
Now by Lemmas 2.1 and 2.2,
\[
\begin{align*}
\Pi_1^*(G) &> \prod_{u_1v_1 \in E(G_1)} \prod_{u_2 \in V(G_2)} \prod_{v_2 \in V(G_2)} 3^{\frac{3}{n_2}} n_2 \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) \times d_{G_2}(u_2) \times d_{G_2}(v_2) \\
& \quad \times \prod_{u_1 \in V(G_1)} \prod_{u_2v_2 \in E(G_2)} 2^{\frac{3}{n_2}} n_2 \left(d_{G_1}(u_1) + d_{G_2}(v_2) \right) \\
&= (3\sqrt[3]{n_2})^{n_2m_1} \prod_1^3 n_2 \left(\Pi_1^*(G_1) \right)^{n_2^3} 6^{\sqrt[6]{\Pi_1^*(G_1)^{m_1n_2}}} 6^{\sqrt[6]{\Pi_1^*(G_2)^{m_1n_2}}} \\
& \quad \times (2\sqrt[4]{2})^{m_1n_2} 4^{\sqrt[4]{\Pi_1^*(G_1)^{m_2}}} 4^{\sqrt[4]{\Pi_1^*(G_2)^{n_1}}} \\
&= 3^{n_2m_1} (2\sqrt[2]{2})^{n_1m_2} (\sqrt[3]{n_2})^{3n_1m_2 + 2n_2m_1} 12^{\sqrt[12]{\Pi_1^*(G_1)^{3m_2}}} 12^{\sqrt[12]{\Pi_1^*(G_2)^{4m_1n_2}}} \\
& \quad \times 6^{\sqrt[6]{\Pi_1^*(G_1)^{2n_2}}} 6^{\sqrt[6]{\Pi_1^*(G_2)^{3n_1}}}.
\end{align*}
\]

The above inequality is strict. Since if the equality holds then by Lemma 2.2, for every \(u_1v_1 \in E(G_1)\) and \(u_2, v_2 \in V(G_2)\),
\[
\begin{align*}
n_2 \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) &+ d_{G_2}(u_2) + d_{G_2}(v_2) \\
&= 3^{\frac{3}{n_2}} n_2 \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) \times d_{G_2}(u_2) \times d_{G_2}(v_2).
\end{align*}
\]

By Lemma 2.1, this implies that for every \(u_1v_1 \in E(G_1)\) and \(u_2, v_2 \in V(G_2)\),
\[
n_2 \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) = d_{G_2}(u_2) = d_{G_2}(v_2).
\]
So for every \(u_2 \in V(G_2)\), \(d_{G_2}(u_2) \geq 2n_2\), which is a contradiction. \(\square\)

2.5. Direct product

The direct product \(G_1 \times G_2\) of graphs \(G_1\) and \(G_2\) has the vertex set \(V(G_1) \times V(G_2)\) and two vertices \((u_1, u_2)\) and \((v_1, v_2)\) are adjacent if and only if \(u_1v_1 \in E(G_1)\) and \(u_2v_2 \in E(G_2)\). The direct product of two graphs is also known as their tensor product, Kronecker product, categorical product, cardinal product, relational product or conjunction. The degree of a vertex \(u = (u_1, u_2)\) of \(G_1 \times G_2\) is given by:
\[
d_{G_1 \times G_2}(u) = d_{G_1}(u_1)d_{G_2}(u_2).
\]

Theorem 2.8. The multiplicative sum Zagreb index of \(G_1 \times G_2\) satisfies the following inequality:
\[
\Pi_1^*(G_1 \times G_2) \geq 4^{m_1m_2} \Pi_2(G_1)^{m_2} \Pi_2(G_2)^{m_1},
\]
with equality if and only if \(G_1\) and \(G_2\) are regular graphs.
Proof. Let $G = G_1 \times G_2$. By definition of the multiplicative sum Zagreb index, we have:

$$\Pi_1^*(G) = \prod_{(u_1, u_2)(v_1, v_2) \in E(G)} \left[d_G((u_1, u_2)) + d_G((v_1, v_2)) \right].$$

Note that if $(u_1, u_2)(v_1, v_2) \in E(G)$, then $(u_1, v_2)(v_1, u_2) \in E(G)$. Hence,

$$\Pi_1^*(G) = \prod_{u_1v_1 \in E(G_1)} \prod_{u_2v_2 \in E(G_2)} \left[\left(d_{G_1}(u_1)d_{G_2}(u_2) + d_{G_1}(v_1)d_{G_2}(v_2) \right) \times \left(d_{G_1}(u_1)d_{G_2}(v_2) + d_{G_1}(v_1)d_{G_2}(u_2) \right) \right].$$

Now by Lemmas 2.1 and 2.2,

$$\Pi_1^*(G) \geq \prod_{u_1v_1 \in E(G_1)} \prod_{u_2v_2 \in E(G_2)} 4 \left[d_{G_1}(u_1)d_{G_1}(v_1) \times d_{G_2}(u_2)d_{G_2}(v_2) \right] = 4^{m_1m_2}\Pi_2(G_1)^{m_2}\Pi_2(G_2)^{m_1}.$$

By Lemma 2.2, the above equality holds if and only if for every $u_1v_1 \in E(G_1)$ and $u_2v_2 \in E(G_2)$,

$$d_{G_1}(u_1)d_{G_2}(u_2) + d_{G_1}(v_1)d_{G_2}(v_2) = 2\sqrt{d_{G_1}(u_1)d_{G_2}(u_2) \times d_{G_1}(v_1)d_{G_2}(v_2)},$$

and

$$d_{G_1}(u_1)d_{G_2}(v_2) + d_{G_1}(v_1)d_{G_2}(u_2) = 2\sqrt{d_{G_1}(u_1)d_{G_2}(v_2) \times d_{G_1}(v_1)d_{G_2}(u_2)}.$$

By Lemma 2.1, this implies that for every $u_1v_1 \in E(G_1)$ and $u_2v_2 \in E(G_2)$,

$$d_{G_1}(u_1)d_{G_2}(u_2) = d_{G_1}(v_1)d_{G_2}(v_2),$$

and

$$d_{G_1}(u_1)d_{G_2}(v_2) = d_{G_1}(v_1)d_{G_2}(u_2),$$

and this clearly implies that G_1 and G_2 must be regular graphs. \qed

2.6. Cartesian product

The Cartesian product $G_1 \square G_2$ of graphs G_1 and G_2 has the vertex set $V(G_1) \times V(G_2)$ and two vertices (u_1, u_2) and (v_1, v_2) are adjacent if and only if $[u_1 = v_1$ and $u_2v_2 \in E(G_2)]$ or $[u_2 = v_2$ and $u_1v_1 \in E(G_1)]$. The degree of a vertex $u = (u_1, u_2)$ of $G_1 \square G_2$ is given by:

$$d_{G_1 \square G_2}(u) = d_{G_1}(u_1) + d_{G_2}(u_2).$$
THEOREM 2.9. The multiplicative sum Zagreb index of $G_1 \square G_2$ satisfies the following inequality:

$$\Pi'_1(G_1 \square G_2) \geq (2\sqrt{2})^{n_1m_2+n_2m_1} \left[\sqrt[4]{\Pi_1'(G_1)}^{m_2} \Pi_1'(G_2)^{m_1} \right] \sqrt[4]{\Pi_1'(G_1)}^{n_2} \Pi_1'(G_2)^{n_1},$$

with equality if and only if G_1 and G_2 are regular graphs with the same regularities.

Proof. Let $G = G_1 \square G_2$. By definition of the multiplicative sum Zagreb index, we have:

$$\Pi'_1(G) = \prod_{(u_1, u_2) \in E(G)} \left[d_G((u_1, u_2)) + d_G((v_1, v_2)) \right]$$

$$= \prod_{u_1 \in V(G_1)} \prod_{u_2 \in V(G_2)} \left[\left(d_{G_1}(u_1) + d_{G_2}(u_2) \right) + \left(d_{G_1}(u_1) + d_{G_2}(v_2) \right) \right]$$

$$\times \prod_{u_2 \in V(G_2)} \prod_{u_1 \in V(G_1)} \left[\left(d_{G_1}(u_1) + d_{G_2}(u_2) \right) + \left(d_{G_1}(v_1) + d_{G_2}(u_2) \right) \right]$$

$$= 2d_{G_1}(u_1) + \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right)$$

$$\times \prod_{u_2 \in V(G_2)} \prod_{u_1 \in V(G_1)} \left[2d_{G_2}(u_2) + \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) \right].$$

Now by Lemmas 2.1 and 2.2,

$$\Pi'_1(G) \geq \prod_{u_1 \in V(G_1)} \prod_{u_2 \in V(G_2)} 2\sqrt{2} d_{G_1}(u_1) \times \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right)$$

$$\times \prod_{u_2 \in V(G_2)} \prod_{u_1 \in V(G_1)} 2\sqrt{2} d_{G_2}(u_2) \times \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right)$$

$$= (2\sqrt{2})^{n_1m_2} \left[\Pi_1'(G_1)^{m_2} \Pi_1'(G_2)^{m_1} \Pi_1'(G_1)^{n_2} \Pi_1'(G_2)^{n_1} \right].$$

By Lemma 2.2, the above equality holds if and only if for every $u_1 \in V(G_1)$ and $u_2v_2 \in E(G_2)$,

$$2d_{G_1}(u_1) + \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right) = 2\sqrt{2} d_{G_1}(u_1) \times \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right),$$

and for every $u_2 \in V(G_2)$ and $u_1v_1 \in E(G_1)$,

$$2d_{G_2}(u_2) + \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) = 2\sqrt{2} d_{G_2}(u_2) \times \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right).$$

By Lemma 2.1, this implies that for every $u_1 \in V(G_1)$ and $u_2v_2 \in E(G_2)$, $2d_{G_1}(u_1) = d_{G_2}(u_2) + d_{G_2}(v_2)$, and for every $u_2 \in V(G_2)$ and $u_1v_1 \in E(G_1)$, $2d_{G_2}(u_2) = d_{G_1}(u_1) + d_{G_1}(v_1)$. This clearly implies that G_1 and G_2 must be regular graphs with the same regularities. □
2.7. Strong product

The strong product \(G_1 \boxtimes G_2 \) of graphs \(G_1 \) and \(G_2 \) has the vertex set \(V(G_1) \times V(G_2) \) and two vertices \((u_1, u_2)\) and \((v_1, v_2)\) are adjacent if and only if \([u_1 = v_1 \text{ and } u_2v_2 \in E(G_2)] \) or \([u_2 = v_2 \text{ and } u_1v_1 \in E(G_1)] \) or \([u_1v_1 \in E(G_1) \text{ and } u_2v_2 \in E(G_2)] \). The degree of a vertex \(u = (u_1, u_2)\) of \(G_1 \boxtimes G_2 \) is given by:

\[
d_{G_1 \boxtimes G_2}(u) = d_{G_1}(u_1) + d_{G_2}(u_2) + d_{G_1}(u_1)d_{G_2}(u_2).
\]

Theorem 2.10. The multiplicative sum Zagreb index of \(G_1 \boxtimes G_2 \) satisfies the following inequality:

\[
\Pi_1^*(G_1 \boxtimes G_2) > 16^{m_1m_2} (3\sqrt{2})^{m_1 m_2 + n_2 m_1} \sqrt[3]{\Pi_1(G_1)^{m_2} \Pi_1(G_2)^{m_1}} \sqrt[3]{\Pi_2(G_1)^{m_2} \Pi_2(G_2)^{m_1}}
\]

\[
6^{\frac{n_1}{2} + 3m_2} \Pi_1^*(G_1)^{4n_2 + 3m_2} \Pi_1^*(G_2)^{4n_1 + 3m_1}.
\]

Proof. Let \(G = G_1 \boxtimes G_2 \). By definition of the multiplicative sum Zagreb index, we have:

\[
\Pi_1^*(G) = \prod_{(u_1, u_2) \in E(G)} \left[d_G((u_1, u_2)) + d_G((v_1, v_2)) \right].
\]

By definition of the strong product, we can partition the above product into three products as follows:

The first product \(P_1 \) is taken over all edges \((u_1, u_2)(v_1, v_2) \in E(G)\) such that \(u_1 = v_1 \) and \(u_2v_2 \in E(G_2) \). The calculation of \(P_1 \) is as follows:

\[
P_1 = \prod_{u_1 \in V(G_1)} \prod_{u_2v_2 \in E(G_2)} \left[d_{G_1}(u_1) + d_{G_2}(u_2) + d_{G_1}(u_1)d_{G_2}(u_2) \right]
\]

\[
+ \left(d_{G_1}(u_1) + d_{G_2}(v_2) + d_{G_1}(u_1)d_{G_2}(v_2) \right)
\]

\[
= \prod_{u_1 \in V(G_1)} \prod_{u_2v_2 \in E(G_2)} \left[2d_{G_1}(u_1) + \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right) + d_{G_1}(u_1) \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right) \right].
\]

Now by Lemmas 2.1 and 2.2,

\[
P_1 \geq \prod_{u_1 \in V(G_1)} \prod_{u_2v_2 \in E(G_2)} \left(3\sqrt{2} \right)^{n_1 m_2} \left(\sqrt[3]{\Pi_1(G_1)^{m_2}} \sqrt[3]{\Pi_1(G_2)^{m_1}} \right)
\]

\[
= (3\sqrt{2})^{n_1 m_2} \frac{3}{\Pi_1(G_1)^{m_2} \Pi_1(G_2)^{m_1}}.
\]

By Lemma 2.2, the above equality holds if and only if for every \(u_1 \in V(G_1) \) and \(u_2v_2 \in E(G_2) \),

\[
2d_{G_1}(u_1) + \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right) + d_{G_1}(u_1) \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right)
\]

\[
= 3^{\sqrt{2}} \frac{3}{d_{G_1}(u_1) \times \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right) \times d_{G_1}(u_1) \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right)}.
\]
By Lemma 2.1, this implies that for every \(u_1 \in V(G_1) \) and \(u_2v_2 \in E(G_2) \),

\[
2d_{G_1}(u_1) = d_{G_2}(u_2) + d_{G_2}(v_2) = d_{G_1}(u_1) \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right).
\]

So the equality holds if and only if for every \(u_1 \in V(G_1) \), \(d_{G_1}(u_1) = 1 \) and for every \(u_2v_2 \in E(G_2) \), \(d_{G_2}(u_2) + d_{G_2}(v_2) = 2 \). That is \(G_1 \) and \(G_2 \) are 1-regular graphs.

The second product \(P_2 \) is taken over all edges \((u_1, u_2)(v_1, v_2) \in E(G) \) such that \(u_1v_1 \in E(G_1) \) and \(u_2 = v_2 \). So,

\[
P_2 = \prod_{u_1v_1 \in E(G_1)} \prod_{u_2v_2 \in E(G_2)} \left(d_{G_1}(u_1) + d_{G_2}(u_2) + d_{G_1}(u_1)d_{G_2}(u_2) \right) + \left(d_{G_1}(v_1) + d_{G_2}(u_2) + d_{G_1}(v_1)d_{G_2}(u_2) \right).
\]

By symmetry,

\[
P_2 \geq (3\sqrt{2})^{m_2} \sqrt[3]{\Pi_1(G_2)^{m_1}} \sqrt[3]{\Pi_1^*(G_1)^{2m_2}},
\]

with equality if and only if \(G_1 \) and \(G_2 \) are 1-regular graphs.

The third product \(P_3 \) is taken over all edges \((u_1, u_2)(v_1, v_2) \in E(G) \) such that \(u_1v_1 \in E(G_1) \) and \(u_2v_2 \in E(G_2) \). The calculation of \(P_3 \) is as follows:

\[
P_3 = \prod_{u_1v_1 \in E(G_1)} \prod_{u_2v_2 \in E(G_2)} \left(d_{G_1}(u_1) + d_{G_2}(u_2) + d_{G_1}(u_1)d_{G_2}(u_2) \right) + \left(d_{G_1}(v_1) + d_{G_2}(u_2) + d_{G_1}(v_1)d_{G_2}(u_2) \right) \times \left(d_{G_1}(u_1) + d_{G_2}(v_2) + d_{G_1}(u_1)d_{G_2}(v_2) \right) + \left(d_{G_1}(v_1) + d_{G_2}(u_2) + d_{G_1}(v_1)d_{G_2}(u_2) \right) \times \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) + \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right) + d_{G_1}(u_1)d_{G_2}(u_2) + d_{G_1}(v_1)d_{G_2}(v_2) \times \left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) + \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right) + d_{G_1}(u_1)d_{G_2}(v_2) + d_{G_1}(v_1)d_{G_2}(u_2).
\]

Now by Lemmas 2.1 and 2.2,

\[
P_3 \geq \prod_{u_1v_1 \in E(G_1)} \prod_{u_2v_2 \in E(G_2)} 16 \sqrt{d_{G_1}(u_1) + d_{G_1}(v_1)} \times \sqrt{d_{G_2}(u_2) + d_{G_2}(v_2)} \times \sqrt{d_{G_1}(u_1)d_{G_1}(v_1) \times d_{G_2}(u_2)d_{G_2}(v_2)}
\]

\[
= 16^{m_1m_2} \sqrt[3]{\Pi_1^*(G_1) \Pi_2(G_1)}^{m_2} \left(\Pi_1^*(G_2) \Pi_2(G_2) \right)^{m_1}.
\]
By Lemma 2.2, the above equality holds if and only if for every \(u_1v_1 \in E(G_1) \) and \(u_2v_2 \in E(G_2) \),
\[
\left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) + \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right) + d_{G_1}(u_1)d_{G_2}(u_2) + d_{G_1}(v_1)d_{G_2}(v_2)
\]
\[= 4\sqrt{d_{G_1}(u_1) + d_{G_1}(v_1)} \times (d_{G_2}(u_2) + d_{G_2}(v_2)) \times d_{G_1}(u_1)d_{G_2}(u_2) \times d_{G_1}(v_1)d_{G_2}(v_2),
\]
and
\[
\left(d_{G_1}(u_1) + d_{G_1}(v_1) \right) + \left(d_{G_2}(u_2) + d_{G_2}(v_2) \right) + d_{G_1}(u_1)d_{G_2}(u_2) + d_{G_1}(v_1)d_{G_2}(u_2)
\]
\[= 4\sqrt{d_{G_1}(u_1) + d_{G_1}(v_1)} \times (d_{G_2}(u_2) + d_{G_2}(v_2)) \times d_{G_1}(u_1)d_{G_2}(v_2) \times d_{G_1}(v_1)d_{G_2}(u_2).\]

By Lemma 2.1, this implies that for every \(u_1v_1 \in E(G_1) \) and \(u_2v_2 \in E(G_2) \),
\[
d_{G_1}(u_1) + d_{G_1}(v_1) = d_{G_2}(u_2) + d_{G_2}(v_2) = d_{G_1}(u_1)d_{G_2}(u_2) = d_{G_1}(v_1)d_{G_2}(v_2)
\]
\[= d_{G_1}(u_1)d_{G_2}(v_2) = d_{G_1}(v_1)d_{G_2}(u_2).\]

So, \(G_1 \) and \(G_2 \) must be 2-regular graphs.

Hence,
\[
\Pi_1^*(G) = P_1P_2P_3 > (3\sqrt[3]{2})^{n_1m_2} \times (3\sqrt[3]{2})^{n_2m_1} \times 16^{m_1m_2} \times \left(\Pi_1^*(G_1)\right)^{m_2} \times \left(\Pi_1^*(G_2)\right)^{m_1}
\]
\[= 16^{m_1m_2} \times \left(\Pi_1^*(G_1)\right)^{m_2} \times \left(\Pi_1^*(G_2)\right)^{m_1}.
\]

\(\square \)

Acknowledgement. The authors would like to thank the referee for his/her careful reading and useful suggestions which led us to improve the paper.

This work was partially supported by the Center of Excellence of Algebraic Hyperstructures and its Applications of Tarbiat Modares University (CEAHA).

REFERENCES

(Received April 18, 2014)

Mahdieh Azari
Department of Pure Mathematics
Faculty of Mathematical Sciences
Tarbiat Modares University
P. O. Box 14115–137, Tehran, Iran
e-mail: mahdie.azari@gmail.com

Ali Iranmanesh
Department of Pure Mathematics
Faculty of Mathematical Sciences
Tarbiat Modares University
P. O. Box 14115–137, Tehran, Iran
e-mail: iranmanesh@modares.ac.ir

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com