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Abstract. In this article, we obtain a rectangle that contains all the zeros of a class of Fibonacci-
like polynomials. Then we obtain some relations and majorizations for the real and imaginary
parts of the zeros of such polynomials.

1. Introduction

Let a and b be fixed complex numbers and a �= 0. Consider a class of Fibonacci-
type polynomials Gn(z) = Gn(a,b;z) defined by the recurrence relation

Gn(z) = zGn−1(z)+Gn−2(z), G0(z) = a, G1(z) = z+b. (1)

The polynomials Gn(1,0;z) are the usual Fibonacci polynomials Fn(z) whose roots are
known explicitly as

z j = 2icos
jπ

n+1
, j = 1, . . . ,n.

However, there are no general formulae for the zeros of the Fibonacci-type polynomials.
In [1], the author has obtained the result

|z| � max{2, |a|+ |b|} ,

which generalizes the result in [2] for the case a = b = 1. It has been shown in [3] that
if z is any zero of Gn(z) then

|z| � 1+max{|a| , |b|} .

In this article, we establish upper and lower bounds for the real and imaginary parts of
the zeros of Gn(z) . These bounds when combined, describe a rectangle that contains
all the zeros of Gn(z) . Then we investigate some of the properties of the zeros of Gn(z)
and obtain some majorizations for the real and imaginary parts.
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2. Preliminary results

For a matrix B ∈ Cn×n , an r× r matrix B̃ is called a principal matrix of B if
it is obtained from B by deleting any n− r rows and the same n− r columns, let
ReB = 1

2 (B+B∗) and ImB = 1
2i (B−B∗) be the Cartesian parts of B , where B∗ is the

Hermitian adjoint of B , let det(B) stand for the determinant of B . If B is Hermitian,
then the eigenvalues of B are arranged in such a way that λ1(B) � λ2(B) � . . . � λn(B) .

For two sequences of real numbers arranged in decreasing order x = (x1,x2, . . . ,xn)
and y = (y1,y2, . . . ,yn) , we say that x is majorized by y if

k

∑
j=1

x j �
k

∑
j=1

y j for k = 1,2, . . . ,n−1

and

n

∑
j=1

x j =
n

∑
j=1

y j.

To obtain our bounds and majorizations, we need several results involving inequalities,
majorization relations and the interlacing property for the eigenvalues of matrices. For
the theory of the following results, the reader is referred to [4], [5] and [6].

LEMMA 1. If λ is any eigenvalue of B, then λ belongs to the rectangle

[λn(ReB),λ1(ReB)]× [λn(ImB),λ1(ImB)] .

LEMMA 2. Let A, B ∈Cn×n be Hermitian. Then

λ j(A)+ λn(B) � λ j(A+B) � λ j(A)+ λ1(B).

In particular,

λ1(A+B) � λ1(A)+ λ1(B) and λn(A+B) � λn(A)+ λn(B).

LEMMA 3. Let B∈Cn×n with eigenvalues arranged in such a way that Reλ1(B)�
Reλ2(B) � . . . � Reλn(B) . Then

k

∑
j=1

Reλ j(B) �
k

∑
j=1

λ j(ReB) for k = 1,2, . . . ,n−1

and

n

∑
j=1

Reλ j(B) =
n

∑
j=1

λ j(ReB).
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LEMMA 4. Let A, B ∈Cn×n be Hermitian. Then

k

∑
j=1

λ j(A+B) �
k

∑
j=1

λ j(A)+
k

∑
j=1

λ j(B) for k = 1,2, . . . ,n−1

and

n

∑
j=1

λ j(A+B) =
n

∑
j=1

λ j(A)+
n

∑
j=1

λ j(B).

LEMMA 5. (The Cauchy interlacing property) If B ∈Cn×n is Hermitian and B̃ is
an r× r principal submatrix of B, then the eigenvalues of B interlace those of B̃ , that
is

λi(B) � λi(B̃) � λn−r+i(B) for i = 1, . . . ,r.

We would like to note that the real parts in Lemma 3 can be replaced by the imaginary
parts.

3. Main results

Apply the recurrence relation (1) to obtain the exact form of Gn(z) for n = 2,3
and 4 as follows:

G2(z) = z2 +bz+a = det

[
z+b a
−1 z

]
,

G3(z) = z3 +bz2 +(a+1)z+b = det

⎡
⎣z+b a 0
−1 z 1
0 −1 z

⎤
⎦ ,

G4(z) = z4 +bz3 +(a+2)z2 +2bz+a = det

⎡
⎢⎢⎣

z+b a 0 0
−1 z 1 0
0 −1 z 1
0 0 −1 z

⎤
⎥⎥⎦ .

Consider the n×n (companion) matrix

Mn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−b −a 0 . . . 0

1 0 −1
. . .

...

0 1 0
. . . 0

...
. . .

. . .
. . . −1

0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

From the recurrence relation (1) and using induction, it can be easily shown that for
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n � 2,

Gn(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

z+b a 0 . . . 0

−1 z 1
. . .

...

0 −1 z
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 −1 z

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, Gn(z) can be considered as the characteristic polynomial of Mn and therefore,
the zeros of Gn(z) are exactly the eigenvalues of Mn .

Let Rn = Re(Mn) then it follows from (2) that Rn has the partitioned form

Rn =
[ −Reb x∗

x 0

]
,

where x∗ = [ 1
2 (1−a),0, . . . ,0] . It can be easily shown that the characteristic polynomial

of Rn is

det(Rn−λ I) = (−Reb−λ )(−λ )n−1− 1
4
|a−1|2 (−λ )n−2.

Thus, the eigenvalues of Rn are

λ1(Rn) =
1
2

(
−Reb+

√
(Reb)2 + |a−1|2

)
, (3)

λn(Rn) =
1
2

(
−Reb−

√
(Reb)2 + |a−1|2

)
, (4)

and
λ j(Rn) = 0 for j = 2, . . . ,n−1. (5)

Let Jn = Im(Mn) then it can be easily shown that

Jn = Sn +Tn, (6)

where Sn is the matrix in the partitioned form

Sn =
[ −Imb y∗

y 0

]
,

with y∗ = [ 1
2 i(a−1),0, . . . ,0] , and Tn is the n×n tridiagonal matrix

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 i 0 . . . 0

−i 0 i
. . .

...

0 −i 0
. . . 0

...
. . .

. . .
. . . i

0 . . . 0 −i 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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As for Rn , it is easy to verify that the eigenvalues of Sn are

λ1(Sn) =
1
2

(
−Imb+

√
(Imb)2 + |a−1|2

)
, (7)

λn(Sn) =
1
2

(
−Imb−

√
(Imb)2 + |a−1|2

)
(8)

and
λ j(Sn) = 0 for j = 2, . . . ,n−1. (9)

It is well-known that the eigenvalues of Tn are

λ j(Tn) = 2cos
jπ

n+1
for j = 1,2, . . . ,n. (10)

From (6), (7), (8) and (10) and by applying Lemma 2, we have

λ1(Jn) � 1
2

(
−Imb+

√
(Imb)2 + |a−1|2

)
+2cos

π
n+1

and

λn(Jn) � 1
2

(
−Imb−

√
(Imb)2 + |a−1|2

)
−2cos

π
n+1

.

Now, by Lemma 1, we are in a position to give the following rectangle that contains all
zeros of Gn(z) .

THEOREM 1. If z is any zero of Gn(z) , then z belongs to the rectangle

[α1,α2]× [β1,β2],

where

α1 =
1
2

(
−Reb−

√
(Reb)2 + |a−1|2

)
,

α2 =
1
2

(
−Reb+

√
(Reb)2 + |a−1|2

)
,

β1 =
1
2

(
−Imb−

√
(Imb)2 + |a−1|2

)
−2cos

π
n+1

and

β2 =
1
2

(
−Imb+

√
(Imb)2 + |a−1|2

)
+2cos

π
n+1

.

LEMMA 6. The following inequalities hold.

−2cos
π
n

�
n−1

∑
j=2

λ j(Jn) � 2cos
π
n

(11)
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and
− Imb−2cos

π
n

� λ1(Jn)+ λn(Jn) � −Imb+2cos
π
n

. (12)

Proof. Since Tn−1 is a principal submatrix of Jn , then it follows from Lemma 5
that

λ1(Jn) � 2cos
π
n

� λ2(Jn) � 2cos
2π
n

� . . . � λn−1(Jn) � 2cos
(n−1)π

n
� λn(Jn)

and since
n−1
∑
j=1

cos jπ
n = 0 and cos (n−1)π

n = −cos π
n , then (11) follows.

Now, (12) follows from (11) and the fact that
n
∑
j=1

λ j(Jn) = tr(Jn) = −Imb . �

Finally, in the following two results, we give majorizations for the real parts and
the imaginary parts of the zeros of Gn(z) .

LEMMA 7. If the zeros of Gn(z) are arranged in such a way that Rez1 � Rez2 �
. . . � Rezn , then

k

∑
j=1

Rez j � 1
2

(
−Reb+

√
(Reb)2 + |a−1|2

)
for k = 1,2, . . . ,n−1 (13)

and

n

∑
j=1

Rez j = −Reb. (14)

Proof. We obtain

k

∑
j=1

Re z j =
k

∑
j=1

Reλ j(Mn)

�
k

∑
j=1

λ j(Rn)

for k = 1,2, . . . ,n− 1. Using (3), (4) and (5) yields the majorization (13). Now, (14)
follows.

Now, (14) follows from the fact that
n
∑
j=1

z j =
n
∑
j=1

λ j(Mn) = tr(Mn) = −b . �

THEOREM 2. If the zeros of Gn(z) are arranged in such a way that Imz1 �
Imz2 � . . . � Imzn , then

k

∑
j=1

Imz j � 1
2

(
−Imb+

√
(Imb)2 + |a−1|2

)
+

(
sin
(

2k+1
2n

)
π

sin π
2n

)
−1 (15)
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for k = 1,2, . . . ,n−1 and
n

∑
j=1

Imz j = −Imb. (16)

Proof. Replacing the real parts by the imaginary parts in Lemma 3, we obtain

k

∑
j=1

Imz j =
k

∑
j=1

Imλ j(Mn)

�
k

∑
j=1

λ j(Jn)

for k = 1,2, . . . ,n− 1. Applying Lemma 4 and using (6), (7), (8), (9) and (10), we
obtain

k

∑
j=1

Imz j � 1
2

(
−Imb+

√
(Imb)2 + |a−1|2

)
+2

k

∑
j=1

cos
jπ
n

(17)

for k = 1,2, . . . ,n−1. But, for every real number t which is not a multiple of 2π , we
have

k

∑
j=1

cos jt =
1
2

(
sin(2k+1) t

2

sin t
2

)
− 1

2
.

Thus,
k

∑
j=1

cos
jπ
n

=
1
2

(
sin
(

2k+1
2n

)
π

sin π
2n

)
− 1

2
,

which, together with (17), gives the majorization (15). Now, (16) follows from the fact

that
n
∑
j=1

z j =
n
∑
j=1

λ j(Mn) = tr(Mn) = −b . �

REMARK. We would like to refer the interested reader to [7] and [8], where the
authors have investigated some fundamental properties of Fibonacci-type polynomials.
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