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STABILITY OF A PEXIDER TYPE FUNCTIONAL
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Abstract. This work aims to study of the stability of two generalizations of the functional equa-
tion f (pr,qs)+ f (ps,qr) = f (p,q) f (r,s) , namely (i) f (pr,qs)+g(ps,qr) = h(p,q)h(r,s) , and
(ii) f (pr,qs)+ g(ps,qr) = h(p,q)k(r,s) for all p,q,r,s ∈ G , where G is a commutative semi-
group. Thus this work is a continuation of our earlier works [15] and [16], and the functional
equations studied here arise in the characterizations of symmetrically compositive sum form
distance measures.

1. Introduction

Let I denote the open unit interval (0, 1) and J = (0,1] . Let R and C denote the
set of real and complex numbers, respectively. Let (G, ·) be a commutative semigroup.

In [3], Chung, Kannappan, Ng and Sahoo characterized all symmetrically compos-
itive sum form distance measures with a measurable generating function. The following
functional equation

f (pr,qs)+ f (ps,qr) = f (p,q) f (r,s) (FE)

holding for all p,q,r,s ∈ I was instrumental in their characterization. Among other
results, they proved the following result giving the general solution of the functional
equation (FE). Suppose f : I2 → R satisfies (FE) for all p,q,r,s ∈ I . Then f (p,q) =
M1(p)M2(q)+M1(q)M2(p), where M1,M2 : R→C are multiplicative functions. Fur-
ther, either M1 and M2 are both real or M2 is the complex conjugate of M1 . The
converse is also true.

The stability of the functional equation (FE) and four generalizations of (FE)
namely,

f (pr,qs)+ f (ps,qr) = f (p,q)g(r,s) (FEfg)

f (pr,qs)+ f (ps,qr) = g(p,q) f (r,s) (FEg f )

f (pr,qs)+ f (ps,qr) = g(p,q)g(r,s) (FEgg)

f (pr,qs)+ f (ps,qr) = g(p,q)h(r,s) (FEgh)
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for all p,q,r,s ∈ G , were studied in [15] and [16]. In this paper, we study the stability
of two more generalizations of (FE), namely

f (pr,qs)+g(ps,qr) = h(p,q)h(r,s) (FEfghh)

f (pr,qs)+g(ps,qr) = h(p,q)k(r,s) (FEfghk)

for all p,q,r,s ∈ G . The functional equation (FEfghk) was studied in [7]. The authors
of the paper [7], Kannappan, Sahoo and Chung, found all complex-valued functions
without any regularity condition when the functional equation of (FEfghk) holds for all
p,q,r,s ∈ J . They have found 14 sets of solutions of this functional equation and it is
too many to list here. The complex-valued solution of the previous equation (FEfghh)
can be easily determined from their results when (FEfghh) holds for all p,q,r,s∈ J . For
other functional equations similar to (FE), the interested reader should refer to [6], [8],
[20], [18] and [19]. It should be noted that many well known functional equations like
d’Alembert functional equation, Wilson functional equation, Jensen functional equation
can be obtained from the functional equation (FEfghk). For instance, letting r = s = 1
in (FEfghk), one obtains the equation

f (p,q)+g(p,q) = k(1,1)h(p,q) ∀ p,q ∈ J. (1)

When f (p,q) = ψ(p+q), g(p,q) = ψ(p−q) , and k(1,1)h(p,q) = 2ψ(p)ψ(q) , then
the equation (1) yields the well known d’Alembert functional equation. Similarly, when
f (p,q)= ψ(p+q), g(p,q)= ψ(p−q) , and k(1,1)h(p,q)= ψ(p)φ(q) , then (1) yields
the Wilson functional equation. Letting f (p,q) = ψ(p+ q), g(p,q) = ψ(p− q) , and
k(1,1)h(p,q) = 2ψ(p) it is easy to see that (1) reduces to Jensen functional equation.

For stability of related functional equations, see papers ([9], [10], [11], [12], [13],
[14] and [17]). The superstability for some functional equations of the compositive
function form on two variables is found in [1]. The book [4] is an excellent source for
reference on stability of functional equations.

2. Stability of functional equation (FEfghh)

In this section, we establish the stability of the functional equation (FEfghh).

THEOREM 1. Let φ : G2 →R be any nonzero given function. Let f ,g,h : G2 →R

satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−h(p,q)h(r,s)|� φ(r,s), (2)

|h(p,q)− f (p,q)|� M, and |h(p,q)−g(p,q)|� M′ for all p,q,r,s∈G, where M and
M

′
are some nonnegative constants. Then either h is bounded or h is a solution of the

functional equation (FE), that is

h(pr,qs)+h(ps,qr) = h(p,q)h(r,s), ∀ p,q,r,s ∈ G. (3)
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Proof. Let h be an unbounded solution of the inequality (2). Then we can choose
a sequence {(xn,yn) |n ∈ N} in G2 such that 0 �= |h(xn,yn)| → ∞ as n → ∞ .

Replacing p by xn and q by yn in (2), we have

| f (xnr,yns)+g(xns,ynr)−h(xn,yn)h(r,s)| � φ(r,s), (4)

which is ∣∣∣∣ f (xnr,yns)+g(xns,ynr)
h(xn,yn)

−h(r,s)
∣∣∣∣ � φ(r,s)

|h(xn,yn)| . (5)

Taking the limit as n → ∞ , we obtain

h(r,s) = lim
n→∞

f (xnr,yns)+g(xns,ynr)
h(xn,yn)

(6)

Replacing p by xnr , q by yns , r by p , and s by q in (2), we have

| f (xnpr,ynqs)+g(xnqr,ynps)−h(xnr,yns)h(p,q)| � φ(p,q), (7)

which is ∣∣∣∣ f (xnpr,ynqs)+g(xnqr,ynps)
h(xn,yn)

− h(xnr,yns)
h(xn,yn)

h(p,q)
∣∣∣∣ � φ(p,q)

|h(xn,yn)| . (8)

Replacing p by xns , q by ynr , r by p , and s by q in (2) and proceeding as above, we
have

| f (xnps,ynqr)+g(xnqs,ynpr)−h(xns,ynr)h(p,q)| � φ(p,q). (9)

From the last inequality (9), we obtain∣∣∣∣ f (xnps,ynqr)+g(xnqs,ynpr)
h(xn,yn)

− h(xns,ynr)
h(xn,yn)

h(p,q)
∣∣∣∣ � φ(p,q)

|h(xn,yn)| . (10)

Using (6), (8), and (10) and boundedness of h− f and h−g , we obtain

h(pr,qs)+h(ps,qr)

= lim
n→∞

f (xnpr,ynqs)+g(xnqs,ynpr)
h(xn,yn)

+ lim
n→∞

f (xnps,ynqr)+g(xnqr,ynps)
h(xn,yn)

= lim
n→∞

h(xnr,yns)+h(xns,ynr)
h(xn,yn)

h(p,q)

= lim
n→∞

[
h(xnr,yns)− f (xnr,yns)+h(xns,ynr)−g(xns,ynr)

h(xn,yn)
+h(r,s)

]
h(p,q)

= h(p,q)h(r,s).

This completes the proof. �
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THEOREM 2. Let φ : G2 →R be any nonzero given function. Let f ,g,h : G2 →R

satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−h(p,q)h(r,s)|� φ(p,q), (11)

|h(p,q)− f (p,q)|� M, and |h(p,q)−g(q, p)|� M′ for all p,q,r,s∈G, where M and
M

′
are some nonnegative constants. Then either h is bounded or h is a solution of the

functional equation (FE).

Proof. Suppose h is unbounded, then we can find a sequence {(xn,yn) |n ∈ N} in
R2 such that 0 �= |h(xn,yn)| → ∞ as n → ∞ .

Proceeding similar to the derivation of (5), we obtain

h(p,q) = lim
n→∞

f (pxn,qyn)+g(pyn,qxn)
h(xn,yn)

.

The rest of the proof runs similar to the Theorem 1, and we see that h satisfies (FE) for
all p,q,r,s ∈ G . This completes the proof of the theorem. �

COROLLARY 1. Let φ : G2 → R be any nonzero given function. Let f ,g : G2 →
R satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)− f (p,q) f (r,s)| � φ(r,s), (12)

and | f (p,q)− g(p,q)| � M for all p,q,r,s ∈ G, where M is a nonnegative real con-
stant. Then either f is bounded or f satisfies the equation (FE).

Proof. The proof of the corollary follows by letting h = f in (2) in Theorem1. �

COROLLARY 2. Let φ : G2 → R be any nonzero given function. Let f ,g : G2 →
R satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)− f (p,q) f (r,s)| � φ(p,q), (13)

and | f (p,q)− g(q, p)| � M for all p,q,r,s ∈ G, where M is a nonnegative constant.
Then either f is bounded or f satisfies the equation (FE).

Proof. The proof of the corollary follows by letting h = f in Theorem 2. �

COROLLARY 3. Let φ : G2 → R be any nonzero given function. Let f ,g : G2 →
R satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−g(p,q)g(r,s)|� φ(r,s), (14)

and |g(p,q)− f (p,q)| � M for all p,q,r,s ∈ G, where M is a nonnegative real con-
stant. Then either g is bounded or g satisfies the equation (FE).
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Proof. The proof of the corollary follows by letting h = g in Theorem 1. �

COROLLARY 4. Let φ : G2 → R be any nonzero given function. Let f ,g : G2 →
R satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−g(p,q)g(r,s)|� φ(p,q), (15)

|g(p,q)− f (p,q)|� M, and |g(p,q)−g(q, p)|� M′ for all p,q,r,s∈G, where M and
M′ are nonnegative real constants. Then either g is bounded or g satisfies the equation
(FE).

Proof. The proof of the corollary follows by letting h = g in Theorem 2. �

3. Stability of functional equation (FEfghk)

In this section, we treat the stability of the functional equation (FEfghk).

THEOREM 3. Let φ : G2 →R be a nonzero given function. Let f ,g,h,k : G2 →R

satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−h(p,q)k(r,s)|� φ(r,s), (16)

|h(p,q)− f (p,q)|� M and |h(p,q)−g(p,q)|� M′ for all p,q,r,s ∈G, where M and
M′ are some nonnegative constants. Then either h is bounded or k is a solution of the
equation (FE), that is

k(pr,qs)+ k(ps,qr) = k(p,q)k(r,s). (17)

In addition, if h satisfies the equation (FE), then k and h are the solutions of the
equation (FEfg), that is

k(pr,qs)+ k(ps,qr) = k(p,q)h(r,s). (18)

Proof. Let h be an unbounded solution of the inequality (16). Then we can choose
a sequence {(xn,yn) |n ∈ N} in G2 such that 0 �= |h(xn,yn)| → ∞ as n → ∞ .

Replacing p by xn and q by yn in (16), we have

| f (xnr,yns)+g(xns,ynr)−h(xn,yn)k(r,s)| � φ(r,s) (19)

which is ∣∣∣∣ f (xnr,yns)+g(xns,ynr)
h(xn,yn)

− k(r,s)
∣∣∣∣ � φ(r,s)

|h(xn,yn)| . (20)

Taking the limit as n → ∞ , we obtain

k(r,s) = lim
n→∞

f (xnr,yns)+g(xns,ynr)
h(xn,yn)

. (21)
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Replacing p by xnr , q by yns , r by p , and s by q in (16), we have

| f (xnpr,ynqs)+g(xnqr,ynps)−h(xnr,yns)k(p,q)| � φ(p,q) (22)

which is ∣∣∣∣ f (xnpr,ynqs)+g(xnqr,ynps)
h(xn,yn)

− h(xnr,yns)
h(xn,yn)

k(p,q)
∣∣∣∣ � φ(p,q)

|h(xn,yn)| . (23)

Similarly, replacing p by xns , q by ynr , r by p , and s by q in (16) and proceeding as
above, we have

| f (xnps,ynqr)+g(xnqs,ynpr)−h(xns,ynr)k(p,q)| � φ(p,q). (24)

From the last inequality (24), we obtain∣∣∣∣ f (xnps,ynqr)+g(xnqs,ynpr)
h(xn,yn)

− h(xns,ynr)
h(xn,yn)

k(p,q)
∣∣∣∣ � φ(p,q)

|h(xn,yn)| . (25)

Using (21), (23), (25) and the fact that h− f and h−g are bounded, we obtain

k(pr,qs)+ k(ps,qr)

= lim
n→∞

f (xnpr,ynqs)+g(xnqs,ynpr)
h(xn,yn)

+ lim
n→∞

f (xnps,ynqr)+g(xnqr,ynps)
h(xn,yn)

= lim
n→∞

h(xnr,yns)+h(xns,ynr)
h(xn,yn)

k(p,q) (26)

= lim
n→∞

[
h(xnr,yns)− f (xnr,yns)+h(xns,ynr)−g(xns,ynr)

h(xn,yn)
+ k(r,s)

]
k(p,q)

= k(p,q)k(r,s).

Moreover, if h satisfies the equation (FE), then we have from (26) that k and h are the
solution of the equation (FEfg), that is

k(pr,qs)+ k(ps,qr) = k(p,q)h(r,s).

Now the proof of the theorem is complete. �

THEOREM 4. Let φ : G2 →R be a nonzero given function. Let f ,g,h,k : G2 →R

satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−h(p,q)k(r,s)|� φ(p,q), (27)

|k(p,q)− f (p,q)| � Mand |k(p,q)−g(q, p)| � M′ for all p,q,r,s ∈ G, where M and
M′ are some nonnegative constants. Then either k is bounded or h satisfies the equa-
tion (FE). In addition, if k satisfies the equation (FE), then h and k satisfies the
equation (FEfg), that is

h(pr,qs)+h(ps,qr) = h(p,q)k(r,s). (28)
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Proof. Let k be unbounded. Then we can choose a sequence {(xn,yn) |n ∈ N} in
R2 such that 0 �= |k(xn,yn)| → ∞ as n → ∞ .

Proceeding similar to the derivation of (21), we obtain

h(p,q) = lim
n→∞

f (pxn,qyn)+g(pyn,qxn)
k(xn,yn)

.

Proceeding similar to the proof of Theorem 3, we see that h satisfies (FE) for all
p,q,r,s ∈ G . Moreover, if k satisfies (FE), then it is easy to verify that h and k satisfy
the functional equation (FEg f ), that is (28). The proof of the theorem is now com-
plete. �

The following corollaries are consequences of Theorem 3 and Theorem 4.

COROLLARY 5. Let φ : G2 →R be a nonzero given function. Let f ,g,h : G2 →R

satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−h(p,q) f (r,s)|� φ(r,s),

|h(p,q)− f (p,q)| � M and |h(p,q)− g(p,q)| � M′ for all p,q,r,s ∈ G, where M
and M′ are some nonnegative constants. Then either h is bounded or f satisfies the
equation (FE). In addition, if h satisfies the equation (FE), then f and h satisfy the
equation (FEfg), that is

f (pr,qs)+ f (ps,qr) = f (p,q)h(r,s).

COROLLARY 6. Let φ : G2 →R be a nonzero given function. Let f ,g,h : G2 →R

satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−h(p,q) f (r,s)|� φ(p,q),

and | f (p,q)−g(q, p)|�M for all p,q,r,s∈G, where M is some nonnegative constant.
Then either f is bounded or h satisfies the equation (FE). In addition, if f satisfies
the equation (FE), then h and f satisfies the equation (FEfg), that is

h(pr,qs)+h(ps,qr) = h(p,q) f (r,s).

COROLLARY 7. Let φ : G2 →R be a nonzero given function. Let f ,g,h : G2 →R

satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)− f (p,q)h(r,s)|� φ(r,s),

and | f (p,q)−g(p,q)|�M for all p,q,r,s∈G, where M is some nonnegative constant.
Then either f is bounded or h satisfies the equation (FE). In addition, if f satisfies
the equation (FE), then h and f satisfies the equation (FEfg), that is

h(pr,qs)+h(ps,qr) = h(p,q) f (r,s).



1176 G. H. KIM AND P. K. SAHOO

COROLLARY 8. Let φ : G2 →R be a nonzero given function. Let f ,g,h : G2 →R

satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)− f (p,q)h(r,s)|� φ(p,q),

|h(p,q)− f (p,q)| � M and |h(p,q)− g(q, p)| � M′ for all p,q,r,s ∈ G, where M
and M′ are some nonnegative constants. Then either h is bounded or f satisfies the
equation (FE). In addition, if h satisfies the equation (FE), then f and h satisfies the
equation (FEfg), that is

f (pr,qs)+ f (ps,qr) = f (p,q)h(r,s).

COROLLARY 9. Let φ : G2 →R be a nonzero given function. Let f ,g,h : G2 →R

satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−h(p,q)g(r,s)|� φ(r,s),

|h(p,q)− f (p,q)| � M and |h(p,q)− g(p,q)| � M′ for all p,q,r,s ∈ G, where M
and M′ are some nonnegative constants. Then either h is bounded or g satisfies the
equation (FE). In addition, if h satisfies the equation (FE), then g and h satisfies the
equation (FEfg), that is

g(pr,qs)+g(ps,qr) = g(p,q)h(r,s).

COROLLARY 10. Let φ : G2 →R be a nonzero given function. Let f ,g,h : G2 →
R satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−h(p,q)g(r,s)|� φ(p,q),

|g(p,q)− f (p,q)| � M and |g(p,q)− g(q, p)| � M′ for all p,q,r,s ∈ G, where M
and M′ are some nonnegative constants. Then either g is bounded or h satisfies the
equation (FE). In addition, if g satisfies the equation (FE), then h and g satisfies the
equation (FEfg), that is

h(pr,qs)+h(ps,qr) = h(p,q)g(r,s).

COROLLARY 11. Let φ : G2 →R be a nonzero given function. Let f ,g,h : G2 →
R satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−g(p,q)h(r,s)|� φ(r,s),

and |g(p,q)− f (p,q)|�M for all p,q,r,s∈G, where M is some nonnegative constant.
Then either g is bounded or h satisfies the equation (FE). In addition, if g satisfies the
equation (FE), then h and g satisfies the equation (FEfg), that is

h(pr,qs)+h(ps,qr) = h(p,q)g(r,s).
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COROLLARY 12. Let φ : G2 →R be a nonzero given function. Let f ,g,h : G2 →
R satisfy the functional inequalities

| f (pr,qs)+g(ps,qr)−g(p,q)h(r,s)|� φ(p,q),

|h(p,q)− f (p,q)| � M and |h(p,q)− g(q, p)| � M′ for all p,q,r,s ∈ G, where M
and M′ are some nonnegative constants. Then either h is bounded or g satisfies the
equation (FE). In addition, if h satisfies the equation (FE), then g and h satisfies the
equation (FEfg), that is

g(pr,qs)+g(ps,qr) = g(p,q)h(r,s).

If we take f = g in Corollaries 8–12, and assume that h is a given solution of
(FE) or it is unbounded, then we obtain a kind of hyperstability result for (FEfg) (with
a given h). Some information on hyperstability can be found in [2].

4. Extension of the results to Banach algebra

In this section, we will extend Theorem 3 and Theorem 4 of Section 3 to the
semisimple commutative Banach algebra. For simplicity, we will combine the two
theorems of Section 3 into the one theorem. Let (E,‖·‖) be a semisimple commutative
Banach algebra.

THEOREM 5. Let φ : G2 → E be a nonzero given function. Let f ,g,h : G2 → E
satisfy the functional inequality

‖ f (pr,qs)+g(ps,qr)−h(p,q)k(r,s)‖�
{

φ(r,s) ∀p,q,r,s ∈ G (i)

φ(p,q) ∀p,q,r,s ∈ G (ii).
(29)

For an arbitrary linear multiplicative functional x∗ ∈ E∗ :
(a) In the case (i), if |h(p,q)− f (p,q)| � M, and |h(p,q)− g(p,q)|� M′ for all

p,q ∈ G and some nonnegative constants M,M′ , then either x∗ ◦ h is bounded or k
satisfies (FE) for all p,q,r,s ∈ G. In addition, if x∗ ◦ h satisfies the equation (FE),
then k and h satisfies the equation (FEfg).

(b) In the case (ii), if |k(p,q)− f (p,q)| � M, and |k(p,q)− g(q, p)| � M′ for
all p,q ∈ G and some nonnegative constants M,M′ , then either x∗ ◦ k is bounded or
h satisfies (FE) for all p,q,r,s ∈ G. In addition, if x∗ ◦ k satisfies the equation (FE),
then h and k satisfies the equation (FEfg).

Proof. First we show (a). Assume that (i) of (29) holds, and let us fix arbitrarily a
linear multiplicative functional x∗ ∈ E� . As well known we have ‖x∗‖ = 1 hence, for
every x,y ∈ E , we have

φ(r,s) � ‖ f (pr,qs)+g(ps,qr)−h(p,q)k(r,s)‖
�

∣∣x∗( f (pr,qs)
)
+ x∗

(
g(ps,qr)

)− x∗
(
h(p,q)

)
x∗

(
k(r,s)

)∣∣,
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which states that the superpositions x∗ ◦ f , x∗ ◦ g , x∗ ◦ h and x∗ ◦ k yield solutions of
inequality (16). Since, by assumption, the superposition x∗ ◦h is unbounded, an appeal
to Theorem 3 shows that the function x∗ ◦ k solves the equation (FE). In otherwords,
bearing the linear multiplicativity of x∗ in mind, for all p,q,r,s ∈ G , the difference

DFE(p,q,r,s) := k(pr,qs)+ k(ps,qr)− k(p,q)k(r,s)

falls into the kernel of x∗ . Therefore, in view of the unrestricted choice of x∗ , we infer
that

DFE(p,q,r,s) ∈
⋂{

kerx∗ : x∗ is a multiplicative member of E∗
}

for all p,q,r,s ∈ G . Since the algebra E has been assumed to be semisimple, the last
term of the above formula coincides with the singleton {0} , that is

k(pr,qs)+ k(ps,qr)− k(p,q)k(r,s) = 0 for all p,q,r,s ∈ G,

as claimed. The other case (b) is similar, so its proof will be omitted. This completes
the proof the theorem. �

COROLLARY 13. Let f ,g,h,k : G2 → E be functions satisfying

‖ f (pr,qs)+g(ps,qr)−h(p,q)k(r,s)‖� ε (30)

for all p,q,r,s ∈ G and for some ε � 0 . For an arbitrary linear multiplicative func-
tional x∗ ∈ E∗ :

(a) In the case (i), if |h(p,q)− f (p,q)| � M, and |h(p,q)− g(p,q)| � M′ for
all p,q ∈ G and some nonnegative constants M,M′ , then either x∗ ◦ h is bounded or
k satisfies (FE) for all p,q,r,s ∈ G. In addition, if x∗ ◦ h satisfies the equation (FE),
then k and h satisfies the equation (FEfg).

(b) In the case (ii), if |k(p,q)− g(p,q)| � M, and |k(p,q)− f (q, p)| � M′ for
all p,q ∈ A and some nonnegative constants M,M′ , then either x∗ ◦ k is bounded or
h satisfies (FE) for all p,q,r,s ∈ G. In addition, if x∗ ◦ k satisfies the equation (FE),
then h and k satisfies the equation (FEfg).
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