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Abstract. The inequalities derived in this article for quasi-arithmetic means and power means
are related to subquadratic and superquadratic functions.

1. Introduction

The inequalities we peresent in this paper are obtained by using basic properties
of the quasi-arithmetic mean (see [5, p. 215])

Mf (x,λλλλ) = f−1

(
n

∑
r=1

λr f (xr)

)
, (1.1)

n

∑
r=1

λr = 1, λr � 0, xr, � 0, r = 1, . . . ,n ,

and by investigating and consequently by using the properties of the quasi-mean

Wf (x,λλλλ) = f−1

(
f

(
n

∑
r=1

λrxr

)
+

n

∑
r=1

λr f

(∣∣∣∣∣xr −
n

∑
i=1

λixi

∣∣∣∣∣
))

(1.2)

n

∑
r=1

λr = 1, λr � 0, xr, � 0, r = 1, . . . ,n .

Here x =(x1, . . . ,xn) , λλλλ = (λ1, . . . ,λn) , and the functions f in (1.1) and in (1.2) are
strictly increasing convex functions satisfying f (0) = 0. These convex functions obvi-
ously include the power functions f (x) = xp, p � 1, x � 0. In this case we denote

Wp (x,λλλλ) =

((
n

∑
r=1

λrxr

)p

+
n

∑
r=1

λr

(∣∣∣∣∣xr −
n

∑
i=1

λixi

∣∣∣∣∣
)p) 1

p

(1.3)

n

∑
r=1

λr = 1, λr � 0, xr � 0, r = 1, . . . ,n .
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When f (x) = x2, x � 0, the two means M2 (x,λλλλ) and W2 (x,λ ) coincide. This
leads to results concerning the question: what can we say about the difference Mf (x,λλλλ)
−Wf (x,λλλλ) , in particular when this difference grows with respect to f .

The inequalities we get for Wf (x,λλλλ) are used to obtain results related to su-
perquadratic and subquadratic functions. The superquadratic and subquadratic func-
tions satisfy Jensen’s type inequalities, and lately are dealt with extensively, see for
instance two of the latest papers on this subject [4] and [7]. This paper adds to this
subject too.

We start with quoting a definition and some results from [1], a 2009 short survey
on superquadracity which are relevant for our discussion here (see also references in
[1]).

DEFINITION A. A function f defined on an interval I = [0,b) , 0 < b � ∞ is said
to be subquadratric if for each x in I , there exists a real number C (x) such that

f (y)− f (x) � f (|y− x|)+C (x)(y− x) (1.4)

for all y ∈ I. The function f is superquadratic if − f is subquadratic.

REMARK A. From (1.4) it easily follows that f (0) � 0 for subquadratic func-
tions. Therefore if f is subquadratic and increasing, then f is nonnegative.

From (1.4) it is also easy to verify that:

LEMMA A. Let f be defined on [0,b) , 0 < b � ∞. Let ∑n
r=1 λr = 1, λr � 0, xr ∈

[0,b) , r = 1, . . . ,n then,

n

∑
r=1

λr f (xr) � f

(
n

∑
i=1

λixi

)
+

n

∑
r=1

λr f

(∣∣∣∣∣xr −
n

∑
i=1

λixi

∣∣∣∣∣
)

(1.5)

if and only if f is subquadratic. The reverse of inequality (1.5) holds if and only if f is
superquadratic .

LEMMA B. Suppose that f : [0,b)→R is continuously differentiable and f (0) �
0. If f ′ is superadditive or f ′(x)

x is nondecreasing, then f is superquadratic.

REMARK B. The following functions are examples of subquadratic increasing
functions which are also convex (see [1]).

a) f (x) = xp, 1 � p � 2, x � 0,

b) f (x) = (1+ xp)
1
p , 1 � p, x � 0,

c) f (x) = (1+ xp)
1
p −1, 1 � p � 2, x � 0,

d) f (x) = 3x2−2x2 log(x), 0 � x � 1.

When we deal with the properties of Mf (x,λλλλ)−Wf (x,λλλλ) , we use Theorem A below
about Mf (x,λλλλ) , (see [3, Theorem 1]), and a theorem we prove about Wf (x,λλλλ) which
is similar to Theorem A:
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THEOREM A. Let xi ∈ [A,B], i = 1, . . . ,n be real numbers. Let Fk , k = 1, . . . ,m
be one to one functions defined on [A,B] where Fk : [A,B] → [C,D], k = 1, . . . ,m and
let f1 = F1, fk+1 = Fk+1 ◦F−1

k , k = 1, . . . ,m−1 be convex increasing functions.
Let F0(x) = x, x ∈ [A,B], and 0 � λi , i = 1, . . . ,n, ∑n

i=1 λi = 1; then we get the
following comparison between the quasi-arithmetic mean MFk (x,λλλλ) and the quasi-
arithmetic mean MFk−1 (x,λλλλ):

MFm (x,λλλλ) �, . . . ,� MFk (x,λλλλ) � MFk−1 (x,λλλλ) �, . . . ,� M1 (x,λλλλ) , k = 1, . . . ,m.

Equality holds iff Fk ◦ F−1
k−1 = L · x + R, where L, R are constant, or if all λi ,

i = 1, . . . ,n are equal.

We use also the following theorem that appeared in [6] and as a special case of
Jensen-Steffensen Inequality in [2, Theorem 2], to prove the analog of Theorem A
about Wf (x,λλλλ) :

THEOREM B. Let f : I → R, where I is any interval in R, and let [a,b] ⊆ I,
a < b. Let z = (z1, · · · ,zn) be a monotonic n-tuple in [a,b]n and v = (v1, · · · ,vn) a
real n-tuple such that vi �= 0, i = 1, . . . ,n and 0 � Vj � Vn, j = 1, . . . ,n, Vn > 0,

Vj = ∑ j
i=1 vi. If f is convex on I , then

f

(
a+b− 1

Vn

n

∑
i=1

vizi

)
� f (a)+ f (b)− 1

Vn

n

∑
i=1

vi f (zi) .

2. The quasi-mean W f (x,λλλλ)

DEFINITION 1. Let a strictly increasing convex function f be defined on [0,b) ,
0 < b � ∞, and let f (0) = 0. For such f we define the quasi-mean Wf (x1,x2) as

Wf (x1,x2) = f−1
(

f

(
x1 + x2

2

)
+ f

(∣∣∣∣x1− x2

2

∣∣∣∣
))

. (2.1)

In the special case that f (x) = xp, Wp (x1,x2) is defined as

Wp (x1,x2) =
((

x1 + x2

2

)p

+
(∣∣∣∣x1− x2

2

∣∣∣∣
)p) 1

p

(2.2)

for x � 0, p � 1.

LEMMA 1. Under the conditions of Definition 1 on f , Wf (x1,x2) is symmetric
and satisfies:

a) Wf (x,x) = x, x � 0,
b) x1 � Wf (x1,x2) � x2, 0 � x1 � x2 � b.
When f (x) = xp, p � 1, Wp (x1,x2) satisfies
c) Wp (λx1,λx2) = λWp (x1,x2) , λ � 0, 0 � x1, x2 � b.
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Proof. Properties a) and c) are obvious. To prove that b) holds, that is that

x1 � f−1
(

f

(
x1 + x2

2

)
+ f

(
x2 − x1

2

))
� x2, 0 � x1 � x2 � b,

holds, we use the change of variables y1 = x2−x1
2 , y2 = x1+x2

2 and we have to prove that

f (y2 − y1) � f (y1)+ f (y2) � f (y1 + y2) ,

which holds because of the convexity of f and because f (0) = 0.
This completes the proof of the lemma. �
We now extend Wf (x1,x2) and Wp (x1,x2) as defined in (2.1) and (2.2) above to

Wf (x,λλλλ) and Wp (x,λλλλ) . Motivated by Lemma A the extension is explained here:
First, instead of x1+x2

2 that can be seen as a mid point of x1 and x2 we replace it
with the general average λ1x1 + λ2x2 (λ1,λ2 � 0, λ1 + λ2 = 1) of x1 and x2 .

Now we look at f
(∣∣ x1−x2

2

∣∣) as 1
2 f
(∣∣x1− x1+x2

2

∣∣)+ 1
2 f
(∣∣x2− x1+x2

2

∣∣) and replace
it with λ1 f (|x1− (λ1x1 + λ2x2)|)+ λ2 f (|x2− (λ1x1 + λ2x2)|) .

We denote x =(x1,x2) , and λλλλ = (λ1,λ2) and

Wf (x,λλλλ) = f−1

(
f (λ1x1 + λ2x2)+ λ1 f

(∣∣∣∣∣x1−
2

∑
i=1

λixi

∣∣∣∣∣
)

+ λ2 f

(∣∣∣∣∣x2−
2

∑
i=1

λixi

∣∣∣∣∣
))

which coincide with Wf (x1,x2) for λ1 = λ2 = 1
2 .

From here, the extension to the general case of n variables is

Wf (x,λλλλ) = f−1

(
f

(
n

∑
r=1

λrxr

)
+

n

∑
r=1

λr f

(∣∣∣∣∣xr −
n

∑
i=1

λixi

∣∣∣∣∣
))

n

∑
r=1

λr = 1, λr � 0, xr, � 0, r = 1, . . . ,n .

The same motivation leads to the extension of Wp (x1,x2) to Wp (x,λλλλ) .
In the general case when λλλλ �= ( 1

2 , 1
2

)
, the results we get are under the restrictions

|xr −∑n
i=1 λixi| � ∑n

i=1 λixi, r = 1, . . . ,n.

REMARK 1. Two sufficient conditions for∣∣∣∣∣xr −
n

∑
i=1

λixi

∣∣∣∣∣�
n

∑
i=1

λixi, xr, λr � 0, r = 1, . . . ,n,
n

∑
i=1

λi = 1, (2.3)

which is equivalent to 0 � xi � 2∑n
j=1 λ jx j, i = 1, . . . ,n to hold are:

1. 0 < a � xi � 2a, i = 1, . . . ,n ,
and

2. λ j � 1
2 when x j = max

i=1,...,n
xi, xi � 0, λi � 0, i = 1, . . . ,n.

In particular if n = 2, λ1 = λ2 = 1
2 , then (2.3) holds always for xr � 0, r = 1,2,

and in this case there are no restrictions on xr � 0, r = 1,2, when discussing Wf (x1,x2)
as defined in (2.1).
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Here is our main theorem on Wf (x,λλλλ) which is a comparison theorem between
WFk (x,λ ) and WFk−1 (x,λλλλ) :

THEOREM 1. Let xi ∈ [A,B], i = 1, . . . ,n be real numbers, 0 � A < B < b � ∞
and let (2.3) be satisfied. Let F0(x) = x, Fk : [0,b) → [0,d) , k = 1, . . . ,m be strictly
increasing functions, Fk (0) = 0, k = 0,1, . . . ,m, and let f1 = F1, fk+1 = Fk+1 ◦F−1

k ,
k = 1, . . . ,m−1 be convex increasing functions. Then:

WFk (x,λλλλ) � WFk−1 (x,λλλλ) , λλλλ > 0, x ∈ [0,b)n , k = 1, . . . ,m. (2.4)

If in addition, for a specific k,
(
F−1

k

)2
is convex then:

WFk+1 (x,λλλλ) = W2 (x,λλλλ) � WFk (x,λλλλ) � WFk−1 (x,λλλλ) , (2.5)

or if for a specific k, Fk+1 ◦
√

x is convex then:

WFk+1 (x,λλλλ) = W2 (x,λλλλ) � WFk+2 (x,λλλλ) � WFk+3 (x,λλλλ) . (2.6)

Proof. In order to show that under the conditions on Fk, k = 0,1, . . . ,m, inequality
(2.4) holds, that means that

F−1
k

(
Fk

(
n

∑
r=1

λrxr

)
+

n

∑
r=1

λrFk

(∣∣∣∣∣xr −
n

∑
i=1

λixi

∣∣∣∣∣
))

(2.7)

� F−1
k−1

(
Fk−1

(
n

∑
r=1

λrxr

)
+

n

∑
r=1

λrFk−1

(∣∣∣∣∣xr −
n

∑
i=1

λixi

∣∣∣∣∣
))

holds, we denote:

Fk−1

(
n

∑
j=1

λ jx j

)
= yn+1 , (2.8)

Fk−1

(∣∣∣∣∣xi −
n

∑
j=1

λ jx j

∣∣∣∣∣
)

= yi, i = 1, . . . ,n.

Then from (2.7) and (2.8) as Fk is increasing and fk = Fk ◦F−1
k−1, we get that we have

to prove the inequality

fk (yn+1)+
n

∑
i=1

λi fk (yi) � fk

(
yn+1 +

n

∑
j=1

λ jy j

)
, fk = Fk ◦F−1

k−1. (2.9)

As it is given that Fk (0) = 0 and Fk, k = 0,1, . . . ,m, are strictly increasing, we get that
fk (0) = 0, and because (2.3) holds and Fk−1 is increasing we get that 0 � yi � yn+1 ,
i = 1, . . . ,n.
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Rewriting (2.9) and using fk (0) = 0, it remains to prove that

fk (yn+1) = fk

(
0+

(
yn+1 +

n

∑
j=1

λ jy j

)
−

n

∑
j=1

λ jy j

)
(2.10)

� fk (0)+ fk

(
yn+1 +

n

∑
j=1

λ jy j

)
−

n

∑
i=1

λi fk (yi) .

With no loss of generality we may assume that yi � yi+1 , i = 1, . . . ,n−1. From (2.3)
and because Fk−1 is increasing we get that yn+1 � yi, i = 1, . . . ,n and hence as Fk−1 is
non-negative yn+1 + ∑n

j=1 λ jy j � yi, i = 1, . . . ,n. Then, using Theorem B with a = 0,
b = yn+1 + ∑n

j=1 λ jy j , λi = vi
Vn

, zi = yi , i = 1, . . . ,n for the covex function fk we get
that (2.10) holds and therefore it is proved that (2.4) holds.

The first inequality in (2.5) holds if
(
F−1

k

)2
is convex because in this case we may

denote Fk+1 (x) = x2 and therefore it follows from (2.4). Similarly, the first inequality
in (2.6) holds because again we may denote Fk+1 (x) = x2 .

This completes the proof of the theorem. �

3. Subquadracity, superquadracity, and M f (x,λλλλ)−W f (x,λλλλ)

Subquadratic functions satisfy (1.5). With some restrictions on xr, λr, r = 1, . . . ,n
there, we get some new inequalities related to subquadratic and superquadratic func-
tions.

Using Lemma A and Remark 1, the following lemma is immediate.

LEMMA 2. Let f be an increasing subquadratic function on [0,b) , 0 < b � ∞ ,
and let (2.3) be given. Then,

n

∑
r=1

λr f (xr) � 2 f

(
n

∑
r=1

λrxr

)
. (3.1)

In particular, if 0 < a � xr � 2a, r = 1, . . . ,n, or if λ j � 1
2 when x j = max

i=1,...,n
xi, xi � 0,

0 � λi � 1, i = 1, . . . ,n, then (2.3) holds and therefore (3.1) holds.
In the special case n = 2, λ1 = λ2 = 1

2 , for an increasing subquadratic functions
we get that for xi � 0 , i = 1,2

1
2

( f (x1)+ f (x2)) � 2 f

(
x1 + x2

2

)
holds.

EXAMPLE 1. The function f (x) = 3x2 − 2x2 log(x), 0 � x � 1, (see Case d in
remark B) is an increasing subquadratic function which is also convex. Therefore when
(2.3) is satisfied the inequalities

f

(
n

∑
r=1

λrxr

)
�

n

∑
r=1

λr f (xr) � 2 f

(
n

∑
r=1

λrxr

)



QUASI-ARITHMETIC MEANS AND SUBQUADRACITY 1163

hold, and when n = 2, λ1 = λ2 = 1
2 , the inequalities

f

(
x1 + x2

2

)
� 1

2
( f (x1)+ f (x2)) � 2 f

(
x1 + x2

2

)

hold .

Replacing in (1.5) f with g ◦ f−1, xi with f (xi) , i = 1, . . . ,n we get that for a
subquadratic function g ◦ f−1 on [0,b) and for strictly increasing functions f and g
when xi ∈ [0,b) , λi � 0, i = 1, . . . ,n , ∑n

i=1 λi = 1 the following inequality

g−1 (∑λig(xi)
)

� g−1 [g ◦ f−1(∑λi f (xi)
)
+∑λig ◦ f−1(∣∣ f (xi)−∑λ j f (x j)

∣∣)]
(3.2)

holds. Equality holds for g ◦ f−1 (x) = x2.
As the results in Theorem 2 and Theorem 3 below are obtained under the restric-

tion stated in (2.3) we add the following definition:

DEFINITION 2. A function f defined on an interval I = [0,b) , 0 < b � ∞ is
called semi-subquadratic (semi-superquadratic) function if the inequality

n

∑
r=1

λr f (xr) �
(�)

f

(
n

∑
i=1

λixi

)
+

n

∑
r=1

λr f

(∣∣∣∣∣xr −
n

∑
i=1

λixi

∣∣∣∣∣
)

holds under the restriction stated in (2.3) .

It is obvious that subquadratic (superquadratic) functions are also semi-subquadratic
(semi-superquadratic).

In the case that n = 2, λ1 = λ2 = 1
2 subquadracity (superquadracity) is the same

as semi-subquadracity (semi-superquadracity).
The following theorem combines the inequalities that Wf (x,λλλλ) satisfies as proved

in Theorem 1, the properties of Mf (x,λλλλ) as stated in Theorem A and the basic proper-
ties of superquadratic, semi-superquadratic, subquadratic and semi-subquadratic func-
tions to get additional inequalities related to these functions and in particular to power
functions. Especially, we see that the difference Mf (x,λλλλ)−Wf (x,λλλλ) increases as the
distance between f (x) and x2 grows.

THEOREM 2. Let (2.3) be given. Let Fk, k = 1, . . . ,m, be nonnegative strictly
increasing functions on [0,b) satisfying Fk (0) = 0, k = 1, . . . ,m, and F0 (x) = x, x ∈
[0,b) . Let fk = Fk◦F−1

k−1, k = 1, . . . ,m, be convex functions. Let λλλλ > 0, and x ∈ [0,b)n .
Case I: If Fk is subquadratic or semi-subquadratic function, then Fk−1 is semi-

subquadratic too,
M1 (x,λλλλ) � MFk−1 (x,λλλλ) � MFk (x,λ ) (3.3)

� WFk (x,λλλλ) � WFk−1 (x,λλλλ) � F−1
k−1

(
2Fk−1

(
n

∑
j=1

λ jx j

))
,
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and
MFk−1 (x,λλλλ)−WFk−1 (x,λλλλ) � MFk (x,λ )−WFk (x,λλλλ) � 0

hold. In particular if
(
F−1

k

)2
is convex then:

M1 (x,λλλλ) � MFk−1 (x,λλλλ) � MFk (x,λ ) � M2 (x,λλλλ) = W2 (x,λλλλ)

� WFk (x,λλλλ) � WFk−1 (x,λλλλ) � F−1
k−1

(
2Fk−1

(
n

∑
i=1

λixi

))
.

and

MFk−1 (x,λλλλ)−WFk−1 (x,λλλλ) � MFk (x,λ )−WFk (x,λλλλ) � M2 (x,λλλλ)−W2 (x,λλλλ) = 0

holds where W2 (x,λλλλ) is as defined in (1.3).
Case II: If Fk−1 is superquadratic or semi-superquadratic functions then Fk is

semi-superquadratic too and

MFk (x,λλλλ) � MFk−1 (x,λλλλ) � WFk−1 (x,λλλλ) � WFk (x,λλλλ) �, . . . ,� M1 (x,λλλλ) .

In particular if Fk−1 ◦
√

x is convex then:

MFk (x,λλλλ) � MFk−1 (x,λλλλ) � M2 (x,λ ) = W2 (x,λλλλ)
� WFk−1 (x,λλλλ) � WFk (x,λλλλ) � M1 (x,λλλλ) ,

and

0 = M2 (x,λλλλ)−W2 (x,λλλλ) � MFk−1 (x,λλλλ)−WFk−1 (x,λλλλ) � MFk (x,λλλλ)−WFk (x,λλλλ)

REMARK 2. If Fk−1 ◦
√

x is differentiable, nonnegative, convex increasing and
Fk−1 (0) = 0 then Fk−1 according to Lemma B is superquadratic.

Proof. Case I: From (1.5) for the subquadratic function Fk, k = 1, . . . ,m, that is
also nonnegative, strictly increasing functions we get that

MFk (x,λλλλ) � WFk (x,λλλλ) , k = 1, . . . ,m. (3.4)

As fk = Fk ◦F−1
k−1, k = 1, . . . ,m, is also convex, therefore by Theorem A we get that

MFk−1 (x,λλλλ) � MFk (x,λλλλ) . (3.5)

According to Theorem 1, under the conditions on Fk, k = 1, . . . ,m (2.4) holds.
Therefore from inequalities (3.4), (3.5) and (2.4) we get that (3.3) holds. From

(3.4), (3.5) and (2.4) we get also that MFk−1 (x,λλλλ) � WFk−1 (x,λλλλ) , which means that
Fk−1 is semi-subquadratic too. This completes the proof of Case I. The other cases
follow similarly. �

From inequality (3.2) and (2.3) we get as a special case of Theorem 2, the follow-
ing theorem for the power functions xp, x > 0, p � 1. We add a direct proof which is
short and not dependent on the proof of the general case, and show that the difference
Ms (x,λλλλ)−Ws (x,λλλλ) increases with s when s � 1.
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THEOREM 3. Let

xi � 0, λi � 0 xr
i � 2

n

∑
j=1

λ jx
r
j, i = 1, . . . ,n,

n

∑
i=1

λi = 1. (3.6)

If
0 < r � s � t � 2r, (3.7)

then

Mr (x,λλλλ) � Ms (x,λλλλ) � Mt (x,λλλλ) � M2r (x,λλλλ) (3.8)

=

⎡
⎣( n

∑
j=1

λ jx
r
j

)2

+
n

∑
i=1

λi

∣∣∣∣∣xr
i −

n

∑
j=1

λ jx
r
j

∣∣∣∣∣
2
⎤
⎦

1/2r

�

⎡
⎣( n

∑
j=1

λ jx
r
j

)t/r

+
n

∑
i=1

λi

∣∣∣∣∣xr
i −

n

∑
j=1

λ jx
r
j

∣∣∣∣∣
t/r
⎤
⎦

1/t

�

⎡
⎣( n

∑
j=1

λ jx
r
j

)s/r

+
n

∑
i=1

λi

∣∣∣∣∣xr
i −

n

∑
j=1

λ jx
r
j

∣∣∣∣∣
s/r
⎤
⎦

1/s

� Mr (x,λλλλ)21/s.

In case that r = 1, and
1 � s � t � 2, (3.9)

then
M1 (x,λλλλ) � Ms (x,λλλλ) � Mt (x,λλλλ) � M2 (x,λλλλ) (3.10)

= W2 (x,λλλλ) � Wt (x,λλλλ) � Ws (x,λλλλ) � 2
1
s M1 (x,λλλλ) .

If
0 < 2r � t � s, (3.11)

then

Ms (x,λλλλ) � Mt (x,λλλλ) � M2r (x,λλλλ) (3.12)

=

⎡
⎣( n

∑
j=1

λ jx
r
j

)2

+
n

∑
i=1

λi

∣∣∣∣∣x2
i −

n

∑
j=1

λ jx
r
j

∣∣∣∣∣
2
⎤
⎦

1/2r

�

⎡
⎣( n

∑
j=1

λ jx
r
j

)t/r

+
n

∑
i=1

λi

∣∣∣∣∣xr
i −

n

∑
j=1

λ jx
r
j

∣∣∣∣∣
t/r
⎤
⎦

1/t

�

⎡
⎣( n

∑
j=1

λ jx
r
j

)s/r

+
n

∑
i=1

λi

∣∣∣∣∣xr
i −

n

∑
j=1

λ jx
r
j

∣∣∣∣∣
s/r
⎤
⎦

1/s

� Mr (x,λλλλ) .
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In case that r = 1,

s � t � 2, (3.13)

then

Ms (x,λλλλ) � Mt (x,λλλλ) � M2 (x,λλλλ) (3.14)

= W2 (x,λλλλ) � Wt (x,λλλλ) � Ws (x,λλλλ) � M1 (x,λλλλ) .

Moreover when r = 1, the difference Ms (x,λλλλ)−Ws (x,λλλλ) increases when s � 1, is
negative when 1 � s < 2 , positive when s > 2 and is equal to zero when s = 2.

Proof. The first three inequalities in (3.8) are well known properties of power
means when (3.7) holds (see [5], [3]) and are special cases of Theorem A for power
functions.

As the functions x
s
r and x

t
r 1 � s

r ,
t
r � 2, are subquadratic, it follows from (1.5)

and (3.2) that

(
n

∑
i=1

λix
s
i

)1/s

�
(

n

∑
i=1

λix
r
i

)1/r
⎡
⎣1+

n

∑
i=1

λi

∣∣∣∣∣x
r
i −∑n

j=1 λ jxr
j

∑n
j=1 λ jxr

j

∣∣∣∣∣
s/r
⎤
⎦

1/s

(3.15)

(
n

∑
i=1

λix
t
i

)1/t

�
(

n

∑
i=1

λix
r
i

)1/r
⎡
⎣1+

n

∑
i=1

λi

∣∣∣∣∣x
r
i −∑n

j=1 λ jxr
j

∑n
j=1 λ jxr

j

∣∣∣∣∣
t/r
⎤
⎦

1/t

(3.16)

and

(
n

∑
i=1

λix
2r
i

)1/2r

=

(
n

∑
i=1

λix
r
i

)1/r
⎡
⎣1+

n

∑
i=1

λi

∣∣∣∣∣x
r
i −∑n

j=1 λ jxr
j

∑n
j=1 λ jxr

j

∣∣∣∣∣
2
⎤
⎦

1/2r

. (3.17)

However, as the function (1+ ∑n
i=1 λizm

i )1/m , λi � 0, i = 1, . . . ,n, ∑n
i=1 λi = 1, is a

decreasing function of m when 0 � zi � 1, i = 1, . . . ,n and m > 0 we get from (3.6) and
(3.7) that the right handside inequalities in (3.8) holds and together with (3.15), (3.16),
and (3.17) all the inequalities in (3.8) hold. Therefore also when (3.9) is satisfied (3.10)
holds. Similarly, we get that when (3.11) is satisfied, (3.12) holds, and therefore also
when (3.13) is satisfied, (3.14) holds. The fact that the difference Ms (x,λλλλ)−Ws (x,λλλλ)
increases when s � 1, is negative when 1 � s < 2, positive when s > 2 and is equal to
zero when s = 2 follows directly from (3.9) and (3.10) and from (3.13) and (3.14).

The proof of the theorem is completed. �

EXAMPLE 2. Choosing F1 (x) = x(a+b)/a, F2 (x) = xa+b, x � 0, 1 � a � a+ b,
λi � 0, i = 1, . . . ,n, ∑n

i=1 λi = 1 we get that f2 (x) = F2
(
F−1

1 (x)
)

= xa is a convex
function and as well as F1.
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Mereover, if a+b
a � 2, F1 and F2 are superquadratic, and we get that when (2.3)

holds then according to Theorem 2

(
n

∑
i=1

λix
a+b
i

)1/(a+b)

�
(

n

∑
i=1

λix
(a+b)/a
i

)a/(a+b)

�

⎛
⎝
(

n

∑
j=1

λ jx j

)(a+b)/a

+
n

∑
i=1

λi

(∣∣∣∣∣xi −
n

∑
j=1

λ jx j

∣∣∣∣∣
)(a+b)/a

⎞
⎠

a/(a+b)

�

⎛
⎝( n

∑
j=1

λ jx j

)a+b

+
n

∑
i=1

λi

(∣∣∣∣∣xi −
n

∑
j=1

λ jx j

∣∣∣∣∣
)a+b

⎞
⎠

1/(a+b)

.

If a+b � 2, F1 and F2 are subquadratic and we get that when (2.3) holds

(
n

∑
j=1

λ jx j

)a+b

�
(

n

∑
i=1

λix
(a+b)/a
i

)a

�
n

∑
j=1

λ jx
a+b
j

�
(

n

∑
j=1

λ jx j

)a+b

+
n

∑
i=1

λi

(∣∣∣∣∣xi −
n

∑
j=1

λ jx j

∣∣∣∣∣
)a+b

�
(

n

∑
j=1

λ jx j

)(a+b)/a

+
n

∑
i=1

λi

(∣∣∣∣∣xi −
n

∑
j=1

λ jx j

∣∣∣∣∣
)(a+b)/a

,

is satisfied.

REMARK 3. We proved in this paper inequalities related to the difference Mp (x,λλλλ)
−Wp (x,λλλλ) for various p � 1. These results can be extended to the differences between
Mp (x,λλλλ) and Wq (x,λλλλ) for p �= q.

It is well known that the original Jensen’s inequality is easily generalized when
the discrete terms and sums are replaced by integrals and more generally by linear
functionals. It may be also possible to get in a similar way, generalized theorems of all
the theorems proved in this paper.

The present author aims to investigate these subjects in a forthcoming paper.
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