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ON BOUNDARY DOMINATION IN THE JENSEN–MERCER INEQUALITY

IVAN PERIĆ

(Communicated by S. Varošanec)

Abstract. The main purpose of this, mainly expository, paper is to give various arguments that
the boundary domination is a crucial property for the Jensen-Mercer inequality. Although this
is an obvious property of convex functions and it is already expressed in the Jensen inequality
it seems that the Jensen-Mercer inequality contains this information in a more vivid, explicit
sense. This domination is presented using Steffensen-Popoviciu measures, The Majorization
Theorem and a crude domination of weights of vertices in the multidimensional case (polytopes,
simplices).

1. Some basic ideas

An interesting Jensen-type inequality was proved in [16].

THEOREM 1.1. Let f : [a,b] → R be a convex function, xi ∈ [a,b] , wi � 0 , i =
1, . . . ,n, such that Wn = ∑n

i=1 wi > 0 . Then

f

(
a+b− 1

Wn

n

∑
i=1

wixi

)

� f (a)+ f (b)− 1
Wn

n

∑
i=1

wi f (xi) . . . theJensen−Mercer inequality.

(1.1)

Proof. Set Wn = 1. Then

f

(
a+b−

n

∑
i=1

wixi

)
= f

(
n

∑
i=1

wi (a+b− xi)

)

�
n

∑
i=1

wi f (a+b− xi) �
n

∑
i=1

wi ( f (a)+ f (b)− f (xi))

= f (a)+ f (b)−
n

∑
i=1

wi f (xi) .
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The weighted Jensen inequality and the positivity of weights are crucial for this
proof. The inequality

f (a+b− x) � f (a)+ f (b)− f (x) (1.2)

is also used in the proof. It is instructive to see possible proofs of inequality (1.2). We
briefly overview some of the possible proofs:

1. The Wright convexity:

f (a+b− x)+ f (x)

= f

(
x−a
b−a

a+
b− x
b−a

b

)
+ f

(
b− x
b−a

a+
x−a
b−a

b

)

� x−a
b−a

f (a)+
b− x
b−a

f (b)+
b− x
b−a

f (a)+
x−a
b−a

f (b)

= f (a)+ f (b)

2. The increasing increments property: Obvious, writing inequality (1.2) in the form
f (a+b− x)− f (a) � f (b)− f (x) .

3. The Majorization Theorem: Obvious, writing inequality (1.2) in the form

f (a+b− x)+ f (x) � f (a)+ f (b). (1.3)

4. The Jensen-Steffensen inequality: Obvious, writing inequality (1.2) in the form
f (a−x+b) � f (a)− f (x)+ f (b) and using weights w1 = 1, w2 =−1, w3 = 1.

It is apparent from the proof of inequality (1.2), using the Wright convexity, that
actually the secant inequality

f (x) � b− x
b−a

f (a)+
x−a
b−a

f (b), for all x ∈ [a,b],

is applied twice. An analogous method is applied to prove functional forms of Jensen-
Mercer inequality (see [4]). A general form is given in [3] as follows:

THEOREM 1.2. Let L be a vector space of real functions on a non-empty set E
which contains constant functions and let A : L → R be a positive linear functional
such that A(1) = 1 . If φ : [m,M] → R is a continuous convex function, then

φ (m+M−A(g)) � A(φ (m+M−g))

� M−A(g)
M−m

φ(M)+
A(g)−m
M−m

φ(m)

� φ(m)+ φ(M)−A(φ(g)) . . . the Jessen−Mercer inequality, (1.4)

where g, φ(g) , φ (m+M−g) ∈ L.
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A similar arguing with application of functional calculus gives Jensen type op-
erator inequality without operator convexity assumptions. The following theorem is
proved in [14].

THEOREM 1.3. Let A1, . . . ,Ak be self-adjoint operators whose spectra are in [m,M]⊂
R and let Φ1, . . . ,Φk be positive linear mappings such that ∑k

i=1 Φk (I) = I . If f :
[m,M] → R is a convex function , then

f

(
m+M−

k

∑
j=1

Φ j (Aj)

)

�
M−∑k

j=1 Φ j (Aj)
M−m

f (M)+
∑k

j=1 Φ j (Aj)−m

M−m
f (m)

� f (m)+ f (M)−
k

∑
j=1

Φ j ( f (Aj)) .

Theorem 1.3 enables to give a comparison of operator power Mercer means for broader
range of exponents than in usual operator convexity case.

As application of Theorem 1.3 and interesting characterization of operator con-
vexity obtained in [25] the following theorem is given in [9].

THEOREM 1.4. Let Ai , i = 1, . . . ,n be positive operators acting on a finite dimen-
sional Hilbert space with ∑n

i=1 Ai = I . If f is convex on an interval [m,M] containing
0 , then

f

(
m+M−

n

∑
i=1

xiAi

)
� f (m)+ f (M)−

n

∑
i=1

f (xi)Ai,

where x1, . . . ,xn ∈ [m,M] .

2. The Jensen-Mercer inequality as the Jensen inequality for
Steffensen-Popoviciu measures

In the previous section the Jensen-Mercer inequality was obtained by using the
Jensen inequality and some specific properties of convex functions (the Wright con-
vexity, the increasing increment property) or applying the Lah-Ribarič inequality twice
or some characteristic method for convex functions (Jensen-Steffensen’s inequality or
The Majorization Theorem). Each of the mentioned methods reveals a different inner
property of the Jensen-Mercer inequality. The purpose of this section is to show that
boundary weights domination is crucial property of the Jensen-Mercer inequality. From
this point of view the Jensen-Mercer inequality (in the form presented in the introduc-
tion) is just a special case of Jensen’s inequality for Steffensen-Popoviciumeasures (see
[19]).

The first inequality in the following theorem is the classical Jensen-Steffensen
inequality (see [24]).
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THEOREM 2.1. Let xi ∈ I , I ⊆ R an interval, wi ∈ R , i = 1, . . . ,n be such that

0 � Wk � Wn, k = 1, . . . ,n−1, Wk =
k

∑
i=1

wi, Wn > 0. (2.1)

If f : I → R is a convex function and x1, . . . ,xn a monotonic sequence, then

f

(
1

Wn

n

∑
i=1

wixi

)
� 1

Wn

n

∑
i=1

wi f (xi) ,

f

(
a+b− 1

Wn

n

∑
i=1

wixi

)
� f (a)+ f (b)− 1

Wn

n

∑
i=1

wi f (xi) ,

where {x1, . . . ,xn} ⊂ [a,b]⊆ I .

Proof. (see [1]) Suppose that a � x1 � · · · � xn . The weights

v0 = 1,v1 = −w1

Wn
, · · · ,vn = −wn

Wn
,vn+1 = 1

obviously satisfy (2.1).
An interesting feature of the Jensen-Mercer inequality, a kind of robust property

with the respect to weights, is given in the following theorem (see [11]). Again, the first
part is the classical Reverse Jensen’s inequality. Although the proof is a simple one, the
form of the inequality is, in some sense, unexpected, since it has the same direction as
the ”usual” Jensen-Mercer inequality.

THEOREM 2.2. Let f : [a,b] → R be a convex function, xi ∈ [a,b] , wi ∈ R , i =
1, . . . ,n, be such that w1 > 0 , wi � 0 , i = 2, . . . ,n, Wn = ∑n

i=1 wi > 0 and 1
Wn

∑n
i=1 wixi ∈

[a,b] . Then

f

(
1

Wn

n

∑
i=1

wixi

)
� 1

Wn

n

∑
i=1

wi f (xi) , (2.2)

f

(
a+b− 1

Wn

n

∑
i=1

wixi

)
� f (a)+ f (b)− 1

Wn

n

∑
i=1

wi f (xi) . (2.3)

Proof. Using f (a+b− x) � f (a)+ f (b)− f (x) (the increasing increments prop-
erty, the Wright convexity) (2.3) immediately follows from (2.2).

REMARK 2.3. If a � x(1) � x(2) � · · · � x(n) � b is the increasing rearrangement
of the given sequence in the previous theorem, then the weights

v0 = 1,v1 = −w(1)

Wn
, · · · ,vn = −w(n)

Wn
,vn+1 = 1

”never” satisfy the Jensen-Steffensen conditions (2.1). This can be seen directly. Of
course this is obvious since the Jensen-Steffensen conditions imply Jensen’s inequality
and the conditions in Theorem 2.2 give reverse Jensen’s inequality.
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A natural question arises from the previous remark: Is it possible to give a uni-
fied approach to both of the weights conditions? It is obvious from the either cases
that a boundary weights domination is crucial for the Jensen-Mercer inequality. This
domination can be also expressed using Steffensen-Popoviciu measures (see [19]).

DEFINITION 2.4. A Steffensen-Popoviciu measure is any signed Borel measure μ
on K (compact convex subset of a locally convex Hausdorff real vector space) such that

μ(K) > 0,

∫
K

f +(x)dμ(x) � 0

for any continuous convex function f on K .

The following theorem is proved in [19].

THEOREM 2.5. (Jensen’s inequality for Steffensen-Popoviciu measures) Suppose
that μ is a signed Borel measure on K with μ(K) > 0 . Then the following assertions
are equivalent:

(i) μ is a Steffensen-Popoviciu measure;

(ii) μ admits a barycenter xμ ∈ K and

f
(
xμ
)

� 1
μ (K)

∫
K

f (x)dμ(x)

for all continuous convex functions f on K .

The following characterization of discrete Steffensen-Popoviciu measures is given
in the same book.

THEOREM 2.6. Suppose that xi, pi ∈R , i = 1, . . . ,n, such that x1 � x2 � · · ·� xn .
Then the discrete measure μ = ∑n

k=1 pkδxk is a Steffensen-Popoviciu measure if and
only if

n

∑
k=1

pk > 0,
m

∑
k=1

pk (xm − xk) � 0,
n

∑
k=m

pk (xk − xm) � 0 (2.4)

for all m = 1, . . . ,n.
If

n

∑
k=1

pk > 0, 0 �
m

∑
k=1

pk �
n

∑
k=1

pk (2.5)

for every m = 1, . . . ,n, then (2.4) holds.

We use this characterization of discrete Steffensen-Popoviciu measure to prove
that all previous conditions on weights (positive weights, Jensen-Steffensen weights,
Reverse Jensen weights) generate Steffensen-Popoviciu measures.



988 IVAN PERIĆ

THEOREM 2.7. Let xi ∈ [a,b] , i = 1, . . . ,n be such that x1 � x2 � · · · � xn . Sup-
pose that weights wi , i = 1, . . .n, are either non-negativewith Wn > 0 or satisfy Jensen-
Steffensen conditions (2.1) or satisfy conditions for the reverse Jensen’s inequality (see
Theorem 2.2). Then

μ = δa + δb−
n

∑
i=1

wiδxi

is a Steffensen-Popoviciu measure.

Proof. Set Wn = 1. Set y0 = a , yi = xi , i = 1, . . . ,n , yn+1 = b and v0 = vn+1 ,
vi = −wi , i = 1, . . . ,n . Then

μ =
n+1

∑
i=0

viδyi .

In the cases where wi � 0 or 0 � Wk � Wn = 1 obviously Vk = 1−Wk , V0 = Vn+1 = 1
satisfy (2.5), so μ is a Steffensen-Popoviciu measure.

Suppose that w1 > 0, wi < 0, Wn = 1 and ∑n
i=1 wixi ∈ [a,b] . In this case w1 > 1

and V1 = 1−w1 < 0 so Jensen-Steffensen conditions are not satisfied. We have
m

∑
i=0

vi (ym − yi) � 0

⇔ xm −a−w1(xm − x1)−·· ·−wm−1(xm − xm−1) � 0

⇔ w1x1 + · · ·+wm−1xm−1 +(1−w1−·· ·−wm−1)xm � a,

which follows from

w1x1 + · · ·+wm−1xm−1 +(1−w1−·· ·−wm−1)xm

= w1x1 + · · ·+wm−1xm−1 +(wm + · · ·+wn)xm

� w1x1 + · · ·+wm−1xm−1 +wmxm + · · ·+wnxn � a.

Analogously

n+1

∑
i=m

vi (yi− ym) � 0

⇔ (1−wm+1−·· ·−wn)xm +wm+1xm+1 + · · ·wnxn � b, (2.6)

which follows from

(1−wm+1−·· ·−wn)xm +wm+1xm+1 + · · ·wnxn

� (1−wm+1−·· ·−wn)xm +wm+1xm + · · ·wnxm = xm � b.

This holds for m � 1 (since w1 > 0). For m = 0 the second line of (2.6) reduces to

w1x1 + · · ·+wnxn � b

which holds by an assumption.
Integral case is based on the Jensen-Boas variant of the the Jensen inequality. Since

there is no continuous analogue of the Reverse Jensen’s inequality, we can consider just
Jensen-Steffensen conditions.
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THEOREM 2.8. Let g : [α,β ] → (a,b) be a continuous and monotonic function
and let λ : [α,β ] → R be either continuous or of a bounded variation satisfying

λ (α) � λ (t) � λ (β ), λ (β )−λ (α) > 0. (2.7)

If φ : (a,b) → R is a convex function, then

φ
(

1
λ [a,b]

∫ β

α
g(t)dλ (t)

)
� 1

λ [a,b]

∫ β

α
φ (g(t))dλ (t). (2.8)

Boas conditions (2.7) are obviously equivalent to Jensen-Steffensen conditions for in-
tegrals in the sense that

0 �
∫ x

α
dλ (t) �

∫ β

α
dλ (t),

∫ β

α
dλ (t) > 0, (2.9)

and these conditions are exactly the conditions for a measure λ to be a Steffensen-
Popoviciu measure (see also [19]).

Usually this is expressed in terms of absolutely continuous measures dλ (t) =
p(t)dt , where p is an integrable function (not necessarily non-negative).

In [2] it was proved that if λ : [α,β ]→R is of a bounded variation satisfying (2.7)

(or equivalently (2.9)), then the measure μ = δα + δβ + λc, where λc(x) = λ (β )−λ (x)
λ (β )−λ (α)

(and δa is the Dirac measure concentrated at a ), also satisfies conditions (2.7). In-
equality (2.8) for the measure μ gives:

φ
(

g(a)+g(b)− 1
λ [a,b]

∫ β

α
g(t)dλ (t)

)

� φ (g(a))+ φ (g(b))− 1
λ [a,b]

∫ β

α
φ (g(t))dλ (t).

In this way, using Theorem 2.5, it was proved that the measure

μ = δα + δβ + λc

is a Steffensen-Popoviciu measure.

3. Boundary domination in the Jensen-Mercer inequality via majorization

In the preceding section boundary weights domination, in some sense crucial for
the Jensen-Mercer inequality, was expressed using Jensen-Popoviciu measures. An-
other way in describing boundary domination is in using the Majorization Theorem.
Compare with (1.3). We give two typical results in this area with short proofs to keep
the paper reasonably self-contained.

The following theorem is proved in [21]
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THEOREM 3.1. Let f : I → R ( I ⊆ R an interval) be a continuous convex func-
tion, a = (a1, . . . ,am) ∈ Im , and X = (xi j) be a n×m matrix such that xi j ∈ I for all
i, j .
If a majorizes each row of X , then

f

(
m

∑
j=1

a j −
m−1

∑
j=1

n

∑
i=1

wixi j

)
�

m

∑
j=1

f (a j)−
m−1

∑
j=1

n

∑
i=1

wi f (xi j) , (3.1)

where ∑n
i=1 wi = 1 , wi � 0 for all i .

Proof. Since xi ≺ a , i = 1, . . . ,n , it follows by the Majorization Theorem that

m

∑
j=1

f (xi j) �
m

∑
j=1

f (a j) ⇔ f (xim) �
m

∑
j=1

f (a j)−
m−1

∑
j=1

f (xi j) .

We have:

f

(
m

∑
j=1

a j −
m−1

∑
j=1

n

∑
i=1

wixi j

)
= f

(
n

∑
i=1

wi

(
m

∑
j=1

a j −
m−1

∑
j=1

xi j

))

�
n

∑
i=1

wi f

(
m

∑
j=1

a j −
m−1

∑
j=1

xi j

)
�

n

∑
i=1

wi

(
m

∑
j=1

f (a j)−
m−1

∑
j=1

f (xi j)

)

=
m

∑
j=1

f (a j)−
m−1

∑
j=1

n

∑
i=1

wi f (xi j) .

A continuous version was given in [8].

THEOREM 3.2. (simplified version) Let a = a0 < a1 < b1 < b2 = b, I = (a1,b1) ,
Ic = [a,b]\ I = [a,a1]∪ [b1,b] . Let λ : [a,b] → R be a function of bounded variation
such that λ (a) � λ (t) � λ (a1) on (a,a1) , λ (b1) � λ (t) � λ (b) on (b1,b) and L =∫
Ic dλ (t) > 0 and g : [a,b] → J be a decreasing continuous function. Let (X ,Σ,μ) be

a (positive) measure space with μ(X) > 0 , f : X × [a,b]→ J be a measurable function
such that t 	→ f (s, t) is decreasing and continuous for each s∈X and

∫ x
a f (s,t)dλ (t) �∫ x

a g(t)dλ (t) for every x ∈ [a,b] , with equality for x = b. If φ : J → R is a continuous
convex function, then

φ
[

1
L

(∫ b

a
g(t)dλ (t)− 1

μ(X)

∫
I

∫
X

f (s,t)dμ(s)dλ (t)
)]

� 1
L

(∫ b

a
φ (g(t))dλ (t)− 1

μ(X)

∫
I

∫
X

φ ( f (s,t))dμ(s)dλ (t)
)

.
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Proof. Obviously

∫ b

a
g(t)dλ (t)− 1

μ(X)

∫ b1

a1

∫
X

f (s,t)dμ(s)dλ (t)

=
1

μ(X)

∫
X

(∫ b

a
g(t)dλ (t)−

∫ b1

a1

f (s,t)dλ (t)
)

dμ(s)

=
1

μ(X)

∫
X

∫
Ic

f (s,t)dλ (t)dμ(s).

Jensen’s inequality gives:

φ
[

1
L

(∫ b

a
g(t)dλ (t)− 1

μ(X)

∫
I

∫
X

f (s,t)dμ(s)dλ (t)
)]

� 1
μ(X)

∫
X

φ
(

1
L

∫
Ic

f (s,t)dλ (t)
)

dμ(s).

Finally

φ
(

1
L

∫
Ic

f (s,t)dλ (t)
)

= φ
(

1
L

(∫ a1

a
f (s,t)dλ (t)+

∫ b

b1

f (s,t)dλ (t)
))

� 1
L

(∫ a1

a
dλ (t)φ

(
1∫ a1

a dλ (t)

∫ a1

a
f (s,t)dλ (t)

)

+
∫ b

b1

dλ (t)φ

(
1∫ b

b1
dλ (t)

∫ b

b1

f (s,t)dλ (t)

))

� 1
L

(∫ a1

a
φ ( f (s,t))dλ (t)+

∫ b

b1

φ ( f (s,t))dλ (t)
)

=
1
L

(∫ b

a
φ ( f (s,t))dλ (t)−

∫ b1

a1

φ ( f (s,t))dλ (t)
)

� 1
L

(∫ b

a
φ (g(t))dλ (t)−

∫ b1

a1

φ ( f (s,t))dλ (t)
)

.

4. Multidimensional Jensen-Mercer inequality

The following theorem was proved in [10]. Its setting is still one-dimensional but
the proof is a model for similar proofs for polytopes with barycentric coordinates.

THEOREM 4.1. Let f : I →R ( I an interval in R) be a function and let (M1, . . . ,Mm) ,
m � 1 , be an m− tuple of fixed means of n � 2 variables on I . Inequality

f

(
∑n

i=1 pixi −∑m
j=1 wjMj(x)

Pn−Wm

)
�

∑n
i=1 pi f (xi)−∑m

j=1 wj f (Mj(x))
Pn−Wm

holds for all x ∈ In , where p ∈ R
n
+ , w ∈ R

m
+ are such that pi � ∑m

j=1 wj , i = 1, . . .n, if
and only if f is convex on I .
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Proof. The crucial step in the proof is the existence of ”barycentric” coordinates
λ j

i ∈ [0,1] such that Mj(x) = ∑n
i=1 λ j

i xi , j = 1, . . . ,m , ∑n
i=1 λ j

i = 1.

Mercer type inequality is not mentioned in this paper. It is easy to see that for n = 2,
p1 = p2 = 1, Wm = 1, x1 = a , x2 = b , Mj(a,b) = x j ∈ [a,b] , j = 1, . . . ,m , Theorem
4.1 implies Theorem 1.1.

A multidimensional version was given in [7] as follows.

THEOREM 4.2. Let A : L → R be a positive linear functional (L a vector space
of real functions on some set E which contains constant functions). Let x1, . . . ,xn ∈ R

k

and K = conv({x1, . . . ,xn}) . Let f : K → R be a convex function and λ1, . . . ,λn be
barycentric coordinates on K . If g ∈ Lk is such that g(E) ⊆ K and p1, . . . , pn with
Pn = ∑n

i=1 pi satisfying pi � A(1), i = 1, . . . ,n, then

f

(
∑n

i=1 pixi −A[g]
Pn−A(1)

)

� ∑n
i=1 pi f (xi)−∑n

i=1 A(λi(g)) f (xi)
Pn−A(1)

� ∑n
i=1 pi f (xi)−A( f (g))

Pn−A(1)
,

where A[g] = (A(g1) , . . . ,A(gk)) .

An equivalent version was proved in [5]. We give a short proof of this theorem as
a model for proving similar results in R

k . The basic tool in such a type of proofs is an
existence of barycentric coordinates.

THEOREM 4.3. Let Ω be a polytope in R
k , {v0,v1, . . . ,vn} its vertices and f :

Ω → R be a convex function. Suppose that A : L → R is a positive normalized func-
tional and g = (g1, . . . ,gk) ∈ Lk such that Im(g) ⊆ Ω . If 0 < β � α , then

f

(
α ∑n

i=0 vi −βA[g]
(n+1)α −β

)

� α
(n+1)α −β

n

∑
i=0

f (vi)− β
(n+1)α −β

A [ f (g)] ,

where A[g] = (A(g1) , . . . ,A(gk)) . More generally,

f

(
n

∑
i=0

αivi−βA[g]

)
�

n

∑
i=0

αi f (vi)−βA [ f (g)] ,

provided ∑n
i=0 αi = 1+ β , αi � β � 0 , i = 0, . . . ,n.
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Proof. Using the Jensen and the Jessen inequality it follows:

f

(
n

∑
i=0

αivi−βA[g]

)
= f

(
n

∑
i=0

αivi −β
n

∑
i=0

A(λi(g))vi

)

= f

(
n

∑
i=0

(αi −βA(λi(g)))vi

)
�

n

∑
i=0

(αi −βA(λi(g))) f (vi)

=
n

∑
i=0

αi f (vi)−β
n

∑
i=0

A(λi(g)) f (vi) �
n

∑
i=0

αi f (vi)−βA( f (g)) .

Boundary domination in these type of results is expressed through the simple domina-
tion of weights αi � β , i = 0, . . . ,n . Notice that from ∑n

i=0 αi = β +1 it follows that
β � 1

n .
The following corollary, using Theorem 2.5, gives a construction of Steffensen-

Popoviciu measures on simplices.

COROLLARY 4.4. Let (X ,A ,μ) be a probability measure space and let g : X →
Ω be a measurable function. Let 0 < β � αi , i = 0,1, . . . ,n and f : Ω → R be a
continuous convex function. Then

f

(
∑n

i=0 αivi−β
∫
X gdμ

∑n
i=0 αi −β

)

� 1

∑n
i=0 αi −β

n

∑
i=0

αi f (vi)− β
∑n

i=0 αi −β

∫
X

f (g)dμ .

COROLLARY 4.5. Let f : [a,b] → R be a convex function, xi ∈ [a,b] , wi � 0 ,
i = 1, . . . ,n, such that ∑n

i=1 wi = 1 . If 0 < β � αi , i = 1,2 , then

f

(
α1a+ α2b−β ∑n

i=1 wixi

α1 + α2−β

)

� α1 f (a)+ α2 f (b)
α1 + α2−β

− β
α1 + α2−β

n

∑
i=1

wi f (xi) . (4.1)

The following lemma is given in [17]. Usually it is used as a tool in improving
Jensen’s type inequalities with weights.

LEMMA 4.6. Let φ : U → R (U convex set in a vector space) be a convex func-
tion, x1, . . . ,xn ∈U , p1, . . . , pn be non-negative with Pn > 0 . Then

min{p1, . . . , pn}
[

n

∑
i=1

φ (xi)−nφ

(
1
n

n

∑
i=1

xi

)]

�
n

∑
i=1

piφ (xi)−Pnφ

(
1
Pn

n

∑
i=1

pixi

)
.



994 IVAN PERIĆ

Set

Sφ (x1, . . . ,xn) =
n

∑
i=1

φ (xi)−nφ

(
1
n

n

∑
i=1

xi

)
. (4.2)

Typical application of Lemma 4.6 can be seen it the following theorem proved in
[15].

THEOREM 4.7. Let L be a vector space of real functions on some non-empty set
E containing constants, A be a positive linear functional on L. Let x1, . . . ,xn ∈R

k and
K = co{x1, . . . ,xn} . Let φ be a convex function on K and λ1, . . . ,λn be barycentric
coordinates over K . Then for all g ∈ Lk such that g(E) ⊆ K and φ(g) , λi(g) ∈ L,
i = 1, . . . ,n and positive real numbers p1, . . . , pn satisfying pi � A(1) , i = 1, . . . ,n,

φ
(

∑n
i=1 pixi −A[g]
Pn−A(1)

)

� 1
Pn−A(1)

[
n

∑
i=1

piφ (xi)−
n

∑
i=1

A(λi(g))φ (xi)

−mini {pi −A(λi(g))}Sφ (x1, . . . ,xn)
]

� 1
Pn−A(1)

[
n

∑
i=1

piφ (xi)−A(φ(g))

− [mini {pi −A(λi(g))}+A(mini {λi(g)})]Sφ (x1, . . . ,xn) ,
(4.3)

where A[g] = (A(g1) , . . . ,A(gk)) .

5. General functional Jensen-Mercer inequality with applications to simplices

All results in the previous section can be deduced from the following theorem.
This theorem and similar are simple consequences of the classical Jensen inequality (in
its various forms) and its improvements and the boundary domination in this case is
expressed through the crude domination of weights. The problem is to find more subtle
conditions to express boundary domination in the multidimensional case.

THEOREM 5.1. Let L1,L2 be vector spaces of real functions which contain con-
stant functions over sets E1,E2 respectively. Let A,B be positive linear functionals
on L1,L2 respectively. Let x1, . . . ,xn ∈ R

k and K = co({x1, . . . ,xn}) . Let φ be a
convex function on K and λ1, . . . ,λn barycentric coordinates on K (generated by
x1, . . . ,xn ). If g ∈ Lk

1 , h ∈ Lk
2 such that g(E1) ⊆ K , φ(g) , λi(g) ∈ L1 , h(E2) ⊆ K ,
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φ(h) , λi(h) ∈ L2 , i = 1, . . . ,n, then

φ
(

B[h]−A[g]
B(1)−A(1)

)

� 1
B(1)−A(1)

[
n

∑
i=1

B(λi(h))φ (xi)−
n

∑
i=1

A(λi(g))φ (xi)

−mini {B(λi(h)−A(λi(g))}Sφ (x1, . . . ,xn)
]

� 1
B(1)−A(1)

[
n

∑
i=1

B(λi(h))φ (xi)−A(φ(g))

− [mini {B(λi(h))−A(λi(g))}+A(mini {λi(g)})]Sφ (x1, . . . ,xn)
]
,

(5.1)

providing B(1) > A(1) and B(λi(h)) � A(λi(g)) , i = 1, . . . ,n.

Proof. Since A[g] = ∑n
i=1 A(λi(g))xi and B[h] = ∑n

i=1 B(λi(h))xi , we have using
Lemma 4.6 twice

φ
(

B[h]−A[g]
B(1)−A(1)

)
� 1

B(1)−A(1)

n

∑
i=1

[B(λi(h))−A(λi(g))]φ (xi)

−mini

{
B(λi(h))−A(λi(g))

B(1)−A(1)

}
Sφ (x1, . . . ,xn)

� 1
B(1)−A(1)

[
n

∑
i=1

B(λi(h))φ (xi)−A(φ(g))

−(mini {B(λi(h))−A(λi(g))}+A(mini {λi(g)}))Sφ (x1, . . . ,xn)
]
.

Many applications of the previous theorem can be given. We give a case of sim-
plices. Let K in Theorem 5.1 be a simplex with vertices x1, . . . ,xk+1 , E2 = [v1, . . . ,vk+1]
be a simplex with vertices v1, . . . ,vk+1 and E1 = [w1, . . . ,wk+1] be a simplex with ver-
tices w1, . . . ,wk+1 such that E1 ⊂ E2 ⊆ K ⊂ R

k . Let g : E1 → K and h : E2 → K be
inclusion functions. For arbitrary g : E1 → R set A(g) =

∫
E1

g(x)dx and for arbitrary
h : E2 → R set B(h) =

∫
E2

h(x)dx . Obviously A(1) = Vol(E1) and B(1) = Vol(E2) .
Also,

A[g] =
∫

E1

xdx = Vol(E1)E∗
1 , B[h] =

∫
E2

xdx = Vol(E2)E∗
2 ,

where E∗
1 and E∗

2 are barycentres of E1 and E2 respectively.
It is easy to see that

B(λi(h)) =
∫

E2

λi(x)dx = Vol(E2)λi (E∗
2 ) ,
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and

A(λi(g)) =
∫

E1

λi(x)dx = Vol(E1)λi (E∗
1 ) , i = 1, . . . ,k+1.

It is obvious that B(1)−A(1) = Vol(E2)−Vol(E1) > 0. The second condition
B(λi(h)) � A(λi(g)) , i = 1, . . . ,k+1, is obviously equivalent to

Vol(E2)λi (E∗
2) � Vol(E1)λi (E∗

1 ) , i = 1, . . . ,k+1,

which by E∗
1 = 1

k+1 ∑k+1
i=1 wi , E∗

2 = 1
k+1 ∑k+1

i=1 vi is equivalent to

Vol(E2)
k+1

∑
j=1

Vol([x1, . . . ,xi−1,v j,xi+1, . . . ,xk+1])

� Vol(E1)
k+1

∑
j=1

Vol([x1, . . . ,xi−1,wj,xi+1, . . . ,xk+1])

for i = 1, . . . ,k+1. If E2 = K , then obviously

Vol2 (E2) � Vol(E1)
k+1

∑
j=1

Vol([v1, . . . ,vi−1,wj,vi+1, . . . ,vk+1])

for i = 1, . . . ,k + 1. We extract this interesting inequality (although a simple conse-
quence of

∫
E1

λi(x)dx �
∫
E2

λi(x)dx , E1 ⊆ E2 , i = 1, . . . ,k+1).

THEOREM 5.2. Let E2 = [v1, . . . ,vk+1] , E1 = [w1, . . . ,wk+1] be simplices in R
k

such that E1 ⊆ E2 . Then

Vol2 (E2) � Vol(E1)
k+1

∑
j=1

Vol [v1, . . . ,vi−1,wj,vi+1, . . . ,vk+1] , (5.2)

for every i = 1, . . . ,k+1 (with agreement v0 = vk+2 = /0 ). Inequality (5.2) is sharp and
equality is obtained for E1 = E2 .

In the rest of the text we denote Vol(E) by |E| for a measurable E ⊂ R
k .

It is easy to see that inequality (5.1) in the case of simplices gives

φ
( |E2|E∗

2 −|E1|E∗
1

|E2|− |E1|
)

= φ
(
(E2 \E1)

∗)

� 1
|E2|− |E1|

[
k+1

∑
i=1

∫
E2

λi(x)dxφ (xi)−
∫
E1

φ(x)dx

−
(

min
i

{∫
E2

λi(x)dx−
∫

E1

λi(x)dx

}
+
∫
E1

min
i

λi(x)dx

)
(k+1)

(
φV −φ (K∗)

)]
,
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where φV = 1
k+1 ∑k+1

i=1 φ (xi) , which in the case E1 ⊂ E2 = K reduces to inequality

φ
(
(E2 \E1)

∗)� 1
|E2|− |E1|

[|E2|φV −|E1|φE1

−
( |E2|

k+1
−|E1|max

i
λi (E∗

1)+ |E1|miniλiE1

)
(k+1)

(
φV −φ (E∗

2 )
)]

(5.3)

Note that the first part of the right-hand side of inequality (5.3)

φ
( |E2|E∗

2 −|E1|E∗
1

|E2|− |E1|
)

� 1
|E2|− |E1|

(
|E2|φV −|E1|φE1

)
(5.4)

is obtained without applying Lemma 4.6. It is easy to see (using discrete Jensen’s
inequality) that

|E2|φ (E∗
2 )−|E1|φ (E∗

1 )
|E2|− |E1| � φ

( |E2|E∗
2 −|E1|E∗

1

|E2|− |E1|
)

.

Decomposing E2 \E1 = ∪l
i=1Si where Si are convex sets with mutually disjoint interi-

ors, we have

φ
(
(E2 \E1)

∗)= φ
(

1
|E2|− |E1|

∫
E2\E1

xdx

)

= φ

(
1

∑l
i=1 |Si|

l

∑
i=1

∫
Si

xdx

)
� 1

∑l
i=1 |Si|

l

∑
i=1

|Si|φ
(

1
|Si|

∫
Si

xdx

)

� 1

∑l
i=1 |Si|

l

∑
i=1

∫
Si

φ(x)dx =
1

|E2|− |E1|
∫

E2\E1

φ(x)dx. (5.5)

It is easy to see (using the right-hand side of Hermite-Hadamard inequality for sim-
plices) that estimation given in (5.5) is better than estimation obtained in (5.4).

In this way the following sequence of inequalities holds for simplices E1 ⊂ E2 and
convex φ : E2 → R :

|E2|φ (E∗
2 )−|E1|φ (E∗

1 )
|E2|− |E1| � φ

( |E2|E∗
2 −|E1|E∗

1

|E2|− |E1|
)

= φ
(
(E2 \E1)

∗)
� 1

|E2|− |E1|
∫

E2\E1

φ(x)dx � 1
|E2|− |E1|

(|E2|φV −|E1|φE1

)
,

where φV = 1
k+1 ∑k+1

i=1 φ (vi) (vi vertices of E2 ) and φE1
= 1

|E1|
∫
E1

φ(x)dx .
Rearranging (5.3) it follows

φE1
�
( |E2|
|E1| − (k+1)

(
maxiλi (E∗

1)−miniλiE1

))
φ (E∗

2 )

−
( |E2|
|E1| −1

)
φ
(
(E2 \E1)

∗)+(k+1)
(
maxiλi (E∗

1)−miniλiE1

)
. (5.6)



998 IVAN PERIĆ

In the case E∗
1 = E∗

2 , which easily implies (E2 \E1)
∗ = E∗

2 and λi (E∗
1 ) = 1

k+1 , i =
1, . . . ,k+1, estimation (5.6) implies

φE1
� (k+1)miniλiE1

φ (E∗
2 )+

(
1− (k+1)miniλiE1

)
φV . (5.7)

Notice that inequality (5.7) holds also for E1 = E2 . In this case, using miniλiE2
= 1

(k+1)2

(see [23]), it follows

φE2
� 1

k+1
φ (E∗

2)+
k

k+1
φV ,

which is Bullen-Hammer inequality proven by many authors (see for example [26],
[18],[23]). In this sense inequalities (5.6), (5.7) are generalizations of the Bullen-
Hammer inequality.

In some of the above estimations we presented several comparisons between dif-
ferent mean values of convex functions over simplices. Related to this and also giving
another way of expressing boundary domination of a convex function (concentration
convexity at endpoints in the terminology of C. Niculescu in [20]) the following con-
jecture it seems to hold.

CONJECTURE 5.3. Suppose that E1 ⊆E2 ⊂R
k are simplices with common barycen-

tre and let φ : E2 → R be a convex function. Then

1
|E1|

∫
E1

φ(x)dx � 1
|E2|

∫
E2

φ(x)dx. (5.8)

In the one-dimensional case this conjecture is certainly true (see [20] for signed measure
and [22]). For convex polytopes the conjecture doesn’t hold (see also [22]). Notice that,
since

1
|E1|

∫
E1

φ(x)dx =
1

|E2|
[∫

E1

φ(x)dx+
|E2|− |E1|

|E1|
∫

E1

φ(x)dx

]
,

inequality
1

|E1|
∫

E1

φ(x)dx � 1
|E2|− |E1|

∫
E2\E1

φ(x)dx

implies (5.8). In an analogous way inequality (5.8) implies

1
|E2|

∫
E2

φ(x)dx � 1
|E2|− |E1|

∫
E2\E1

φ(x)dx.

Some consequences:

1. (without refinement)

φ
( |E2|E∗

2 −|E1|E∗
1

|E2|− |E1|
)

� 1
|E2|− |E1|

(
|E2|φV −|E1|φE1

)
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2. E∗
1 = E∗

2 ⇒

φE1
�
(
1− (k+1)mini {λi}E1

)
φV +(k+1)mini {λi}E1

φ (E∗
2 ) .

Conjecture: φE1
� φE2

?

3. E1 = E2 ⇒ φE2
−φ (E∗

2) � k
(

φV −φE2

)
.
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[3] W. S. CHEUNG, A. MATKOVIĆ, J. PEČARIĆ, A variant of Jessen’s inequality and generalized means,
J. Inequal. Pure and Appl. Math. 7, 1 (2006), Article 93.

[4] I. GAVREA, Some considerations on the monotonicity property of power means, J. Inequal. Pure and
Appl. Math. 5, 4 (2004), Article 93.

[5] A. GUESSAB, Direct and converse results for generalized multivariate Jensen-type inequalities, J.
Nonlinear Convex Anal. 13 (2012), 777–797.
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