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SOME INEQUALITIES FOR THE ČEBYŠEV

FUNCTIONAL AND EULER TWO–POINT FORMULAE

J. PEČARIĆ AND A. VUKELIĆ

(Communicated by M. Matić)

Abstract. We use inequalities for the Čebyšev functional in terms of the first derivative (see [3]),
for some new bounds for the remainder of general Euler two-point formula and its generalization
for Bullen type formula.

1. Introduction

For k � 1 and fixed x ∈ [0,1/2] define the functions Gx
k(t) and Fx

k (t) as

Gx
k(t) = B∗

k (x− t)+B∗
k (1− x− t), t ∈ R

and Fx
k (t) = Gx

k(t)− B̃k(x), t ∈ R , where

B̃k(x) = Bk(x)+Bk (1− x) , x ∈ [0,1/2] , k � 1.

The functions Bk(t) are the Bernoulli polynomials, Bk = Bk(0) are the Bernoulli num-
bers, and B∗

k(t), k � 0, are periodic functions of period 1, related to the Bernoulli
polynomials as

B∗
k(t) = Bk(t), 0 � t < 1 and B∗

k(t +1) = B∗
k(t), t ∈ R.

The Bernoulli polynomials Bk(t), k � 0 are uniquely determined by the following
identities:

B′
k(t) = kBk−1(t), k � 1; B0(t) = 1, Bk(t +1)−Bk(t) = ktk−1, k � 0.

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2]. We have that B∗

0(t) = 1 and B∗
1(t) is a discontinuous function

with a jump of −1 at each integer. It follows that Bk(1) = Bk(0) = Bk for k � 2, so
that B∗

k(t) are continuous functions for k � 2. We get

B∗′
k (t) = kB∗

k−1(t), k � 1 (1.1)
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for every t ∈ R when k � 3, and for every t ∈ R\Z when k = 1,2.
Especially, we get B̃1(x) = 0, B̃2(x) = 2x2−2x+1/3, B̃3(x) = 0. Also, for k � 2

we have B̃k(x) = Gx
k(0) , that is Fx

k (t) = Gx
k(t)−Gx

k(0), k � 2, and Fx
1 (t) = Gx

1(t), t ∈
R . Obviously, Gx

k(t) and Fx
k (t) are periodic functions of period 1 and continuous for

k � 2.
Let f : [0,1]→R be such that f (n−1) exists on [0,1] for some n � 1. We introduce

the following notation for each x ∈ [0,1/2]

D(x) =
1
2

[ f (x)+ f (1− x)] .

Further, we define T̃0(x) = 0 and, for 1 � m � n, x ∈ [0,1/2]

T̃m(x) =
1
2

[Tm(x)+Tm (1− x)] ,

where

Tm(x) =
m

∑
k=1

Bk (x)
k!

[
f (k−1)(1)− f (k−1)(0)

]
.

It is easy to see that

T̃m(x) =
1
2

m

∑
k=1

B̃k(x)
k!

[
f (k−1)(1)− f (k−1)(0)

]
. (1.2)

In [5], the authors established the general Euler two-point formulae:

THEOREM 1. Let f : [0,1] → R be such that f (n−1) is a continuous function of
bounded variation on [0,1], for some n � 1. Then for each x ∈ [0,1/2]∫ 1

0
f (t)dt = D(x)− T̃n(x)+ R̃1

n( f ) (1.3)

and ∫ 1

0
f (t)dt = D(x)− T̃n−1(x)+ R̃2

n( f ), (1.4)

where

R̃1
n( f ) =

1
2n!

∫ 1

0
Gx

n (t)d f (n−1)(t), R̃2
n( f ) =

1
2n!

∫ 1

0
Fx

n (t)d f (n−1)(t).

For two Lebesgue integrable functions f ,g : [a,b] → R , consider the Čebyšev
functional:

T ( f ,g) :=
1

b−a

∫ b

a
f (t)g(t)dt − 1

b−a

∫ b

a
f (t)dt · 1

b−a

∫ b

a
g(t)dt. (1.5)

In [3] the authors proved the following theorems:
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THEOREM 2. Let f ,g : [a,b]→R be two absolutely continuous functions on [a,b]
with

(·−a)(b−·)( f ′)2,(·−a)(b−·)(g′)2 ∈ L1[a,b].

Then we have the inequality

|T ( f ,g)| � 1√
2

[T ( f , f )]
1
2

1√
b−a

(∫ b

a
(x−a)(b− x)

[
g′(x)

]2
dx

) 1
2

(1.6)

� 1
2(b−a)

(∫ b

a
(x−a)(b− x)

[
f ′(x)

]2
dx

) 1
2

×
(∫ b

a
(x−a)(b− x)

[
g′(x)

]2
dx

) 1
2

.

The constant 1√
2

and 1
2 are best possible in (1.6).

THEOREM 3. Assume that g : [a,b] → R is monotonic nondecreasing on [a,b]
and f : [a,b] → R is absolutely continuous with f ′ ∈ L∞[a,b] . Then we have the in-
equality

|T ( f ,g)| � 1
2(b−a)

|| f ′||∞
∫ b

a
(x−a)(b− x)dg(x). (1.7)

The constant 1
2 is best possible.

In [6] the authors gave some estimations of the error for two-point formula (1.3)
via pre-Grüss inequality.

In this paper we will use the above theorems to get some new bounds for the
remainders of general Euler two-point formula (1.3). Applications for Bullen type
formula are also proved. As special cases, some new bounds for Euler trapezoid for-
mula, Euler midpoint formula, Euler two-point Newton-Cotes formula, Euler two-point
Maclaurin formula and Euler bitrapezoid formula are considered.

2. Applications for the general Euler two-point formula

Using Theorem 2 for identity (1.3) we get the following Grüss type inequality:

THEOREM 4. Let f : [0,1] → R be such that f (n) is absolutely continuous for
some n � 1 and ( f (n+1))2 ∈ L1[0,1] . Then for x ∈ [0,1/2] we have

D(x)−
∫ 1

0
f (t)dt − T̃n(x) = TGn( f ) (2.1)

and the remainder TGn( f ) satisfies the estimation

|TGn( f )| � 1
2

[
(−1)n−1

(2n)!
(B2n +B2n(1−2x))

] 1
2

·
(∫ 1

0
t(1− t)

[
f (n+1)(t)

]2
dt

) 1
2

.

(2.2)
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Proof. If we apply Theorem 2 for f → Gx
n, g → f (n) , we deduce∣∣∣∣∫ 1

0
Gx

n (t) f (n)(t)dt−
∫ 1

0
Gx

n (t) ·
∫ 1

0
f (n)(t)dt

∣∣∣∣
� 1√

2
[T (Gx

n (·) ,Gx
n (·))] 1

2 ·
(∫ 1

0
t(1− t)

[
f (n+1)(t)

]2
dt

) 1
2

, (2.3)

where

T (Gx
n (·) ,Gx

n (·)) =
∫ 1

0
[Gx

n (t)]2 dt−
[∫ 1

0
Gx

n (t)dt

]2

.

From [5] we have
∫ 1
0 Gx

n (t)dt = 0 and∫ 1

0
[Gx

n (t)]2 dt = (−1)n−1 2(n!)2

(2n)!
(B2n +B2n(1−2x)).

Using (1.3) and (2.3), we deduce representation (2.1) and bound (2.2). �

REMARK 1. We have∫ 1

0
Fx

k (t)dt =
∫ 1

0
Gx

k (t)dt−
∫ 1

0
B̃k(x)dt = −B̃k(x),

and also ∫ 1

0
[Fx

k (t)]2 dt =
∫ 1

0
[Gx

k (t)]2 dt−2B̃k(x)
∫ 1

0
Gk (t)dt + B̃2

k(x).

So, using (1.4) similar as in (2.3), we deduce representation (2.1) and bound (2.2), too.

COROLLARY 1. Let f : [0,1] → R be such that f (2k−1) is absolutely continuous

for some k � 2 , ( f (2k))2 ∈ L1[0,1] and f (2k−1) � 0 on [0,1] . Then for x∈
[
0, 1

2 − 1
2
√

3

]
we have

0 � (−1)k−1
{

D(x)−
∫ 1

0
f (t)dt− T̃2k−1(x)

}
(2.4)

� 1
2

[
1

(4k−2)!
(B4k−2 +B4k−2(1−2x))

] 1
2

·
(∫ 1

0
t(1− t)

[
f (2k)(t)

]2
dt

) 1
2

,

and for x ∈
[

1
2
√

3
, 1

2

]
0 � (−1)k

{
D(x)−

∫ 1

0
f (t)dt − T̃2k−1(x)

}
(2.5)

� 1
2

[
1

(4k−2)!
(B4k−2 +B4k−2(1−2x))

] 1
2

·
(∫ 1

0
t(1− t)

[
f (2k)(t)

]2
dt

) 1
2

.
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Proof. We are using Lemma 2 from [5]. �

If in Theorem 4 we choose x = 0,1/2,1/3,1/4 we get inequality related to the
trapezoid, the midpoint, the two-point Newton-Cotes and the two point Maclaurin for-
mula of Euler type:

COROLLARY 2. Let f : [0,1] → R be such that f (n) is absolutely continuous for
some n � 1 and ( f (n+1))2 ∈ L1[0,1] . Then we have∣∣∣∣12 [ f (0)+ f (1)]−

∫ 1

0
f (t)dt − T̃n(0)

∣∣∣∣ (2.6)

� 1
2

[
2(−1)n−1

(2n)!
B2n

] 1
2

·
(∫ 1

0
t(1− t)

[
f (n+1)(t)

]2
dt

) 1
2

,

where T̃0(0) = 0 and

T̃n(0) =
�n/2�
∑
k=1

B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
.

REMARK 2. For n = 1 in Corollary 2 we get

∣∣∣∣12 [ f (0)+ f (1)]−
∫ 1

0
f (t)dt

∣∣∣∣ � 1

2
√

6
·
(∫ 1

0
t(1− t)

[
f ′′(t)

]2
dt

) 1
2

.

COROLLARY 3. Let f : [0,1] → R be such that f (n) is absolutely continuous for
some n � 1 and ( f (n+1))2 ∈ L1[0,1] . Then we have∣∣∣∣ f (

1
2

)
−

∫ 1

0
f (t)dt− T̃n

(
1
2

)∣∣∣∣ (2.7)

� 1
2

[
2(−1)n−1

(2n)!
B2n

] 1
2

·
(∫ 1

0
t(1− t)

[
f (n+1)(t)

]2
dt

) 1
2

,

where T̃0
(

1
2

)
= 0 and

T̃n

(
1
2

)
=

�n/2�
∑
k=1

(21−2k−1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
.

REMARK 3. For n = 1 in Corollary 3 we get

∣∣∣∣ f (
1
2

)
−

∫ 1

0
f (t)dt

∣∣∣∣ � 1

2
√

6
·
(∫ 1

0
t(1− t)

[
f ′′(t)

]2
dt

) 1
2

.
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COROLLARY 4. Let f : [0,1] → R be such that f (n) is absolutely continuous for
some n � 1 and ( f (n+1))2 ∈ L1[0,1] . Then we have∣∣∣∣12

[
f

(
1
3

)
+ f

(
2
3

)]
−

∫ 1

0
f (t)dt − T̃n

(
1
3

)∣∣∣∣ (2.8)

� 1
2

[
(−1)n−1

2(2n)!
(1+31−2n)B2n

] 1
2

·
(∫ 1

0
t(1− t)

[
f (n+1)(t)

]2
dt

) 1
2

,

where T̃0
(

1
3

)
= 0 and

T̃n

(
1
3

)
=

1
2

�n/2�
∑
k=1

(31−2k −1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
.

REMARK 4. For n = 1 in Corollary 4 we get∣∣∣∣12
[

f

(
1
3

)
+ f

(
2
3

)]
−

∫ 1

0
f (t)dt

∣∣∣∣ � 1

6
√

2
·
(∫ 1

0
t(1− t)

[
f ′′(t)

]2
dt

) 1
2

.

COROLLARY 5. Let f : [0,1]→R be such that f (2m) is absolutely continuous for
some m � 1 and ( f (2m+1))2 ∈ L1[0,1] . Then we have∣∣∣∣12

[
f

(
1
4

)
+ f

(
3
4

)]
−

∫ 1

0
f (t)dt −T2m

(
1
4

)∣∣∣∣ (2.9)

� 1
2

[
− 1

(4m)!
21−4mB4m

] 1
2

·
(∫ 1

0
t(1− t)

[
f (2m+1)(t)

]2
dt

) 1
2

,

where T̃0
( 1

4

)
= 0 and

T̃2m

(
1
4

)
=

m

∑
k=1

2−2k(21−2k −1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
.

The following Grüss type inequality also holds.

THEOREM 5. Let f : [0,1] → R be such that f (n) is absolutely continuous and
f (n+1) � 0 on [0,1] . Then we have representation (2.1) and remainder TGn( f ) satisfies
the bound

|TGn( f )| � 1
2(n−1)!

∣∣∣∣Gx
n−1 (t)

∣∣∣∣
∞

{
f (n−1)(0)+ f (n−1)(1)

2
− f (n−2)[0,1]

}
(2.10)

for any x ∈ [0,1/2] and

f (n−2)[0,1] = f (n−2)(1)− f (n−2)(0).
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Proof. If we apply Theorem 3 for f → Gx
n, g → f (n) , we deduce∣∣∣∣∫ 1

0
Gx

n (t) f (n)(t)dt−
∫ 1

0
Gx

n (t)dt ·
∫ 1

0
f (n)(t)dt

∣∣∣∣
� n

2

∣∣∣∣Gx
n−1 (t)

∣∣∣∣
∞

(∫ 1

0
t(1− t) f (n+1)(t)dt

)
. (2.11)

Since∫ 1

0
t(1− t) f (n+1)(t)dt =

∫ 1

0
f (n)(t)[2t−1]dt

=
[
f (n−1)(1)+ f (n−1)(0)

]
−2

(
f (n−2)(1)− f (n−2)(0)

)
,

using representation (2.1) and inequality (2.11), we deduce (2.10). �

REMARK 5. From [5] we have that for n−1 = 2k, k � 2∣∣∣∣Gx
n−1 (t)

∣∣∣∣
∞ = ||Gx

2k (t)||∞ = 2max{|B2k (x)| , |B2k (1/2− x)|} .

3. Applications for Bullen type formula

In [4] the authors generalized identities (1.3) and (1.4) by construction a general
closed 4-point rule based on Euler-type identities.

For k � 1 and fixed x ∈ [
0, 1

2

]
we define functions GHx

k and FHx
k as

GHx
k (t) = B∗

k (x− t)+B∗
k (1− x− t)+B∗

k (−t)+B∗
k (1− t)

= B∗
k (x− t)+B∗

k (1− x− t)+2B∗
k (−t)

and
FHx

k (t) = GHx
k (t)− B̃Hk(x) , (3.1)

for all t ∈ R, where

B̃Hk(x) = Bk (x)+Bk (1− x)+Bk (0)+Bk (1)

=
[
1+(−1)k

]
[Bk (x)+Bk] .

Now let f : [0,1] → R be such that f (n−1) exists on [0,1] for some n � 1. We
introduce the following notation for each x ∈ [

0, 1
2

]
DH (x) =

1
4

[ f (x)+ f (1− x)+ f (0)+ f (1)] .

Furthermore, we define

T̃H0 (x) = 0

T̃Hm (x) =
1
4

[Tm (x)+Tm (1− x)+Tm (0)+Tm (1)] , 1 � m � n,
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It can be easily checked that

T̃Hm (x) =
1
4

m

∑
k=1

B̃Hk(x)
k!

[
f (k−1) (1)− f (k−1) (0)

]
.

THEOREM 6. Let f : [0,1] → R, be such that for some n ∈ N derivative f (n−1)

is a continuous function of bounded variation on [0,1] . Then for every x ∈ [0,1/2]∫ 1

0
f (t)dt = DH (x)− T̃Hn (x)+ R̃H

1
n (x) (3.2)

and ∫ 1

0
f (t)dt = DH (x)− T̃Hn−1 (x)+ R̃H

2
n (x) , (3.3)

where

R̃H
1
n (x) =

1
4n!

∫ 1

0
GHx

n (t)d f (n−1) (t)

and

R̃H
2
n (x) =

1
4n!

∫ 1

0
FHx

n (t)d f (n−1) (t) .

Using Theorem 2 for identity (3.2) we get the following Grüss type inequality:

THEOREM 7. Let f : [0,1] → R be such that f (n) is absolutely continuous for
some n � 1 and ( f (n+1))2 ∈ L1[0,1] . Then for x ∈ [0,1/2] we have

DH(x)−
∫ 1

0
f (t)dt − T̃Hn(x) = TGHn( f ) (3.4)

and the remainder TGHn( f ) satisfies the estimation

|TGHn( f )| � 1
4

[
(−1)n−1

(2n)!
(3B2n +4B2n(x)+B2n(1−2x))

] 1
2

(3.5)

×
(∫ 1

0
t(1− t)

[
f (n+1)(t)

]2
dt

) 1
2

.

Proof. If we apply Theorem 2 for f → GHx
n , g → f (n) , we deduce∣∣∣∣∫ 1

0
GHx

n (t) f (n)(t)dt−
∫ 1

0
GHx

n (t)dt ·
∫ 1

0
f (n)(t)dt

∣∣∣∣
� 1√

2
[T (GHx

n (·) ,GHx
n (·))] 1

2 ·
(∫ 1

0
t(1− t)

[
f (n+1)(t)

]2
dt

) 1
2

, (3.6)

where

T (GHx
n (·) ,GHx

n (·)) =
∫ 1

0
[GHx

n (t)]2 dt−
[∫ 1

0
GHx

n (t)dt

]2

.
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By easy calculation we get ∫ 1

0
GHx

n (t)dt = 0,

and using integration by part we have∫ 1

0
(GHx

n (t))2 dt

= (−1)n−1 n(n−1) . . .2
(n+1)(n+2) . . .(2n−1)

[∫ 1

0
GHx

1(t)GHx
2n−1(t)dt

]
= (−1)n−1 (n!)2

(2n)!

[
−4

∫ 1

0
GHx

2n(t)dt +2GHx
2n(0)+GHx

2n(x)+GHx
2n(1− x)

]
= (−1)n−1 2(n!)2

(2n)!
[3B2n +4B2n(x)+B2n(1−2x)].

Using (3.2) and (3.6), we deduce representation (3.4) and bound (3.5). �

REMARK 6. Because of (3.1) we get∫ 1

0
FHx

k (t)dt =
∫ 1

0
GHx

k (t)dt−
∫ 1

0
B̃Hk(x)dt = −B̃Hk(x),

and also∫ 1

0
[FHx

k (t)]2 dt =
∫ 1

0
[GHx

k (t)]2 dt−2B̃Hk(x)
∫ 1

0
Gk (t)dt + B̃H

2
k(x).

So, using (3.3) similar as in (3.6), we deduce representation (3.4) and bound (3.5), too.

REMARK 7. If in Theorem 7 we choose x = 0 we get inequality related to the
trapezoid formula (see Corollary 2).

If in Theorem 7 we choose x = 1/2 we get inequality related to the Euler bitrape-
zoid formula:

COROLLARY 6. Let f : [0,1] → R be such that f (n) is absolutely continuous for
some n � 1 and ( f (n+1))2 ∈ L1[0,1] . Then we have∣∣∣∣14

[
f (0)+2 f

(
1
2

)
+ f (1)

]
−

∫ 1

0
f (t)dt− T̃Hn

(
1
2

)∣∣∣∣ (3.7)

� 1
2

[
(−1)n−1

(2n)!
21−2nB2n

] 1
2

·
(∫ 1

0
t(1− t)

[
f (n+1)(t)

]2
dt

) 1
2

,

where T̃H0
(

1
2

)
= 0 and

T̃Hn

(
1
2

)
=

�n/2�
∑
k=1

2−2kB2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
.
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REMARK 8. For n = 1 in Corollary 6 we get

∣∣∣∣14
[

f (0)+2 f

(
1
2

)
+ f (1)

]
−

∫ 1

0
f (t)dt

∣∣∣∣ � 1

4
√

6
·
(∫ 1

0
t(1− t)

[
f ′′(t)

]2
dt

) 1
2

.

The following Grüss type inequality also holds.

THEOREM 8. Let f : [0,1] → R be such that f (n) is absolutely continuous and
f (n+1) � 0 on [0,1] . Then we have representation (3.4) and remainder TGHn( f ) sat-
isfies the bound

|TGHn( f )| � 1
4(n−1)!
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(3.8)

for any x ∈ [0,1/2] and

f (n−2)[0,1] = f (n−2)(1)− f (n−2)(0).

Proof. If we apply Theorem 3 for f → GHx
n , g → f (n) , we deduce∣∣∣∣∫ 1
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. (3.9)

Using representation (3.4) and inequality (3.9), we deduce (3.8). �

REMARK 9. From [4] we have that for n−1 = 2k, k � 2∣∣∣∣GHx
n−1 (t)

∣∣∣∣
∞ = ||GHx

2k (t)||∞ = 2max{|B2k (x)+B2k| , |B2k (1/2− x)+B2k(1/2)|} .
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Faculty of Textile Technology

University of Zagreb
Pierottijeva 6, 10000 Zagreb, Croatia

e-mail: pecaric@element.hr

A. Vukelić
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