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SOME INEQUALITIES FOR THE CEBYSEV
FUNCTIONAL AND EULER TWO-POINT FORMULAE

J. PECARIC AND A. VUKELIC

(Communicated by M. Matic)

Abstract. We use inequalities for the CebyEev functional in terms of the first derivative (see [3]),
for some new bounds for the remainder of general Euler two-point formula and its generalization
for Bullen type formula.

1. Introduction
For k > 1 and fixed x € [0,1/2] define the functions G;(r) and F(¢) as
Gi(t)=Bi(x—1)+B;(l—x—1),t€R
and F}'(1) = G{(t) — Bx(x), t € R, where

Bi(x) =Br(x) +Br(1—x), x€1[0,1/2], k> 1.

The functions By(z) are the Bernoulli polynomials, B; = By (0) are the Bernoulli num-
bers, and Bi(r), k > 0, are periodic functions of period 1, related to the Bernoulli
polynomials as

Bi(t)=Bi(t),0<t<1 and Bj(t+1)=B;{),t€R.

The Bernoulli polynomials By (z), k > 0 are uniquely determined by the following
identities:

Bi(1) =kBi_1(t), k> 1; Bo(t) = 1, By(t+ 1) — Bi(t) = ki k> 0.

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2]. We have that Bjj(r) = 1 and Bj(¢) is a discontinuous function
with a jump of —1 at each integer. It follows that By (1) = B(0) = By for k > 2, so
that By () are continuous functions for k > 2. We get

BY(t) =kBi_y (1), k> 1 (L.1)
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for every 1 € R when k > 3, and forevery 1 € R\ Z when k = 1,2.

Especially, we get By (x) = 0, By(x) = 2x> —2x+1/3, B3(x) = 0. Also, for k >2
we have By(x) = G{(0), thatis F'(r) = G{(t) — G{(0), k=2, and F{(1)=G}(t), t €
R. Obviously, Gi(t) and F(t) are periodic functions of period 1 and continuous for
k>2.

Let £:[0,1] — R be such that £"~1) exists on [0, 1] for some n > 1. We introduce
the following notation for each x € [0,1/2]

D(x) = F[f() + £ (1 =x)].

N =

Further, we define 7y(x) =0 and, for 1 < m <n, x € [0,1/2]

éﬂz

() = 3 [T+ T (1 =0,

where

= 3 B [0 - 0 ).
k=1

It is easy to see that

_%ig [F40 (1) - 14D (0)] (12)

In [5], the authors established the general Euler two-point formulae:

THEOREM 1. Let f:[0,1] — R be such that f"=Y) is a continuous function of
bounded variation on [0, 1], for some n > 1. Then for each x € [0,1/2]

/f ~Ty(0) + RA(f) (13)
and |
| #0)dt = D) 7o)+ () (1.4)
where
R =5y [ G 0ar V), B =5 [ Er@ar )

For two Lebesgue integrable functions f,g : [a,b] — R, consider the Cebysev

functional:
,.b_/f 1)di — _a/fdt—/g s

In [3] the authors proved the following theorems:
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THEOREM 2. Let f,g: [a,b] — R be two absolutely continuous functions on [a,b]
with

(—a)b—)(f), (-~ a)(b—")(¢)* € Lila,b].

Then we have the inequality

Nl—

% \/% (/ab(x—a)(b—x) [g’(x)]zdx)% (1.6)
1

<o ([ - a0e-0 @)

x (/ah(x—a)(b—x) [g/(x)]zdx> '

2
The constant % and % are best possible in (1.6).

T(f.8)l < —= [T (f.1)]

2

THEOREM 3. Assume that g : [a,b] — R is monotonic nondecreasing on [a,b]
and f : [a,b] — R is absolutely continuous with [’ € L.|a,b]. Then we have the in-
equality

1

b
T8 < g/ ll= | =)o)z (a7

The constant % is best possible.

In [6] the authors gave some estimations of the error for two-point formula (1.3)
via pre-Griiss inequality.

In this paper we will use the above theorems to get some new bounds for the
remainders of general Euler two-point formula (1.3). Applications for Bullen type
formula are also proved. As special cases, some new bounds for Euler trapezoid for-
mula, Euler midpoint formula, Euler two-point Newton-Cotes formula, Euler two-point
Maclaurin formula and Euler bitrapezoid formula are considered.

2. Applications for the general Euler two-point formula
Using Theorem 2 for identity (1.3) we get the following Griiss type inequality:

THEOREM 4. Let f:[0,1] — R be such that f) is absolutely continuous for
some n> 1 and (f"+*V)2 € L,[0,1]. Then for x € [0,1/2] we have

1 ~
DWW~ [ £t~ T,(x) = TG,(f) @.1)

and the remainder T G, (f) satisfies the estimation

TG < & [(‘(zl—jl’;,lwwwl —20)| " ([ra-n o] )

L
2

(2.2)
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Proof. If we apply Theorem 2 for f — G}, g — f (n) | we deduce

£)dt — /G" /f
(/0 ((1—1) [f“””(r)]zdt)%, 23)

D=

<

[1(G3().G3 ()

&\

where

16,600 = [ (G ar- UOIG’,E (r)dr]z.

From [5] we have [, G} (t)dr =0 and

1
X 2 _(_ : _
163 @0 = (1) T (Bt Ba1 —20).
Using (1.3) and (2.3), we deduce representation (2.1) and bound (2.2). [
REMARK 1. We have
/ Fk dl / Gx dl / Bk —Bk( ),
and also
1 5 1 5 . 1 -
/ [ ()P dt = / (G (1) di — 2Bx(x) / Gy (1) dt + B2(x).
0 0 0
So, using (1.4) similar as in (2.3), we deduce representation (2.1) and bound (2.2), too.

COROLLARY 1. Let f:[0,1] — R be such that f?*=1) is absolutely continuous
for some k=2, ()2 € 1,]0,1] and f**1) >0 on [0,1]. Thenfor x € [O, 3 2\5]

we have

0< (C1t! {D(x) - [ rwa- Tzk_1<x>} 2.4)

L
2

< % [ﬁ(34k—2+34k—2(1 —2)6))] : : (/Olf(l —1) {f@k)(l)rdf> ;
and for x € [7 %]
{ /Olf(’)df—fycl(x)} (2.5)
1 o 2 \?
<5 [m(&k—z-i-&k—z(l —2)6))] : (/0 t(1—1) [f(zk)(t)} df) .
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Proof. We are using Lemma 2 from [5]. O

If in Theorem 4 we choose x = 0,1/2,1/3,1/4 we get inequality related to the
trapezoid, the midpoint, the two-point Newton-Cotes and the two point Maclaurin for-
mula of Euler type:

COROLLARY 2. Let f:[0,1] — R be such that f) is absolutely continuous for
some n>1 and (f"+)2 € L1[0,1]. Then we have

\Hﬂm+ﬂm—

! fmw—ﬁmﬂ 2.6)

1
0
<§F%%?&4a([m—wM“Wﬂ%Q{

where Tp(0) = 0 and

By
2!

[n/2]
Tn(()) — 2 [f(2k71)(1) _f(2k71)(0):| )
k=1

REMARK 2. For n =1 in Corollary 2 we get

< ﬁ (/Olt(l—t) [f”(t)]zdt)%.

COROLLARY 3. Let f:[0,1] — R be such that f) is absolutely continuous for
some n> 1 and (f"+)2 € L1[0,1]. Then we have

Q) fron )

SO+ ) [ ra

AP (0ol rofa)

where T (%) =0 and

. (1) _ [n/2] (2172k_ 1)Bay

(5 s =)

k=1

REMARK 3. For n =1 in Corollary 3 we get

‘f (%) —/Olf(t)dt‘ < 21%. (/Olt(l 1) [f”(t)]zdt> By
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COROLLARY 4. Let f:[0,1] — R be such that f) is absolutely continuous for
some n> 1 and (f"+)2 € L1[0,1]. Then we have

s () ()L o (5) o

1

’ % [(2—(12))_ (14328 nr(/olz(l—t) [f<"“)(t)rdz)2,

where T (%) =0 and

[n/2] (21-2k _
5(3)-3 & S -]

REMARK 4. For n =1 in Corollary 4 we get

) oG- Lo ([o-arore)|

COROLLARY 5. Let f:[0,1] — R be such that f®™ is absolutely continuous for
some m > 1 and (f*"1))2 € L,[0,1]. Then we have

() (5] L smarna(3) e

<3 [_ (4:,1)!21_%3“’”} : </01‘“ -0l <2'"+”<”]2‘”) E

where T (%) =0 and

m ~—2k(~n1-2k __
% (%) :k; 27742 " 1)Boy [f(2k71)(1) _f(2k71)(0)] .

The following Griiss type inequality also holds.

THEOREM 5. Let f:[0,1] — R be such that f") is absolutely continuous and
FU+Y >0 on [0,1]. Then we have representation (2.1) and remainder TG, (f) satisfies
the bound

(n—1) (n—1)
ITG,(f)| < ﬁHGﬁI(I)Hm{f (0);‘f (1) _f(n—2)[07 1]} (2.10)

forany x €10,1/2] and

FUP00,1) = £ (1) = f072(0).
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Proof. If we apply Theorem 3 for f — G}, g — f (n) | we deduce

1 1 1
x () _ X . ()
/0 G2 (1) £ (1) /0 G: (1) dr /0 f

<SGl (/Olt(l—t)f(”l)(t)dt). @.11)

Since

1
n+1 _
/0 t(1— 1)dt = / @) 2t —1]d
= [/ @)+ >} —2(f" (1) - f20)).
using representation (2.1) and inequality (2.11), we deduce (2.10). [

REMARK 5. From [5] we have that for n — 1 =2k, k> 2

1Gat (O)]].. = 11G2 (1)]].. = 2max{|Boy (x)], | Bok (1/2 = x)[}.

3. Applications for Bullen type formula

In [4] the authors generalized identities (1.3) and (1.4) by construction a general
closed 4-point rule based on Euler-type identities.
For k > 1 and fixed x € [0, 1] we define functions GH} and FH; as

GH; (1) = By (x—1t)+ By (1 —x—1t)+ B (—t)+ B (1 —1)
=By(x—t)+B;(1—x—1)+2B;(—t)

and -
FH; (1) = GH} (1) ~ BH(x) , 3.1)

for all € R, where
BH(x) = Bi (x) + Bt (1 —x) + By (0) + Bi (1)
= |1+ (=] [Be () + B

Now let f:[0,1] — R be such that f"~1) exists on [0,1] for some n > 1. We
introduce the following notation for each x € [0, 1]

DH (x) = 7 [f (x) +f (1 =x)+ f (0) + f (1)].

ENT

Furthermore, we define
ﬁo (x) =0

THy (x) = [T () + T (1= 9+ T (0) 4 Ty (1], 1 <m<m
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It can be easily checked that

TH, (x) =

EN
NgE

k!

k=1

THEOREM 6. Let f:[0,1] — R, be such that for some n € N derivative f"~1)
is a continuous function of bounded variation on [0,1]. Then for every x € [0,1/2]

/1f(t)dt — DH (x) — TH, (x) + RH,, (x) (3.2)
0
and |
| #6)de=DH ()~ TH, -1 () + Rt ), (33)
where | |
R, (x) = 3 [ GH (1) ar™ ) ()
and

_ 1/
RH, (1) = o [ PHI 0 ar") ().
4n! Jo
Using Theorem 2 for identity (3.2) we get the following Griiss type inequality:

THEOREM 7. Let f:[0,1] — R be such that f") is absolutely continuous for
some n> 1 and (f"+*D)2 € L[0,1]. Then for x € [0,1/2] we have

DA~ [ fle)ds ~TH, () = TGH, (1) 3.4

and the remainder TGH,(f) satisfies the estimation

(_l)n—l 2
TGH,(f)) < [ (3Bs+ 4Bon(x) + B —2x>>] (3:5)

(2n)!

x </Olt(1 —1) {f(nﬂ)(t)rdt)z'

Proof. If we apply Theorem 2 for f — GH;\, g — f () | we deduce

1
4

'/OIGHf(I)f(")(I)dl—/Ol GH;, (’)df'/olf(")(t)dt

<%[T(GH£(->,GH§(->)]%-< R [f<"+1><t>]2dt) Y
where

T (GH) (-),GH} (")) = /l [GH? (1)]*di — [/OIGH;‘ (t)dtr.

0
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By easy calculation we get
1
/ GHZ (1)d1 =0,
0

and using integration by part we have

1
PO

0

nn—1)...2
(n+1)(n+2)...2n—1)

— (1! [/01 GHf(t)GHé‘n_l(t)dt}

n' 2
_ <‘1>"1E2,?! [_4/01GH§‘,,(t)dt+2G X (0)+GHE, (x)+ G é‘n(l—x)}
:(—1)"‘1M[3B +4B2(x) + Boy (1 — 2x)]

(Zn)' 2n 2n 2n .

Using (3.2) and (3.6), we deduce representation (3.4) and bound (3.5). [
REMARK 6. Because of (3.1) we get
/0 CFHE (1) dr = /O CGHE () dr — /0 BH (x)di = —BH, (x),
and also
/01 (FHY () di = /O1 (GH? ()] di — 2BH, (x) /01 Gy (1) dt + BH, (x).
So, using (3.3) similar as in (3.6), we deduce representation (3.4) and bound (3.5), too.

REMARK 7. If in Theorem 7 we choose x = 0 we get inequality related to the
trapezoid formula (see Corollary 2).

If in Theorem 7 we choose x = 1/2 we get inequality related to the Euler bitrape-
zoid formula:

COROLLARY 6. Let f:[0,1] — R be such that f) is absolutely continuous for
some n> 1 and (f"+)? € L1[0,1]. Then we have

Llroar (5) ] - [rwa-1a, (5) 67)
<3[re =] (fr-oferufa)
where THy (1) =0 and
7t (1) = 5 2t [0
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REMARK 8. For n =1 in Corollary 6 we get

S () ] Lroal g ([ irore

The following Griiss type inequality also holds.

1
2

THEOREM 8. Let f:[0,1] — R be such that f") is absolutely continuous and
fU+Y >0 on [0,1]. Then we have representation (3.4) and remainder TGH,,(f) sat-
isfies the bound

1 . (=1 (0) 4 f=1(1 -
(3.8)
forany x €10,1/2] and
F20, 1] = £ (1) = £2(0).
Proof. If we apply Theorem 3 for f — GH,;, g — f () we deduce
1 1 1
X (n) _ X . (n)
/0 GH? (1) £ (1)dr /0 GH? (1) dr /0 £ (1)t
1

< 3lleH ()] (/0 r(l—t)f“*”(t)dt). (3.9)

Using representation (3.4) and inequality (3.9), we deduce (3.8). [

REMARK 9. From [4] we have that for n — 1 =2k, k> 2

|GH;y_, (1)]].. = ||GH3; (¢)]].. = 2max {[Bay (x) + Bak| , | Bax (1/2 — x) + Bax(1/2) |} .
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