A NOTE ON SOME INEQUALITIES FOR UNITARILY INVARIANT NORMS

JIAMING XUE AND XINGKAI HU

(Communicated by M. Krnić)

Abstract. In this paper, we obtain an improved inequality for unitarily invariant norms, which was established by Fu and He [J. Math. Inequal. 7 (4), (2013), 727–737].

1. Introduction

Let $M_{m,n}$ be the space of $m \times n$ complex matrices and $M_n = M_{n,n}$. A norm $\| \cdot \|$ is called unitarily invariant norm if $\|UAV\| = \|A\|$ for all $A \in M_n$ and for all unitary matrices $U, V \in M_n$. The Ky Fan k-norm $\| \cdot \|_{(k)}$ is defined as

$$\|A\|_{(k)} = \sum_{j=1}^{k} s_j(A), \quad k = 1, \ldots, n,$$

where $s_i(A) (i = 1, \ldots, n)$ are the singular values of A with $s_1(A) \geq \cdots \geq s_n(A)$, which are the eigenvalues of the positive semidefinite matrix $|A| = (AA^*)^{1/2}$, arranged in decreasing order and repeated according to multiplicity. The Schatten p-norm $\| \cdot \|_p$ is defined as

$$\|A\|_p = \left(\sum_{j=1}^{n} s_j^p(A) \right)^{1/p} = (\text{tr}|A|^p)^{1/p}, \quad 1 \leq p < \infty.$$

It is known that these norms are unitarily invariant, and it is evident that each unitarily invariant norm is symmetric gauge function of singular values [1].

Let $A, B, X \in M_n$ such that A and B are positive semidefinite. Then, the function

$$\varphi (v) = \|A^vXB^{2-v} + A^{2-v}XB^v\|$$

is convex on $[0,2]$, attains its minimum at $v = 1$, consequently $\varphi (1) \leq \varphi (v)$, which implies that

$$2\|AXB\| \leq \|A^vXB^{2-v} + A^{2-v}XB^v\|, \quad 0 \leq v \leq 2. \quad (1)$$

Zhan proved in [2] that if $A, B, X \in M_n$ such that A and B are positive semidefinite, then

$$\|A^vXB^{2-v} + A^{2-v}XB^v\| \leq \frac{2}{t+2} \|A^2X + tAXB + XB^2\|, \quad (2)$$

Keywords and phrases: Convex function, unitarily invariant norm, inequality.
for $\frac{1}{2} \leq v \leq \frac{3}{2}$ and $-2 < t \leq 2$. So it follows from (1) and (2) that

$$2\|AXB\| \leq \|A^vXB^{2-v} + A^{2-v}XB^v\| \leq \frac{2}{t+2}\|A^2X + tAXB + XB^2\|.$$ \hspace{1cm} (3)

Recently, Fu and He [3] obtained an improvement of inequality (3) which can be stated as follows:

$$2\|AXB\| + 2\left(\int_{\frac{1}{2}}^{\frac{3}{2}} \|A^vXB^{2-v} + A^{2-v}XB^v\| \, dv - 2\|AXB\|\right) \leq \frac{2}{t+2}\|A^2X + tAXB + XB^2\|$$ \hspace{1cm} (4)

for $\frac{1}{2} \leq v \leq \frac{3}{2}$ and $-2 < t \leq 2$.

For more information on inequalities for unitarily invariant norms the reader is referred to [2-8].

In this paper, we will give a refinement of inequality (4).

2. Main results

We begin this section with two lemmas.

Lemma 1. [4, 5] Let f be a real valued convex function on the interval $[a, b]$ which contains (x_1, x_2). Then for $x_1 \leq x \leq x_2$, we have

$$f(x) \leq \frac{f(x_2) - f(x_1)}{x_2 - x_1}x - \frac{x_1 f(x_2) - x_2 f(x_1)}{x_2 - x_1}. $$

Lemma 2. (Hermite-Hadamard Integral Inequality) [7] Let f be a real valued convex function on the interval $[a, b]$. Then

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a}\int_a^b f(t) \, dt \leq \frac{f(a) + f(b)}{2}. $$

Theorem 1. Let $A, B, X \in M_n$ such that A and B are positive semidefinite. Then

$$2\|AXB\| + 4\left(\int_{\frac{1}{2}}^{\frac{3}{2}} \|A^vXB^{2-v} + A^{2-v}XB^v\| \, dv - \|AXB\| - \frac{1}{2}\|A^\frac{3}{2}XB^\frac{3}{2} + A^\frac{3}{2}XB^\frac{3}{2}\|\right) \leq \frac{2}{t+2}\|A^2X + tAXB + XB^2\|,$$

where $\frac{1}{2} \leq v \leq \frac{3}{2}$, $-2 < t \leq 2$.

Proof. It is known that if $A, B, X \in M_n$ such that A and B are positive semidefinite, then the function

$$\phi(v) = \|A^vXB^{2-v} + A^{2-v}XB^v\|, \quad 0 \leq v \leq 2$$
is convex on $[0, 2]$, attains its minimum at $v = 1$. It follows that if $\frac{1}{2} \leq v \leq \frac{3}{4}$, then by Lemma 1 and the convexity of function φ, we have

$$\varphi(v) \leq \frac{\varphi\left(\frac{3}{4}\right) - \varphi\left(\frac{1}{2}\right)}{\frac{3}{4} - 1} v - \frac{1}{\frac{3}{4} - 1} \varphi\left(\frac{3}{4}\right) - \frac{3}{4} \varphi\left(\frac{1}{2}\right),$$

that is,

$$\varphi(v) \leq (3 - 4v) \varphi\left(\frac{1}{2}\right) + 2(2v - 1) \varphi\left(\frac{3}{4}\right).$$

Thus

$$\int_{\frac{1}{2}}^{\frac{3}{4}} \varphi(v) \, dv \leq \varphi\left(\frac{1}{2}\right) \int_{\frac{1}{2}}^{\frac{3}{4}} (3 - 4v) \, dv + 2 \varphi\left(\frac{3}{4}\right) \int_{\frac{1}{2}}^{\frac{3}{4}} (2v - 1) \, dv,$$

which implies

$$\int_{\frac{1}{2}}^{\frac{3}{4}} \varphi(v) \, dv \leq \frac{1}{8} \left[\varphi\left(\frac{1}{2}\right) + \varphi\left(\frac{3}{4}\right) \right]. \tag{5}$$

If $\frac{3}{4} \leq v \leq 1$, then by Lemma 1 and the convexity of function φ, we have

$$\varphi(v) \leq \frac{\varphi(1) - \varphi\left(\frac{3}{4}\right)}{1 - \frac{3}{4}} v - \frac{3}{1 - \frac{3}{4}} \varphi(1) - \varphi\left(\frac{3}{4}\right),$$

that is,

$$\varphi(v) \leq 4(1 - v) \varphi\left(\frac{3}{4}\right) + (4v - 3) \varphi(1).$$

Thus

$$\int_{\frac{3}{4}}^{1} \varphi(v) \, dv \leq 4 \varphi\left(\frac{3}{4}\right) \int_{\frac{3}{4}}^{1} (1 - v) \, dv + \varphi(1) \int_{\frac{3}{4}}^{1} (4v - 3) \, dv,$$

which implies

$$\int_{\frac{3}{4}}^{1} \varphi(v) \, dv \leq \frac{1}{8} \left[\varphi\left(\frac{3}{4}\right) + \varphi(1) \right]. \tag{6}$$

If $1 \leq v \leq \frac{5}{4}$, similarly, we have

$$\varphi(v) \leq \frac{\varphi\left(\frac{5}{4}\right) - \varphi(1)}{\frac{5}{4} - 1} v - \frac{\varphi\left(\frac{5}{4}\right) - \varphi(1)}{\frac{5}{4} - 1},$$

that is,

$$\varphi(v) \leq (5 - 4v) \varphi(1) + 4(v - 1) \varphi\left(\frac{5}{4}\right).$$

Thus

$$\int_{1}^{\frac{5}{4}} \varphi(v) \, dv \leq \varphi(1) \int_{1}^{\frac{5}{4}} (5 - 4v) \, dv + 4 \varphi\left(\frac{5}{4}\right) \int_{1}^{\frac{5}{4}} (v - 1) \, dv,$$
which implies
\[\int_{1}^{\frac{5}{4}} \varphi(v) dv \leq \frac{1}{8} \left[\varphi(1) + \varphi\left(\frac{5}{4}\right)\right]. \tag{7} \]

If \(\frac{5}{4} \leq v \leq \frac{3}{2} \), similarly, we have
\[\varphi(v) \leq \frac{\varphi\left(\frac{3}{2}\right) - \varphi\left(\frac{5}{4}\right)}{\frac{3}{2} - \frac{5}{4}} v - \frac{5}{4} \varphi\left(\frac{3}{2}\right) - \frac{3}{2} \varphi\left(\frac{5}{4}\right), \]
that is,
\[\varphi(v) \leq (6 - 4v) \varphi\left(\frac{5}{4}\right) + (4v - 5) \varphi\left(\frac{3}{2}\right). \]

Thus
\[\int_{\frac{5}{4}}^{\frac{3}{2}} \varphi(v) dv \leq \varphi\left(\frac{5}{4}\right) \int_{\frac{5}{4}}^{\frac{3}{2}} (6 - 4v) dv + \varphi\left(\frac{3}{2}\right) \int_{\frac{5}{4}}^{\frac{3}{2}} (4v - 5) dv, \]
which implies
\[\int_{\frac{5}{4}}^{\frac{3}{2}} \varphi(v) dv \leq \frac{1}{8} \left[\varphi\left(\frac{5}{4}\right) + \varphi\left(\frac{3}{2}\right)\right]. \tag{8} \]

It follows from (5), (6), (7), (8) and \(\varphi\left(\frac{1}{2}\right) = \varphi\left(\frac{3}{2}\right), \varphi\left(\frac{3}{4}\right) = \varphi\left(\frac{5}{4}\right) \) that
\[4 \int_{\frac{1}{2}}^{\frac{3}{2}} \varphi(v) dv \leq \varphi\left(\frac{1}{2}\right) + \varphi(1) + 2 \varphi\left(\frac{3}{4}\right), \]
which is equivalent to
\[\varphi(1) + 4 \left[\int_{\frac{1}{2}}^{\frac{3}{2}} \varphi(v) dv - \frac{1}{2} \varphi(1) - \frac{1}{2} \varphi\left(\frac{3}{4}\right) \right] \leq \varphi\left(\frac{1}{2}\right). \]

The last inequality is
\[2 \|AXB\| + 4 \left(\int_{\frac{1}{2}}^{\frac{3}{2}} \|A^vXB^{2-v} + A^{2-v}XB^v\| dv - \|AXB\| - \frac{1}{2} \left\| A^{\frac{5}{4}}XB^{\frac{1}{4}} + A^{\frac{3}{4}}XB^{\frac{1}{2}} \right\| \right) \]
\[\leq \left\| A^{\frac{1}{2}}XB^{\frac{3}{2}} + A^{\frac{3}{4}}XB^{\frac{1}{2}} \right\|. \]

By (2), we get
\[2 \|AXB\| + 4 \left(\int_{\frac{1}{2}}^{\frac{3}{2}} \|A^vXB^{2-v} + A^{2-v}XB^v\| dv - \|AXB\| - \frac{1}{2} \left\| A^{\frac{3}{4}}XB^{\frac{1}{4}} + A^{\frac{5}{4}}XB^{\frac{1}{2}} \right\| \right) \]
\[\leq \frac{2}{t+2} \|A^{2}X + tAXB + XB^{2}\|. \]

This completes the proof. \(\Box \)
Remark 1. Theorem 1 is better than inequality (4). In fact, by Lemma 2, we have
\[\phi \left(\frac{3}{4} \right) \leq 2 \int_{1/2}^{1} \phi(v) \, dv, \tag{9} \]
\[\phi \left(\frac{5}{4} \right) \leq 2 \int_{1}^{3/2} \phi(v) \, dv, \tag{10} \]
It follows from (9), (10) and \(\phi \left(\frac{3}{4} \right) = \phi \left(\frac{5}{4} \right) \) that
\[2 \phi \left(\frac{3}{4} \right) \leq 2 \int_{1/2}^{3/2} \phi(v) \, dv, \]
that is
\[\int_{1/2}^{3/2} \phi(v) \, dv \geq \phi \left(\frac{3}{4} \right), \]
where \(\phi(v) = \| A^v X B^{2-v} + A^{2-v} X B^v \| \). Thus
\[\int_{1/2}^{3/2} \| A^v X B^{2-v} + A^{2-v} X B^v \| \, dv \geq \| A^{3/2} X B^{5/4} + A^{5/4} X B^{3/4} \|. \]
So
\[4 \left(\int_{1/2}^{3/2} \| A^v X B^{2-v} + A^{2-v} X B^v \| \, dv - \| A X B \| - \frac{1}{2} \| A^{3/2} X B^{5/4} + A^{5/4} X B^{3/4} \| \right) \]
\[-2 \left(\int_{1/2}^{3/2} \| A^v X B^{2-v} + A^{2-v} X B^v \| \, dv - 2 \| A X B \| \right) \]
\[= 2 \left(\int_{1/2}^{3/2} \| A^v X B^{2-v} + A^{2-v} X B^v \| \, dv - \| A^{3/2} X B^{5/4} + A^{5/4} X B^{3/4} \| \right) \geq 0. \]

Acknowledgements. The authors wish to express their heartfelt thanks to the referees for their detailed and helpful suggestions for revising the manuscript.

References

(Received August 30, 2014)

Jianming Xue
Oxbridge College
Kunming University of Science and Technology
Kunming, Yunnan 650106, P. R. China
e-mail: xuejianming104@163.com

Xingkai Hu
Faculty of Science
Kunming University of Science and Technology
Kunming, Yunnan 650500, P. R. China
e-mail: huxingkai84@163.com