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IMPROVEMENTS OF THE HERMITE–HADAMARD

INEQUALITY ON TIME SCALES

RABIA BIBI, JOSIP PEČARIĆ AND JURICA PERIĆ

(Communicated by A. Aglić Aljinović)

Abstract. In this paper we give refinements of converse Jensen’s inequality as well as of the
Hermite-Hadamard inequality on time scales. We give mean value theorems and investigate log-
arithmic and exponential convexity of the linear functionals related to the obtained refinements.
We also give several examples which illustrate possible applications for our results.

1. Introduction

The Hermite-Hadamard inequality is known to be the first inequality for convex
functions. It is stated as:

(b−a)Φ
(

a+b
2

)
�

b∫
a

Φ(s)ds � (b−a)
Φ(a)+ Φ(b)

2
, (1.1)

where a,b ∈ R with a < b and Φ : [a,b] → R is a convex function. It was first es-
tablished by Hermite in 1881. Also, Beckenbach, a leading expert on the history and
theory of complex functions, wrote that the first inequality in (1.1) was proved in 1893
by Hadamard who apparently was not aware of Hermite’s result (see [11]). In general,
(1.1) is now known as the Hermite-Hadamard inequality. Note that first inequality in
(1.1) is Jensen’s inequality,

Φ

(∫ b
a f (s)ds
b−a

)
�
∫ b
a Φ( f (s))ds

b−a
,

when f (s) = s and the second one gives a converse of Jensen’s inequality. Various
generalizations of the Hermite-Hadamard inequality are given in the literature. Let us
recall some generalizations from time scales theory given in [1].
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First we give an introduction to the time scale theory. Time scale T is an arbitrary
closed subset of R and time scale calculus provides unification and extension of classi-
cal results. For example, when T = R the time scale integral is Lebesgue integral and
when T = Z the time scale integral becomes sum. For detailed introduction to the time
scale theory we refer to [2, 3, 4, 5].

In [3], multiple Lebesgue integral is defined in the following way.
Let Ti , i = 1, . . . ,n , be time scales and

Λn = T1× . . .×Tn = {t = (t1, . . . ,tn) : ti ∈ Ti, 1 � i � n}
an n -dimensional time scale. Let f : E → R be a Δ-measurable function, where E ⊂
Λn is Δ-measurable. Then the corresponding Δ-integral, called Lebesgue Δ-integral,
is denoted by∫

E
f (t1, . . . ,tn)Δ1t1 . . .Δntn,

∫
E

f (t)Δt,
∫

E
fdμΔ, or

∫
E

f (t)dμΔ(t),

where μΔ is a σ -additive Lebesgue Δ-measure on Λn . By [3, Section 3] all theorems
of the general Lebesgue integration theory hold also for Lebesgue Δ-integral on Λn . In
what follows, we consider E to be Δ-measurable subset of Λn .

In the following, Theorem 1.1 recalls that the multiple Lebesgue Δ-integral is
an isotonic linear functional. Theorem 1.2 recalls Jensen’s inequality for multiple
Lebesgue Δ-integral, Theorem 1.4 is a generalization of the Hermite-Hadamard in-
equality, while other theorems recall some converses of Jensen’s inequality for multiple
Lebesgue Δ-integral.

THEOREM 1.1. ([1, Theorem 3.7]) If f and g are Δ-integrable functions on E
then ∫

E
(α f + βg)dμΔ = α

∫
E

fdμΔ + β
∫

E
gdμΔ for all α,β ∈ R

and
f (s) � 0 for all s ∈ E implies

∫
E

fdμΔ � 0.

THEOREM 1.2. ([1, Theorem 4.2]) Let Φ ∈ C(I,R) be a convex function, where
I ⊂R is an interval. Suppose that f is a Δ-integrable function on E such that f (E) = I
and that h : E →R is a nonnegative Δ-integrable function such that

∫
E hdμΔ > 0 . Then

Φ
(∫

E h fdμΔ∫
E hdμΔ

)
�
∫
E hΦ( f )dμΔ∫

E hdμΔ
.

THEOREM 1.3. ([1, Theorem 5.2]) Let Φ ∈C(I,R) be a convex function, where
I = [m,M] ⊂ R with m < M. Suppose that f is a Δ-integrable function on E such
that f (E) = I and that h : E → R is a nonnegative Δ-integrable function such that∫
E hdμΔ > 0 . Then∫

E hΦ( f )dμΔ∫
E hdμΔ

� M− ∫E h fdμΔ/
∫
E hdμΔ

M−m
Φ(m)+

∫
E h fdμΔ/

∫
E hdμΔ −m

M−m
Φ(M).
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THEOREM 1.4. ([1, Theorem 5.5]) Let Φ ∈C(I,R) be a convex function, where
[m,M] ⊂ I with m < M and I ⊂ R is an interval. Suppose that f is Δ-integrable on
E such that f (E) ⊂ [m,M] and that h : E → R is a nonnegative Δ-integrable function
such that

∫
E hdμΔ > 0 . Let p,q � 0 be such that p+q > 0 and

∫
E h fdμΔ∫
E hdμΔ

=
pm+qM

p+q

holds. Then

Φ
(

pm+qM
p+q

)
�
∫
E hΦ( f )dμΔ∫

E hdμΔ
� pΦ(m)+qΦ(M)

p+q
.

THEOREM 1.5. ([1, Theorem 12.2]) Let Φ ∈C1(I,R) be such that Φ′ is strictly
increasing on I , where I = [m,M] with m < M. Suppose that f is a Δ-integrable
function on E such that f (E) = I and that h : E → R is a nonnegative Δ-integrable
function such that

∫
E hdμΔ > 0 . Then

∫
E hΦ( f )dμΔ∫

E hdμΔ
� λ + Φ

(∫
E h fdμΔ∫
E hdμΔ

)
(1.2)

holds for some λ satisfying 0 < λ < (M −m)(ν − Φ′(m)) , where ν = (Φ(M) −
Φ(m))/(M−m) . More precisely λ may be determined as follows: Let x̃ be the unique
solution of the equation Φ′(x) = ν . Then

λ = Φ(m)−Φ(x̃)+ ν(x̃−m)

satisfies (1.2).

THEOREM 1.6. ([1, Theorem 12.3]) In addition to the assumptions of Theorem
1.3 let J ⊂ R be an interval such that J ⊃ Φ(I) and suppose that F : J × J → R is
increasing in the first variable. Then

F

(∫
E hΦ( f )dμΔ∫

E hdμΔ
,Φ
(∫

E h fdμΔ∫
E hdμΔ

))

� max
x∈[m,M]

F

(
M− x
M−m

Φ(m)+
x−m
M−m

Φ(M),Φ(x)
)

= max
σ∈[0,1]

F (σΦ(m)+ (1−σ)Φ(M),Φ(σm+(1−σ)M)) ,

and the right-hand side of the inequality is an increasing function of M and a decreas-
ing function of m.
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REMARK 1.7. If we choose F(x,y) = x−y , as a simple consequence of Theorem
1.6 it follows ∫

E hΦ( f )dμΔ∫
E hdμΔ

−Φ
(∫

E h fdμΔ∫
E hdμΔ

)
(1.3)

� max
x∈[m,M]

(
M− x
M−m

Φ(m)+
x−m
M−m

Φ(M)−Φ(x)
)

= max
σ∈[0,1]

(σΦ(m)+ (1−σ)Φ(M)−Φ(σm+(1−σ)M)) .

REMARK 1.8. As a time scale is an arbitrary closed subset of R , we can obtain
both discrete and continuous versions of the above results. Namely, let E = {a,a +

1, . . . ,b} ⊂ N. Then
∫
E f (s)dμΔ(s) becomes

b−1
∑

s=a
f (s) . On the other hand, if we take

Λ = R and E = [a,b) an interval in R , then
∫
E fdμΔ becomes the Lebesgue integral∫ b

a f (s)dμ(s) . Similarly, if Λ = hZ, h > 0 and E = [a,b−h]∩hZ then
∫
E f (s)dμΔ(s)

becomes h
b/h−1

∑
s=a/h

f (sh) .

REMARK 1.9. Throughout this paper we give the results for multiple Lebesgue
Δ-integral but all the results can be given for many other time scales integrals in a sim-
ilar way, such as Cauchy, Riemann, Lebesgue and multiple Riemann, delta, nabla and
diamond-α time scales integrals and also for multiple Lebesgue nabla and diamond-α
time scales integrals.

Now, we quote some definitions and results from [9] about log-convexity and ex-
ponential convexity which will be used in Section 3.

DEFINITION 1.10. A function ψ : I →R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξiξ jψ
(

xi + x j

2

)
� 0,

holds for all choices ξi ∈ R and xi ∈ I , i = 1, . . . ,n .
A function ψ : I → R is n -exponentially convex if it is n -exponentially convex in

the Jensen sense and continuous on I .

DEFINITION 1.11. A function ψ : I → R is exponentially convex in the Jensen
sense on I if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function ψ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 1.12. It is known (and easy to show) that ψ : I → (0,∞) is log-convex
in the Jensen sense if and only if

α2ψ(x)+2αβ ψ
(

x+ y
2

)
+ β 2ψ(y) � 0
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holds for every α , β ∈ R and x,y ∈ I . It follows that a positive function is log-convex
in the Jensen sense if and only if it is 2-exponentially convex in the Jensen sense.

Also, using basic convexity theory, it follows that a positive function is log-convex
if and only if it is 2-exponentially convex.

PROPOSITION 1.13. If ψ is a convex function on an interval I and if x1 � y1 ,
x2 � y2 , x1 �= x2 , y1 �= y2 then the following inequality is valid

ψ(x2)−ψ(x1)
x2 − x1

� ψ(y2)−ψ(y1)
y2 − y1

.

When dealing with functions with different degree of smoothness divided differ-
ences are found to be very useful.

DEFINITION 1.14. The second order divided difference of a function f : [a,b]→
R at mutually different points x0,x1,x2 ∈ [a,b] is defined recursively by

[xi; f ] = f (xi), i = 0,1,2,

[xi,xi+1; f ] =
f (xi+1)− f (xi)

xi+1− xi
, i = 0,1,

[x0,x1,x2; f ] =
[x1,x2; f ]− [x0,x1; f ]

x2 − x0
.

The value [x0,x1,x2; f ] is independent of the order of the points x0,x1 and x2 .
This definition may be extended to include the case in which some or all the points
coincide (see [11, page 14]). Namely, taking the limits x1 → x0 , we obtain

lim
x1→x0

[x0,x1,x2; f ] = [x0,x0,x2; f ] =
f (x2)− f (x0)− f ′(x0)(x2− x0)

(x2− x0)2 , x2 �= x0

provided that f ′ exists, and furthermore, taking the limits xi → x0 , i = 1,2, we obtain

lim
x2→x0

lim
x1→x0

[x0,x1,x2; f ] = [x0,x0,x0; f ] =
f ′′(x0)

2

provided that f ′′ exists.
In next section we give improvements of converses of Jensen’s inequality as stated

above and as a consequence improvements of generalization of the Hermite-Hadamard
inequality. In Section 3 we discuss log-convexity, n -exponential convexity and expo-
nential convexity of the differences obtained from new results of Section 2.

2. Main results

In what follows, we assume I to be an interval in R and [m,M] an interval in R

with m < M . To prove our main results we need the following lemma (see [10, Lemma
1]).
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LEMMA 2.1. Let Φ be a convex function on I , x,y ∈ I and p,q ∈ [0,1] such that
p+q = 1 . Then

min{p,q}
[

Φ(x)+ Φ(y)−2Φ
(

x+ y
2

)]
(2.1)

� pΦ(x)+qΦ(y)−Φ(px+qy)

� max{p,q}
[

Φ(x)+ Φ(y)−2Φ
(

x+ y
2

)]
.

THEOREM 2.2. Let Φ ∈ C(I,R) be a convex function and let f : E → [m,M] be
a Δ-integrable function, where [m,M] ⊆ I . Suppose that h : E → R is a nonnegative
Δ-integrable function such that

∫
E hdμΔ > 0 . Then

∫
E hΦ( f )dμΔ∫

E hdμΔ
� M− ∫E h fdμΔ/

∫
E hdμΔ

M−m
Φ(m) (2.2)

+
∫
E h fdμΔ/

∫
E hdμΔ −m

M−m
Φ(M)−

∫
E h f̃ dμΔ∫
E hdμΔ

δΦ,

where

f̃ =
1
2
− | f − (m+M)/2|

M−m
, δΦ = Φ(m)+ Φ(M)−2Φ

(
m+M

2

)
. (2.3)

Proof. Let the functions p,q : [m,M] → R be defined by

p(x) =
M− x
M−m

, q(x) =
x−m
M−m

. (2.4)

For any x ∈ [m,M] we can write

Φ(x) = Φ
(

M− x
M−m

m+
x−m
M−m

M

)
= Φ(p(x)m+q(x)M).

By using Lemma 2.1, we obtain

Φ(x) � p(x)Φ(m)+q(x)Φ(M)−min{p(x),q(x)}
(

Φ(m)+ Φ(M)−2Φ
(

m+M
2

))
.

Now by replacing x with f (s) , where s ∈ E , we obtain

Φ( f (s)) � p( f (s))Φ(m)+q( f (s))Φ(M)− f̃ (s)δΦ, (2.5)

where the function f̃ is defined on E by

f̃ (s) =
1
2
− | f (s)− (m+M)/2|

M−m
.
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Since h is nonnegative Δ-integrable and
∫
E hdμΔ > 0, multiplying (2.5) with h , apply-

ing integral and then dividing by
∫
E hdμΔ , we have

∫
E hΦ( f )dμΔ∫

E hdμΔ
�
∫
E hp( f )dμΔ∫

E hdμΔ
Φ(m)+

∫
E hq( f )dμΔ∫

E hdμΔ
Φ(M)−

∫
E h f̃ dμΔ∫
E hdμΔ

δΦ

from which (2.2) follows. �

REMARK 2.3. Theorem 2.2 gives a refinement of Theorem 1.3 as under the re-
quired assumptions we have

∫
E h f̃dμΔ∫
E hdμΔ

δΦ =

∫
E h

(
1
2
− | f − (m+M)/2|

M−m

)
dμΔ∫

E hdμΔ
δΦ � 0. (2.6)

REMARK 2.4. Since Δ-integral is an isotonic linear functional by Theorem 1.1,
Theorem 2.2 can also be obtained from [8, Theorem 12]. If we take E ⊂ N , we obtain
a discrete version of Theorem 2.2 given in [8, Corrolary 1].

THEOREM 2.5. Let Φ ∈ C(I,R) be a convex function and let f : E → [m,M] be
a Δ-integrable function, where [m,M] ⊆ I . Suppose that h : E → R is a nonnegative
Δ-integrable function such that

∫
E hdμΔ > 0 . Then∫

E hΦ( f )dμΔ∫
E hdμΔ

−Φ
(∫

E h fdμΔ∫
E hdμΔ

)
(2.7)

� max
x∈[m,M]

{
M− x
M−m

Φ(m)+
x−m
M−m

Φ(M)−Φ(x)
}
−
∫
E h f̃ dμΔ∫
E hdμΔ

δΦ

= max
σ∈[0,1]

{σΦ(m)+ (1−σ)Φ(M)−Φ(σm+(1−σ)M)}−
∫
E h f̃dμΔ∫
E hdμΔ

δΦ,

where f̃ and δΦ are defined as in (2.3).

Proof. This is an immediate consequence of Theorem 2.2. The identity follows
from the change of variables σ = (M − x)/(M−m) , so that for x ∈ [m,M] we have
σ ∈ [0,1] and x = σm+(1−σ)M . �

REMARK 2.6. Arguing as in Remark 2.3, (2.7) is a refinement of (1.3).

REMARK 2.7. Arguing as in Remark 2.4, Theorem 2.5 can also be obtained from
[8, Theorem 13].

THEOREM 2.8. Let Φ ∈ C(I,R) be a convex function and let f : E → [m,M] be
a Δ-integrable function, where [m,M] ⊆ I . Suppose that h : E → R is a nonnegative
Δ-integrable function such that

∫
E hdμΔ > 0 . Then
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∫
E hΦ( f )dμΔ∫

E hdμΔ
−Φ

(∫
E h fdμΔ∫
E hdμΔ

)

� 1
M−m

{∣∣∣∣m+M
2

−
∫
E h fdμΔ∫
E hdμΔ

∣∣∣∣+
∫
E h |(m+M)/2− f |dμΔ∫

E hdμΔ

}
δΦ, (2.8)

where δΦ is defined as in (2.3).

Proof. Let the functions p,q : [m,M] → R be defined as in (2.4). Then for any
x ∈ [m,M] we can write

Φ(x) = Φ(p(x)m+q(x)M).

Since
∫
E h fdμΔ/

∫
E hdμΔ ∈ [m,M] , the above equation implies that

Φ
(∫

E h fdμΔ∫
E hdμΔ

)
= Φ

(
p

(∫
E h fdμΔ∫
E hdμΔ

)
m+q

(∫
E h fdμΔ∫
E hdμΔ

)
M

)
.

By Lemma 2.1, we get

Φ
(∫

E h fdμΔ∫
E hdμΔ

)
� p

(∫
E h fdμΔ∫
E hdμΔ

)
Φ(m)+q

(∫
E h fdμΔ∫
E hdμΔ

)
Φ(M) (2.9)

−max

{
p

(∫
E h fdμΔ∫
E hdμΔ

)
,q

(∫
E h fdμΔ∫
E hdμΔ

)}
δΦ

= p

(∫
E h fdμΔ∫
E hdμΔ

)
Φ(m)+q

(∫
E h fdμΔ∫
E hdμΔ

)
Φ(M)

−
{

1
2

+
|(m+M)/2− ∫E h fdμΔ/

∫
E hdμΔ)|

M−m

}
δΦ.

Again by Lemma 2.1, we get

Φ( f ) � p( f )Φ(m)+q( f )Φ(M)−min{p( f ),q( f )}δΦ,

which implies that∫
E hΦ( f )dμΔ∫

E hdμΔ
�
∫
E hp( f )dμΔ∫

E hdμΔ
Φ(m)+

∫
E hq( f )dμΔ∫

E hdμΔ
Φ(M) (2.10)

−
∫
E hmin{p( f ),q( f )}dμΔ∫

E hdμΔ
δΦ

= p

(∫
E h fdμΔ∫
E hdμΔ

)
Φ(m)+q

(∫
E h fdμΔ∫
E hdμΔ

)
Φ(M)

−
{

1
2
−
∫
E h | f − (m+M)/2|dμΔ/

∫
E hdμΔ

M−m

}
δΦ.

Now, from inequalities (2.9) and (2.10) we get desired inequality (2.8). �

REMARK 2.9. Arguing as in Remark 2.4, Theorem 2.8 can also be obtained from
[10, Theorem 8].
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COROLLARY 2.10. Under the assumptions of Theorem 2.8 the following inequal-
ity holds:
∫
E hΦ( f )dμΔ∫

E hdμΔ
−Φ

(∫
E h fdμΔ∫
E hdμΔ

)
�
{

1
2

+
1

M−m

∣∣∣∣m+M
2

−
∫
E h fdμΔ∫
E hdμΔ

∣∣∣∣
}

δΦ. (2.11)

Proof. Since
1

M−m

∣∣∣∣m+M
2

− f

∣∣∣∣� 1
2
,

we have
1

M−m

∫
E h |(m+M)/2− f |dμΔ∫

E hdμΔ
� 1

2
.

Now inequality (2.11) directly follows from Theorem 2.8. �

REMARK 2.11. Arguing as in Remark 2.4, Corollary 2.10 can also be obtained
from [10, Theorem 6].

The following two theorems give improvements of Theorem 1.4.

THEOREM 2.12. Let Φ ∈ C(I,R) be a convex function and let f : E → [m,M] be
a Δ-integrable function, where [m,M] ⊆ I . Suppose that h : E → R is a nonnegative
Δ-integrable function such that

∫
E hdμΔ > 0 and that p,q are nonnegative numbers

such that p+q > 0 and ∫
E h fdμΔ∫
E hdμΔ

=
pm+qM

p+q
.

Then

Φ
(

pm+qM
p+q

)
�
∫
E hΦ( f )dμΔ∫

E hdμΔ
� pΦ(m)+qΦ(M)

p+q
−
∫
E h f̃dμΔ∫
E hdμΔ

δΦ, (2.12)

where f̃ and δΦ are defined as in (2.3).

Proof. The first inequality in (2.12) follows from Theorem 1.2 and the second one
follows from Theorem 2.2. �

REMARK 2.13. Arguing as in Remark 2.4, Theorem 2.12 can also be obtained
from [7, Theorem 5].

REMARK 2.14. Theorem 2.12 gives an improvement of Theorem 1.4 as under the
required assumptions we have

∫
E h f̃dμΔ∫
E hdμΔ

δΦ � 0.
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THEOREM 2.15. Let Φ ∈ C(I,R) be a convex function and let f : E → [m,M] be
a Δ-integrable function where [m,M] ⊆ I . Suppose that h : E → R is a nonnegative
Δ-integrable function such that

∫
E hdμΔ > 0 and that p,q are nonnegative numbers

such that p+q > 0 and∫
E h fdμΔ∫
E hdμΔ

=
pm+qM

p+q
, 0 < y � M−m

p+q
min{p,q}. (2.13)

Then

Φ
(

pm+qM
p+q

)
�
∫
E hΦ( f )dμΔ∫

E hdμΔ

� pΦ(m)+qΦ(M)
p+q

−2

∫
E h f̃1dμΔ∫
E hdμΔ

(
pΦ(m)+qΦ(M)

p+q
−Φ

(
pm+qM

p+q

))
, (2.14)

where

f̃1 =
1
2
− | f − (pm+qM)/(p+q)|

2y
. (2.15)

Proof. The first inequality in (2.14) follows from Theorem 1.2. By using (2.13),
we have

m �
∫
E h fdμΔ∫
E hdμΔ

− y <

∫
E h fdμΔ∫
E hdμΔ

+ y � M.

Suppose m1 =
∫
E h fdμΔ/

∫
E hdμΔ − y and M1 =

∫
E h fdμΔ/

∫
E hdμΔ + y , then∫

E h fdμΔ∫
E hdμΔ

=
∫
E h fdμΔ/

∫
E hdμΔ − y+

∫
E h fdμΔ/

∫
E hdμΔ + y

2
=

m1 +M1

2
.

By applying Theorem 2.12 with p = q = 1, we obtain∫
E hΦ( f )dμΔ∫

E hdμΔ
� Φ(

∫
E h fdμΔ/

∫
E hdμΔ − y)+ Φ(

∫
E h fdμΔ/

∫
E hdμΔ + y)

2

−
∫
E h f̃1dμΔ∫
E hdμΔ

(
Φ
(∫

E h fdμΔ∫
E hdμΔ

− y

)
+ Φ

(∫
E h fdμΔ∫
E hdμΔ

+ y

)

−2Φ
(∫

E h fdμΔ∫
E hdμΔ

))

=
(

1−2

∫
E h f̃1dμΔ∫
E hdμΔ

)Φ
(∫

E h fdμΔ∫
E hdμΔ

− y

)
+ Φ

(∫
E h fdμΔ∫
E hdμΔ

+ y

)
2

+2

∫
E h f̃1dμΔ∫
E hdμΔ

Φ
(∫

E h fdμΔ∫
E hdμΔ

)
.

Now by using Theorem 1.3, we obtain

Φ
(∫

E h fdμΔ∫
E hdμΔ

− y

)
�M− (

∫
E h fdμΔ/

∫
E hdμΔ − y)

M−m
Φ(m)

+
∫
E h fdμΔ/

∫
E hdμΔ − y−m

M−m
Φ(M),
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Φ
(∫

E h fdμΔ∫
E hdμΔ

+ y

)
�M− (

∫
E h fdμΔ/

∫
E hdμΔ + y)

M−m
Φ(m)

+
∫
E h fdμΔ/

∫
E hdμΔ + y−m

M−m
Φ(M).

hence

Φ(
∫
E h fdμΔ/

∫
E hdμΔ − y)+ Φ(

∫
E h fdμΔ/

∫
E hdμΔ + y)

2

� M− ∫E h fdμΔ/
∫
E hdμΔ

M−m
Φ(m)+

∫
E h fdμΔ/

∫
E hdμΔ −m

M−m
Φ(M).

If p and q are any nonnegative numbers such that (2.13) holds (observe that they are
different from those we started with), we obtain

Φ(
∫
E h fdμΔ/

∫
E hdμΔ − y)+ Φ(

∫
E h fdμΔ/

∫
E hdμΔ + y)

2
� pΦ(m)+qΦ(M)

p+q
.

Considering all this and the fact that 1−2
∫
E h f̃1dμΔ/

∫
E hdμΔ � 0, we deduce

∫
E hΦ( f )dμΔ∫

E hdμΔ
�
(

1−2

∫
E h f̃1dμΔ∫
E hdμΔ

)
pΦ(m)+qΦ(M)

p+q
+2

∫
E h f̃1dμΔ∫
E hdμΔ

Φ
(∫

E h fdμΔ∫
E hdμΔ

)

=
pΦ(m)+qΦ(M)

p+q
−2

∫
E h f̃1dμΔ∫
E hdμΔ

[
pΦ(m)+qΦ(M)

p+q
−Φ

(
pm+qM

p+q

)]
,

hence the proof is complete. �

REMARK 2.16. Arguing as in Remark 2.4, Theorem 2.15 can also be obtained
from [7, Theorem 6].

From (2.14) easily follows a Hammer-Bullen type inequality for multiple Lebesgue
Δ-integral.

COROLLARY 2.17. Under the assumptions of Theorem 2.15 the following in-
equality holds:

(
1−2

∫
E h f̃1dμΔ∫
E hdμΔ

)[
pΦ(m)+qΦ(M)

p+q
−
∫
E hΦ( f )dμΔ∫

E hdμΔ

]

� 2

∫
E h f̃1dμΔ∫
E hdμΔ

[∫
E hΦ( f )dμΔ∫

E hdμΔ
−Φ

(
pm+qM

p+q

)]
. (2.16)

Proof. It follows directly from Theorem 2.15. �

REMARK 2.18. Arguing as in Remark 2.4, Corollary 2.17 can also be obtained
from [7, Corollary 1].
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THEOREM 2.19. Let Φ ∈ C1(I,R) be such that Φ′ is strictly increasing on I ,
where I = [m,M] with m < M. Suppose that f : E → I is a Δ-integrable function and
that h : E → R is a nonnegative Δ-integrable function such that

∫
E hdμΔ > 0 . Let f̃

and δΦ be defined as in (2.3). Then

∫
E hΦ( f )dμΔ∫

E hdμΔ
� λ + Φ

(∫
E h fdμΔ∫
E hdμΔ

)
−
∫
E h f̃dμΔ∫
E hdμΔ

δΦ (2.17)

holds for some λ satisfying 0 < λ < (M −m)(ν − Φ′(m)) , where ν = (Φ(M) −
Φ(m))/(M −m) . More precisely, λ may be determined in the following way: Let
x̃ be the unique solution of the equation Φ′(x) = ν . Then

λ = Φ(m)−Φ(x̃)+ ν(x̃−m)

satisfies (2.17).

Proof. By Theorem 2.5, we have

∫
E hΦ( f )dμΔ∫

E hdμΔ
−Φ

(∫
E h fdμΔ∫
E hdμΔ

)
� max

x∈I
g(x)−

∫
E h f̃dμΔ∫
E hdμΔ

δΦ

where

g(x) =
M− x
M−m

Φ(m)+
x−m
M−m

Φ(M)−Φ(x).

Then
g′(x) = ν −Φ′(x),

which is strictly decreasing on I with g′(x̃) = 0 for a unique x̃ ∈ I . Consequently g(x)
achieves its maximum value at x = x̃ . Hence the result follows. �

REMARK 2.20. Arguing as in Remark 2.4, Theorem 2.19 can also be obtained
from [8, Theorem 14]. Furthermore, it gives a refinement of Theorem 1.5.

COROLLARY 2.21. Let f be a Δ-integrable function on E such that f (E) =
[m,M] ⊂ (0,∞) and let h : E → R be a nonnegative Δ-integrable function such that∫
E hdμΔ > 0 . Then

∫
E h fdμΔ∫
E hdμΔ

� exp

(∫
E h log fdμΔ∫

E hdμΔ

)
exp(S (M/m))

[(m+M)2/4mM](
∫
E h f̃dμΔ/

∫
E hdμΔ)

, (2.18)

where S(·) is Specht ratio and f̃ is defined as in Theorem 2.2.

Proof. This is a special case of Theorem 2.19 for Φ = − log. In this case (2.17)
becomes

−
∫
E h log fdμΔ∫

E hdμΔ
� λ − log

(∫
E h fdμΔ∫
E hdμΔ

)
−
∫
E h f̃dμΔ∫
E hdμΔ

δ− log,
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that is, ∫
E h fdμΔ∫
E hdμΔ

� exp

(∫
E h log fdμΔ∫

E hdμΔ
+ λ −

∫
E h f̃ dμΔ∫
E hdμΔ

δ− log

)

= exp

(∫
E h log fdμΔ∫

E hdμΔ

)
expλ

exp
(
(
∫
E h f̃dμΔ/

∫
E hdμΔ)δ− log

) ,
where

δ− log = − logm− logM +2log
m+M

2
= log

(m+M)2

4mM
,

ν =
logm− logM

M−m
, x̃ = − 1

ν
=

M−m
logM− logm

,

hence

λ = − logm+ ν(x̃−m)+ log x̃ = log
(M/m)m/(M−m)

e log(M/m)m/(M−m) = S

(
M
m

)
,

where S(·) is Specht ratio defined by

S(a) =
a1/(a−1)

e loga1/(a−1) , a ∈ (0,∞)\ {1}.

Considering all this we obtain (2.18). �

REMARK 2.22. Arguing as in Remark 2.4, Corollary 2.21 can also be obtained
from [8, Corollary 2].

COROLLARY 2.23. Let f be a Δ-integrable function on E such that f (E) =
[m,M] ⊂ (0,∞) and let h : E → R be a nonnegative Δ-integrable function such that∫
E hdμΔ > 0 . Then∫

E h fdμΔ∫
E hdμΔ

�exp

(∫
E h log fdμΔ∫

E hdμΔ

)
+

M−m
log(M/m)

S

(
M
m

)
(2.19)

−
∫
E h f̃2dμΔ∫
E hdμΔ

(
m+M−2

√
mM

)
,

where S(·) is Specht ratio and f̃2 is defined by

f̃2 =
1
2
−
∣∣log f − log

√
mM

∣∣
logM− logm

. (2.20)

Proof. This is a special case of Theorem 2.19 for Φ = exp and f = log. In this
case (2.17) becomes∫

E hexplog fdμΔ∫
E hdμΔ

� λ + exp

(∫
E h log fdμΔ∫

E hdμΔ

)
−
∫
E h f̃2dμΔ∫
E hdμΔ

δexp,
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where

δexp = explogm+ explogM−2exp
logm+ logM

2
= m+M−2

√
mM,

ν =
M−m

logM− logm
, x̃ = logν = log

M−m
logM− logm

,

hence

λ = explogm+ ν(x̃− logm)− exp x̃

= m+
M−m

logM− logm

(
log

M−m
logM− logm

− logm−1

)

=
M−m

log(M/m)
S

(
M
m

)
.

Considering all this we obtain (2.19). �

REMARK 2.24. Arguing as in Remark 2.4, Corollary 2.23 can also be obtained
from [8, Corollary 3].

3. Log-convexity and exponential convexity

Motivated by results from previous Section, we define linear functionals Hi : Lf →
R , i = 1,2,3, by

H1(Φ) =
M− ∫E h fdμΔ/

∫
E hdμΔ

M−m
Φ(m)+

∫
E h fdμΔ/

∫
E hdμΔ −m

M−m
Φ(M)

−
∫
E hΦ( f )dμΔ∫

E hdμΔ
−
∫
E h f̃dμΔ∫
E hdμΔ

δΦ, (3.1)

H2(Φ) = Φ
(∫

E h fdμΔ∫
E hdμΔ

)
−
∫
E hΦ( f )dμΔ∫

E hdμΔ

+
1

M−m

{∣∣∣∣m+M
2

−
∫
E h fdμΔ∫
E hdμΔ

∣∣∣∣+
∫
E h |(m+M)/2− f |dμΔ∫

E hdμΔ

}
δΦ, (3.2)

H3(Φ) = Φ
(∫

E h fdμΔ∫
E hdμΔ

)
−
∫
E hΦ( f )dμΔ∫

E hdμΔ

+
{

1
2

+
1

M−m

∣∣∣∣m+M
2

−
∫
E h fdμΔ∫
E hdμΔ

∣∣∣∣
}

δΦ, (3.3)

where f ,h, f̃ ,δΦ are as in Theorem2.2, Lf = {Φ : I →R : Φ( f ) is a Δ-integrable function} ,
[m,M] ⊆ I .

Also, if p,q and f̃1 are as in Theorems 2.12 and 2.15, we define linear functionals
H4 and H5 by

H4(Φ) =
pΦ(m)+qΦ(M)

p+q
−
∫
E hΦ( f )dμΔ∫

E hdμΔ
−
∫
E h f̃dμΔ∫
E hdμΔ

δΦ, (3.4)
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H5(Φ) =
pΦ(m)+qΦ(M)

p+q
−
∫
E hΦ( f )dμΔ∫

E hdμΔ

−2

∫
E h f̃1dμΔ∫
E hdμΔ

(
pΦ(m)+qΦ(M)

p+q
−Φ

(
pm+qM

p+q

))
. (3.5)

If Φ is additionally continuous and convex on I , then using Theorems 2.2 and 2.8,
Corollary 2.10 and Theorems 2.12 and 2.15, respectively, we have

Hi(Φ) � 0, i = 1, . . . ,5.

THEOREM 3.1. Let Φ : I → R , where [m,M] ⊆ I , be such that Φ ∈C2(I) . If Hi ,
i = 1, . . . ,5, are defined as in (3.1), . . . , (3.5) , then there exist ξi ∈ [m,M] , i = 1, . . . ,5 ,
such that

Hi(Φ) =
Φ′′(ξi)

2
Hi(Φ0), i = 1, . . . ,5, (3.6)

where Φ0(x) = x2 .

Proof. We give a proof for the functional H1 . Since Φ ∈ C2(I) there exists
η , ζ ∈ R such that

η = min
x∈[m,M]

Φ′′(x) and ζ = max
x∈[m,M]

Φ′′(x).

Let

φ1(x) =
ζ
2

x2 −Φ(x) and φ2(x) = Φ(x)− η
2

x2.

Then φ1 and φ2 are continuous and convex on [m,M] , and we have

H1(φ1) � 0, H1(φ2) � 0,

which implies
η
2

H1(Φ0) � H1(Φ) � ζ
2

H1(Φ0).

If H1(Φ0) = 0, there is nothing to prove. Suppose H1(Φ0) > 0. Then we have

η � 2H1(Φ)
H1(Φ0)

� ζ .

Hence, there exists ξ1 ∈ [m,M] such that

2H1(Φ)
H1(Φ0)

= Φ′′(ξ1),

and the result follows. �
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THEOREM 3.2. Let Φ,ψ : I → R , where [m,M] ⊆ I , be such that Φ,ψ ∈C2(I) .
If Hi , i = 1, . . . ,5, are defined as in (3.1), . . . , (3.5) , then there exist ξi ∈ [m,M] , i =
1, . . . ,5, such that

Hi(Φ)
Hi(ψ)

=
Φ′′(ξi)
ψ ′′(ξi)

, i = 1, . . . ,5, (3.7)

provided that the denominators in (3.7) are nonzero.

Proof. We give a proof for the functional H1 . Consider the function χ defined
by

χ(t) = H1(ψ)Φ(t)−H1(Φ)ψ(t).

As the function χ is linear combination of functions Φ and ψ , so χ ∈C2(I) . Now by
applying Theorem 3.1 on χ , there exists some ξ1 ∈ [m,M] , such that

H1(χ) =
χ ′′(ξ1)

2
H1(Φ0).

But H1(χ) = 0 and H1(Φ0) �= 0 (otherwise we have a contradiction with H1(ψ) �= 0,
by Theorem 3.1), therefore

χ ′′(ξ1) = 0.

From here the result follows. �

REMARK 3.3. If the inverse of the function
Φ′′

ψ ′′ exists, then (3.7) gives

ξi =
(

Φ′′

ψ ′′

)−1(Hi(Φ)
Hi(ψ)

)
, i = 1, . . . ,5.

Now we study log-convexity, n -exponential convexity and exponential-convexity
of the functionals Hi , i = 1, . . . ,5, using the idea from [6].

THEOREM 3.4. Let Hi , i = 1, . . . ,5 , be defined as in (3.1), . . . , (3.5) . Let J be an
interval in R and let Ω = {Φt : t ∈ J} be a family of functions defined on an open inter-
val I such that [m,M] ⊂ I . If the function t �→ [x0,x1,x2;Φt ] is n-exponentially convex
in the Jensen sense on J for every choice of mutually different numbers x0,x1,x2 ∈ I
then

(i) t �→ Hi(Φt) , i = 1, . . . ,5, is an n-exponentially convex function in the Jensen
sense on J .

(ii) if t �→Hi(Φt) , i = 1, . . . ,5, is continuous on J , then it is n-exponentially convex
on J .
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Proof.

(i) Let the function ν : I → R be defined by

ν(x) =
n

∑
j,k=1

ξ jξkΦr jk (x)

where ξ j ∈ R , r jk =
r j + rk

2
, r j ∈ J , 1 � j,k � n and Φr jk ∈ Ω . Using the

assumption that t �→ [x0,x1,x2;Φt ] is n -exponentially convex in the Jensen sense
on J , we obtain

[x0,x1,x2;ν] =
n

∑
j,k=1

ξ jξk[x0,x1,x2;Φr jk ] � 0.

Therefore ν is a convex (and continuous) function. Hence Hi(ν) � 0, i =
1, . . . ,5, which implies that

n

∑
j,k=1

ξ jξkHi(Φr jk ) � 0, i = 1, . . . ,5.

We conclude that the function t �→Hi(Φt ) , i = 1, . . . ,5, is n -exponentially con-
vex on J in the Jensen sense.

(ii) If t �→ Hi(Φt) , i = 1, . . . ,5, is continuous on J , then t �→ Hi(Φt) , i = 1, . . . ,5,
is n -exponentially convex by definition. �

The following corollary is an immediate consequence of the above theorem.

COROLLARY 3.5. Let Hi , i = 1, . . . ,5, be defined as in (3.1), . . . , (3.5) . Let J be
an interval in R and let Ω = {Φt : t ∈ J} be a family of functions defined on an open
interval I such that [m,M] ⊂ I . If the function t �→ [x0,x1,x2;Φt ] is exponentially con-
vex in the Jensen sense on J for every choice of mutually different numbers x0,x1,x2 ∈ I
then

(i) t �→Hi(Φt ) , i = 1, . . . ,5, is an exponentially convex function in the Jensen sense
on J .

(ii) if t �→ Hi(Φt ) , i = 1, . . . ,5, is continuous on J , then it is exponentially convex
on J .

COROLLARY 3.6. Let Hi , i = 1, . . . ,5, be defined as in (3.1), . . . , (3.5) . Let J be
an interval in R and let Ω = {Φt : t ∈ J} be a family of functions defined on an open in-
terval I such that [m,M]⊂ I . If the function t �→ [x0,x1,x2;Φt ] is 2 -exponentially con-
vex in the Jensen sense on J for every choice of mutually different numbers x0,x1,x2 ∈ I
then
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(i) t �→ Hi(Φt) , i = 1, . . . ,5 , is a 2 -exponentially convex function in the Jensen
sense on J .

(ii) if t �→ Hi(Φt) , i = 1, . . . ,5 , is continuous on J , then it is also 2 -exponentially
convex on J . If t �→ Hi(Φt ) , i = 1, . . . ,5 , is additionally strictly positive then it
is also log-convex on J .

(iii) if t �→ Hi(Φt ) , i = 1, . . . ,5 , is strictly positive differentiable function on J , then
for any p � u, q � v, p,q,u,v ∈ J , we have

Mp,q(Hi,Ω) � Mu,v(Hi,Ω), i = 1, . . . ,5, (3.8)

where

Mp,q(Hi,Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Hi(Φp)
Hi(Φq)

) 1
p−q

, p �= q;

exp

⎛
⎜⎜⎝

d
dp

Hi(Φp)

Hi(Φp)

⎞
⎟⎟⎠ , p = q.

(3.9)

Proof. (i) and (ii) are immediate consequences of Theorem 3.4. To prove (iii) , let
t �→ Hi(Φt ) , i = 1, . . . ,5, be positive and differentiable and therefore continuous too.
By (ii), the function t �→ Hi(Φt) , i = 1, . . . ,5, is log-convex and by Proposition 1.13,
we obtain

logHi(Φp)− logHi(Φq)
p−q

� logHi(Φu)− logHi(Φv)
u− v

, i = 1, . . . ,5,

for p � u , q � v , p �= q , u �= v , concluding

Mp,q(Hi,Ω) � Mu,v(Hi,Ω), i = 1, . . . ,5.

If p = q � v we apply the limit q → p to the above equation, concluding

Mp,p(Hi,Ω) � Mu,v(Hi,Ω), i = 1, . . . ,5.

Other possible cases are treated similarly. �

REMARK 3.7. Note that by Definition 1.14 the results from Theorem 3.4, Corol-
lary 3.5 and Corollary 3.6 still hold when two of the points x0,x1,x2 ∈ I or all three
points coincide.

Now we present several families of convex functions which fulfil the conditions of
Theorem 3.4 and Remark 3.7. In what follows, id denotes identity function.
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EXAMPLE 3.8. Consider the family of functions

F1 = {αt : R → [0,∞); t ∈ R}

defined by

αt(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
t2

etx, t �= 0;

1
2
x2, t = 0.

We have α ′′
t (x) = etx > 0 which shows that αt is convex on R for every t ∈ R and

t �→ α ′′
t (x) is exponentially convex by definition. By using analogous arguing as in the

proof of Theorem 3.4 we also have that t �→ [x0,x1,x2;αt ] is exponentially convex (and
so exponentially convex in the Jensen sense). Now using Corollary 3.5 we conclude
that t �→ Hi(αt) , i = 1, . . . ,5, are exponentially convex in the Jensen sense. It is easy
to verify that these mappings are continuous, so they are exponentially convex.

For this family of functions, Mp,q(Hi,Ω) , i = 1, . . . ,5, from (3.9) becomes

Mp,q(Hi,F1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Hi(αp)
Hi(αq)

) 1
p−q

, p �= q;

exp

(
Hi(id ·αp)

Hi(αp)
− 2

p

)
, p = q �= 0;

exp

(
Hi(id ·α0)
3Hi(α0)

)
, p = q = 0,

and by (3.8) it is monotonous function in parameters p and q . Using Theorem 3.2 it
follows that for i = 1, . . . ,5

ℵp,q(Hi,F1) = logMp,q(Hi,F1)

satisfy ℵp,q(Hi,F1) ∈ [m,M] which shows that ℵp,q(Hi,F1) are means. Note that by
(3.8) they are monotonous means.

EXAMPLE 3.9. Consider the family of functions

F2 = {βt : (0,∞) → R; t ∈ R}

defined by

βt(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xt

t(t−1)
, t �= 0,1;

− logx, t = 0;

x logx, t = 1.
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Here β ′′
t (x) = xt−2 = e(t−2) lnx > 0, which shows that βt is convex for x > 0 and t �→

β ′′
t (x) is exponentially convex by definition. Arguing as in Example 3.8, we have that

t �→ Hi(βt), i = 1, . . . ,5, are exponentially convex. In this case Mp,q(Hi,Ω) , i =
1, . . . ,5, from (3.9) becomes

Mp,q(Hi,F2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Hi(βp)
Hi(βq)

) 1
p−q

, p �= q;

exp

(
1−2p

p(p−1)
− Hi(βpβ0)

Hi(βp)

)
, p = q �= 0,1;

exp

(
1− Hi(β 2

0 )
2Hi(β0)

)
, p = q = 0;

exp

(
−1− Hi(β0β1)

2Hi(β1)

)
, p = q = 1.

As Hi , i = 1, . . . ,5, is positive for Φ = βp ∈ F2 and Ψ = βq ∈ F2 , by Theorem 3.2
there exists ξi ∈ [m,M] , i = 1, . . . ,5, such that for p �= q we have

ξi =
(

Hi(βp)
Hi(βq)

) 1
p−q

, i = 1, . . . ,5.

Also Mp,q(Hi,F2) , i = 1, . . . ,5, is continuous, symmetric and monotonous (by (3.8)),
which shows that Mp,q(Hi,F2) , i = 1, . . . ,5, is a mean.

EXAMPLE 3.10. Consider the family of functions

F3 = {γt : (0,∞) → (0,∞) : t ∈ (0,∞)}
defined by

γt(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t−x

(ln2 t)
, t �= 1;

x2

2
, t = 1.

Here t �→ γ ′′t (x) = t−x > 0, which shows that γt is convex and exponential convexity of
t �→ γ ′′t (x) is given by Example 2 in [6].

In this case Mp,q(Hi,Ω) , i = 1, . . . ,5, from (3.9) becomes

Mp,q(Hi,F3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Hi(γp)
Hi(γq)

) 1
p−q

, p �= q;

exp

(
−Hi(id · γp)

pHi(γp)
− 2

p ln p

)
, p = q �= 0,1;

exp

(−2Hi(id · γ1)
3Hi(γ1)

)
, p = q = 1,
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and by (3.8) it is monotonous function in parameters s and q . Using Theorem 3.2, it
follows that for i = 1, . . . ,5,

ℵp,q(Hi,F3) = −L(p,q) logMp,q(Hi,F3)

satisfy ℵp,q(Hi,F3) ∈ [m,M] , which shows that ℵp,q(Hi,F3) is a mean. Here L(p,q)

is the logarithmic mean defined by L(p,q) =
p−q

log p− logq
, p �= q , L(p, p) = p .

EXAMPLE 3.11. Consider the family of functions

F4 = {δt : (0,∞) → (0,∞) : t ∈ (0,∞)}
defined by

δt(x) =
e−x

√
t

t
.

Here t �→ δ ′′
t (x) = e−x

√
t > 0, which shows that δt is convex and t �→ δ ′′

t (x) is expo-
nentially convex by Example 3 in [6]. In this case Mp,q(Hi,Ω) , i = 1, . . . ,5, from
(3.9) becomes

Mp,q(Hi,F4) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Hi(δp)
Hi(δq)

) 1
p−q

, p �= q;

exp

(
− Hi(id ·δp)

2
√

pHi(δp)
− 1

p

)
, p = q,

and it is monotonous function in parameters p and q by (3.8). Using Theorem 3.2, it
follows that for i = 1, . . . ,5,

ℵp,q(Hi,F4) = −(
√

s+
√

q) logMp,q(Hi,F4)

satisfy ℵp,q(Hi,F4) ∈ [m,M] , which shows that ℵp,q(Hi,F4) is a mean.
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