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ON ϕ –CONVEX FUNCTIONS

M. ESHAGHI GORDJI, M. ROSTAMIAN DELAVAR AND M. DE LA SEN

(Communicated by M. Klaričić Bakula)

Abstract. In this paper we introduce the notion of ϕ -convex functions as generalization of con-
vex functions. Some basic results under various conditions for the function ϕ are investigated.
Moreover, we establish Jensen and Hermite-Hadamard type inequalities related to ϕ -convex
functions. Also, the notions of ϕb -convex and ϕE -convex functions, which are generalization
of ϕ -convex functions are introduced and some new results related to these new settings are
obtained.

1. Introduction

The role of convex sets, convex functions and their generalizations are important in
applied mathematics specially in nonlinear programming and optimization theory. For
example in economics, convexity plays a fundamental role in equilibrium and duality
theory. The convexity of sets and functions have been the object of many studies in
recent years. But in many new problems encountered in applied mathematics the notion
of convexity is not enough to reach favorite results and hence it is necessary to extend
the notion of convexity to the new generalized notions. Recently, several extensions
have been considered for the classical convex functions such that some of these new
concepts are based on extension of the domain of a convex function (a convex set) to a
generalized form and some of them are new definitions that there is no generalization
on the domain but on the form of the definition. Some new generalized concepts in
this point of view are pseudo-convex functions [6], quasi-convex functions [1], invex
functions [4], preinvex functions [7], B-vex functions [5], B-preinvex functions [2] and
E -convex functions [10].

In this paper, we introduce the concept of ϕ -convex functions as generalization
of convex functions. Some basic results under various conditions for the function ϕ
are investigated. We define ϕb -convex and ϕE -convex functions as generalized forms
of ϕ -convex functions and prove some new results related to the new settings. Among
other things, we investigate the Jensen and Hermite-Hadamard type inequalities related
to ϕ -convex functions.
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2. Basic Results

Through this paper, let I be an interval in real line R and ϕ : R×R → R be a
bifunction except for special cases.

DEFINITION 2.1. A function f : I →R is called convex with respect to ϕ (briefly
ϕ -convex), if

f (λx+(1−λ )y) � f (y)+ λ ϕ( f (x), f (y)), (2.1)

for all x,y ∈ I and λ ∈ [0,1] . Also f is called ϕ -quasiconvex, if

f (λx+(1−λ )y) � max{ f (y), f (y)+ ϕ( f (x), f (y))}
for all x,y ∈ I and λ ∈ [0,1] . Moreover, f is called ϕ -affine if

f (λx+(1−λ )y) = f (y)+ λ ϕ( f (x), f (y))

for all x,y,λ ∈ R .

In the above definition if we set ϕ(x,y) = x− y , then we approach to the classic
definition of convex, quasiconvex and affine function respectively. Note that by taking
x = y in (2.1) we get λ ϕ( f (x), f (x)) � 0 for any x∈ I and t ∈ [0,1] which implies that

ϕ( f (x), f (x)) � 0,

for any x ∈ I . Also if we take λ = 1 in (2.1) we get

f (x)− f (y) � ϕ( f (x), f (y)),

for any x,y ∈ I . The second condition obviously implies the first. If f : I → R is a
convex function and ϕ : I× I → R is an arbitrary bifunction that satisfies

ϕ(x,y) � x− y

for any x,y ∈ I , then

f (λx+(1−λ )y) � f (y)+ λ [ f (x)− f (y)] � f (y)+ λ ϕ( f (x), f (y)),

showing that f is ϕ -convex.

EXAMPLE 2.2. (1) For a convex function f , we may find another function ϕ
other than the function ϕ(x,y) = x− y such that f is ϕ -convex. Consider f (x) = x2

and ϕ(x,y) = 2x+ y . Then we have

f (λx+(1−λ )y) = (λx+(1−λ )y)2

� y2 + λx2 + λ (1−λ )2xy

� y2 + λx2 + λ (1−λ )(x2 + y2)

� y2 + λ (x2 + x2 + y2)

= y2 + λ (2x2 + y2)
= f (y)+ λ ϕ( f (x), f (y))
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for all x,y ∈ R and λ ∈ (0,1) . Also the facts x2 � y2 + (2x2 + y2) and y2 � y2 , for
all x,y ∈ R show the correctness of inequality for λ = 1 and λ = 0 respectively which
means that f is ϕ -convex. Note that the function f (x) = x2 is ϕ -convex w.r.t all
ϕ(x,y) = ax+by with a � 1, b � −1 and x,y ∈ R .

(2) There is a ϕ -convex function f which is not convex. Consider f : R → R as

f (x) =
{−x, x � 0;

x, x < 0,

and ϕ : [−∞,0]× [−∞,0]→ R as

ϕ(x,y) =

⎧⎨
⎩

x, y = 0;
−y, x = 0;
−x− y, x < 0,y < 0.

Then it is not hard to check that f is ϕ -convex. Also, it is obvious that f is not a
convex function.

In the following we define various conditions for the function ϕ . We use these
concepts frequently in our results.

DEFINITION 2.3. The function ϕ is said to be

(i) nonnegatively homogeneous if ϕ(γx,γy) = γϕ(x,y) for all x,y ∈ R and all
γ � 0.

(ii) additive if ϕ(x1,y1)+ ϕ(x2,y2) = ϕ(x1 + x2,y1 + y2) for all x1,x2,y1,y2 ∈ R .

(iii) nonnegatively linear if satisfies conditions (i) and (ii) .
(iv) nondecreasing in first variable if x � y implies that ϕ(x,z) � ϕ(y,z) , for all

x,y,z ∈ R .

(v) nonnegatively sublinear in first variable if ϕ(γx+y,z) � γϕ(x,z)+ϕ(y,z) , for
all x,y,z ∈ R and γ � 0.

The proof of propositions 2.4, 2.5 and Theorem 2.6 is straightforward.

PROPOSITION 2.4. Consider ϕ -convex function f : I → R such that ϕ is non-
negatively homogeneous. Then for any γ � 0 , the function γ f : I → R is ϕ -convex.

PROPOSITION 2.5. Consider two ϕ -convex functions f ,g : I → R such that ϕ is
additive. Then f +g : I → R is ϕ -convex.

THEOREM 2.6. Consider ϕ -convex functions fi : I →R for i = 1, ...,n, such that

ϕ is nonnegatively linear. Then for γi � 0 , i = 1, ...n, the function f =
n
∑
i=1

γi fi : I → R

is ϕ -convex.
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The class of ϕ -convex and ϕ -quasiconvex functions with special conditions are
closed under Sup operation.

THEOREM 2.7. Suppose that { f j : I → R, j ∈ J} is a nonempty collection of ϕ -
convex (ϕ -quasiconvex) functions such that

(a) there exist α ∈ [0,∞] and β ∈ [−1,∞] such that ϕ(x,y) = αx + βy for all
x,y ∈ R ,

(b) for each x ∈ I , sup
j∈J

f j(x) exists in R .

Then the function f : I → R defined by f (x) = sup
j∈J

f j(x) for each x ∈ I , is ϕ -

convex (ϕ -quasiconvex).

Proof. For any x,y ∈ I and λ ∈ [0,1] , we can drive following relations

f (λx+(1−λ )y) = sup
j∈J

f j(λx+(1−λ )y)

� sup
j∈J

{ f j(y)+ λ ϕ( f j(x), f j(y))}

= sup
j∈J

{ f j(y)+ λ (α f j(x)+ β f j(y))}

= sup
j∈J

{(1+ β λ ) f j(y)+ αλ f j(x)}

� (1+ β λ )sup
j∈J

f j(y)+ αλ sup
j∈J

f j(x)

= (1+ β λ ) f (y)+ αλ f (x)
= f (y)+ λ (α f (x)+ β f (y))
= f (y)+ λ ϕ( f (x), f (y)).

In the case that f is ϕ -quasiconvex, the proof is similar.
Using the definition of an invex set, we introduce the definition of generalized

preinvex (briefly G-preinvex) function as generalized form of a convex function. In
Theorem 2.10 we prove that combination of a ϕ -convex function with a nondecreasing
G-preinvex function w.r.t. ϕ and ψ , is ψ -convex.

DEFINITION 2.8. [7] We call a set A ⊆ R invex with respect to η : R×R → R if

x,y ∈ A,λ ∈ [0,1] ⇒ y+ λ η(x,y) ∈ A.

DEFINITION 2.9. Let A ⊆ R be an invex set with respect to η . A function f :
A → R is said to be G-preinvex w.r.t. η and ψ if

f (y+ λ η(x,y)) � f (y)+ λ ψ( f (x), f (y)) f or all x,y ∈ A and λ ∈ [0,1].
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THEOREM 2.10. Suppose that U ⊆R is an invex set w.r.t. ϕ where ϕ :U×U →
U is a bifunction. Suppose that f : I →U is a ϕ -convex function and g : U → R is a
nondecreasing G-preinvex function w.r.t. ϕ and ψ . Then go f : I → R is a ψ -convex
function.

Proof. Consider x,y ∈ I and λ ∈ [0,1] . Since g is nondecreasing G-preinvex
function, from inequality

f (λx+(1−λ )y) � f (y)+ λ ϕ( f (x), f (y)),

we have

g( f (λx+(1−λ )y)) � g( f (y)+ λ ϕ( f (x), f (y)))
� g( f (y))+ λ ψ(g( f (x)),g( f (y))).

3. Main Results

We will use the following relations in the proof of Theorem 3.1 which is Jensen
type inequality for ϕ -convex functions.
Let f : I → R be a ϕ -convex function. For x1,x2 ∈ I and α1 + α2 = 1 we have
f (α1x1 + α2x2) � f (x2)+ α1ϕ( f (x1), f (x2)) . Also when n > 2, for x1,x2, · · · ,xn ∈ I ,
n
∑
i=1

αi = 1 and Ti =
i

∑
j=1

α j , we have

f (
n

∑
i=1

αixi) = f ((Tn−1

n−1

∑
i=1

αi

Tn−1
xi)+ αnxn)

� f (xn)+Tn−1ϕ( f (
n−1

∑
i=1

αi

Tn−1
xi), f (xn)). (�)

THEOREM 3.1. Let f : I → R be a ϕ -convex function and ϕ be nondecreasing

nonnegatively sublinear in first variable. If Ti =
i

∑
j=1

α j for i = 1, · · ·n such that Tn =1,

then

f (
n

∑
i=1

αixi) � f (xn)+
n−1

∑
i=1

Tiϕ f (xi,xi+1, . . . ,xn),

where ϕ f (xi,xi+1, . . . ,xn) = ϕ(ϕ f (xi,xi+1, . . . ,xn−1), f (xn)) and ϕ f (x) = f (x) for all
x ∈ I .
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Proof. Since ϕ is nondecreasing nonnegatively sublinear on first variable, so from
(� ) it follows that:

f (
n

∑
i=1

αixi) � f (xn)+Tn−1ϕ( f (
n−1

∑
i=1

αi

Tn−1
xi), f (xn))

= f (xn)+Tn−1ϕ
(
f (

Tn−2

Tn−1

n−2

∑
i=1

αi

Tn−2
xi +

αn−1

Tn−1
xn−1), f (xn)

)

� f (xn)+Tn−1ϕ
(
f (xn−1)+

Tn−2

Tn−1
ϕ( f (

n−2

∑
i=1

αi

Tn−2
xi), f (xn−1)), f (xn)

)

� f (xn)+Tn−1ϕ( f (xn−1), f (xn))+Tn−2ϕ
(
ϕ( f (

n−2

∑
i=1

αi

Tn−2
xi), f (xn−1)), f (xn)

)

� · · ·
� f (xn)+Tn−1ϕ( f (xn−1), f (xn))+Tn−2ϕ

(
ϕ( f (xn−2), f (xn−1)), f (xn)

)
+ · · ·+T1ϕ

(
ϕ(· · ·ϕ(ϕ( f (x1), f (x2)), f (x3)) · · ·)), f (xn−1)), f (xn)

)
= f (xn)+Tn−1ϕ f (xn−1,xn)+Tn−2ϕ f (xn−2,xn−1,xn)+ · · ·

+T1ϕ f (x1,x2, · · · ,xn−1,xn)

= f (xn)+
n−1

∑
i=1

Tiϕ f (xi,xi+1, · · · ,xn).

EXAMPLE 3.2. Consider f (x) = x2 and ϕ(x,y) = x(1 + 2y) for x,y ∈ R
+ =

[0,∞] . The function ϕ is nondecreasing nonnegatively sublinear in first variable and f
is ϕ -convex since (α1x1 +α2x2)2 � x2

2 +α1x2
1(1+2x2

2) , for x1,x2 ∈R
+ and α1,α2 � 0

with α1 + α2 = 1. Now for x1,x2, · · · ,xn ∈ R
+ and α1,α2, · · · ,αn with

n
∑
i=1

αi = 1 ac-

cording to Theorem 3.1, we have

(
n

∑
i=1

αixi)2 � x2
n +

n−1

∑
i=1

Ti[x2
i (1+2x2

i+1)(1+2x2
i+2)...(1+2x2

n)].

Some basic results are required to prove that there is Hermite-Hadamard type in-
equality for any ϕ -convex function. Under special condition for ϕ , any ϕ -convex
function is continuous.

DEFINITION 3.3. [8] A function f : [a,b] → R is absolutely continuous on [a,b]
if corresponding to any ε > 0 there exists a δ > 0 such that for any collection {ai,bi}n

1
of disjoint open intervals of [a,b] with ∑n

1(bi−ai) < δ , ∑n
1 | f (bi)− f (ai) |< ε .

DEFINITION 3.4. [8] A function f : [a,b] → R is said to satisfy the Lipschitz
condition on [a,b] if there is a constant K so that for any two points x,y ∈ [a,b] ,
| f (x)− f (y)| � K|x− y| .
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THEOREM 3.5. Suppose that f : I → R is ϕ -convex and ϕ is bounded from
above on f (I)× f (I) with Mϕ as an upper bound. Then f satisfies the Lipschitz
condition on any closed interval [a,b] contained in the interior I◦ of I . Hence, f is
absolutely continuous on [a,b] and continuous on I◦ .

Proof. Consider closed interval [a,b] in I◦ and choose ε > 0 such that [a−ε,b+
ε] belongs to I . Suppose that x,y are distinct points of [a,b] . Set z = y+ ε

|y−x| (y− x)

and λ = |y−x|
ε+|y−x| . So it is easy to see that z ∈ [a−ε,b+ε] and y = λ z+(1−λ )x . Then

f (y) � f (x)+ λ ϕ( f (z), f (x)) � f (x)+ λMϕ . This implies that

f (y)− f (x) � λMϕ =
| y− x |

ε+ | y− x |Mϕ � | y− x |
ε

Mϕ = K | y− x |,

where K = Mϕ
ε . Also if we change the place of x,y in above argument we have f (x)−

f (y) � K | y− x | . Therefore | f (y)− f (x) |� K | y− x | . It follows that if we choose
δ < ε/K , then f is absolutely continuous. Finally since [a,b] is arbitrary on I◦ , then
f is continuous on I◦ .

THEOREM 3.6. Suppose that f : I → R is a ϕ -convex function such that ϕ is
bounded from above on f (I)× f (I) . Then for any a,b ∈ I with a < b,

2 f (
a+b

2
)−Mϕ � 1

b−a

∫ b

a
f (x) � f (b)+

ϕ( f (a), f (b))
2

,

where Mϕ is an upper bound of ϕ on f ([a,b])× f ([a,b]) .

Proof. Consider a,b ∈ I with a < b . First we show that f has upper and lower
bound on [a,b] . In fact

f (λa+(1−λ )b) � f (b)+ λ ϕ( f (a), f (b)) � f (b)+Mϕ

shows the upper bound of f . For lower bound of f consider an arbitrary point in the
form a+b

2 − t in [a,b] . Then

f (
a+b

2
) = f (

a+b
4

+
t
2

+
a+b

4
− t

2
)

= f
(1
2
(
a+b

2
+ t)+

1
2
(
a+b

2
− t)

)

� f (
a+b

2
− t)+

1
2

ϕ
(
f (

a+b
2

+ t), f (
a+b

2
− t)

)

� f (
a+b

2
− t)+

Mϕ

2
.

Now consider m = f ( a+b
2 )− Mϕ

2 . For the right side of inequality consider arbitrary
x = λa +(1− λ )b , λ ∈ [0,1] . So f (x) � f (b) + λ ϕ( f (a), f (b)) with λ = x−b

a−b . It
follows that

1
b−a

∫ b

a
f (x)dx � 1

b−a

(
f (b)(b−a)+

ϕ( f (a), f (b))
b−a

.
(b−a)2

2

)
= f (b)+

ϕ( f (a), f (b))
2

.
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Through ϕ -convexity of f , we have

f (
a+b

2
) = f (

a+b
4

− t(b−a)
4

+
a+b

4
+

t(b−a)
4

)

= f
(1
2
(
a+b− t(b−a)

2
)+

1
2
(
a+b+ t(b−a)

2

)

� f (
a+b+ t(b−a)

2
)+

1
2

ϕ
(
f (

a+b− t(b−a)
2

), f (
a+b+ t(b−a)

2
)
)

� f (
a+b+ t(b−a)

2
)+

1
2
Mϕ

for all t ∈ [0,1] . Hence, for the left side of inequality

1
b−a

∫ b

a
f (x)dx =

1
b−a

[∫ a+b
2

a
f (x)dx+

∫ b

a+b
2

f (x)dx
]

=
∫ 1

0

[
f (

a+b− t(b−a)
2

)+ f (
a+b+ t(b−a)

2
)
]
dt

�
∫ 1

0

[
f (

a+b− t(b−a)
2

)+ f (
a+b

2
)− 1

2
Mϕ

]
dt

� m+ f (
a+b

2
)− 1

2
Mϕ

= 2 f (
a+b

2
)−Mϕ .

The final result of this section says that the class of affine functions and ϕ -convex
functions defined from R to R are equivalent.

THEOREM 3.7. For a function f : R → R , the following assertions are equiva-
lent:

(a) f is an affine function.
(b) f is ϕ -affine w.r.t some ϕ .

Proof. (a) → (b) is clear. For (b) → (a) consider any t ∈ R . So f (t) = f
(
t ·1+

(1− t)0
)
= f (0)+ tϕ( f (1), f (0)) . Now for x,y,λ ∈ R, we have

f (λx+(1−λ )y) = f (0)+ (λx+(1−λ )y)ϕ( f (1), f (0))
= λ f (0)+ (1−λ ) f (0)+ λxϕ( f (1), f (0))+ (1−λ )yϕ( f (1), f (0))

= λ
(
f (0)+ xϕ( f (1), f (0))

)
+(1−λ )

(
f (0)+ yϕ( f (1), f (0))

)
= λ f (x)+ (1−λ ) f (y).

4. ϕb -convex and ϕE -convex functions

In this section, we define ϕb -convex and ϕE -convex functions as generalized form
of ϕ -convex functions and give some results. Theorem 4.2 shows that the class of ϕb -
convex functions and ϕ -quasiconvex functions are equivalent.
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DEFINITION 4.1. Let R
+ be the set of nonnegative real numbers and b : R×R×

[0,1] → R
+ be a function with λb(x,y,λ ) ∈ [0,1] for all x,y ∈ R and λ ∈ [0,1] . A

function f : I → R is called ϕb -convex if

f (λx+(1−λ )y) � f (y)+ λb(x,y,λ )ϕ( f (x), f (y))

for all x,y ∈ R and λ ∈ [0,1] .

THEOREM 4.2. Consider a function f : I → R . The following assertions are
equivalent:

(a) f is ϕb -convex for some function b .
(b) f is ϕ -quasiconvex.

Proof. (a)→(b) For any x,y ∈ I and λ ∈ [0,1] ,

f (λx+(1−λ )y) � f (y)+ λb(x,y,λ )ϕ( f (x), f (y)) � max{ f (y), f (y)+ ϕ( f (x), f (y))}.

(b)→(a) For x,y ∈ I and λ ∈ [0,1] , define

b(x,y,λ ) =
{

1/λ , if λ ∈ (0,1] and f (y) � f (y)+ ϕ( f (x), f (y));
0, λ = 0 or f (y) > f (y)+ ϕ( f (x), f (y)).

Notice that λb(x,y,λ ) ∈ [0,1] . For a such function b we have

f (λx+(1−λ )y) � max{ f (y), f (y)+ ϕ( f (x), f (y))}
= λb(x,y,λ )( f (y)+ ϕ( f (x), f (y))+ (1−λb(x,y,λ )) f (y)
= f (y)+ λb(x,y,λ )ϕ( f (x), f (y)).

DEFINITION 4.3. [9, 10] A set A ⊆ R is said to be E -convex iff there is a map
E : R → R such that λE(x)+ (1−λ )E(y)∈ A , for each x,y ∈ A and 0 � λ � 1.

LEMMA 4.4. [3] Suppose that A ⊆ R is E -Convex. Then E(A) ⊆ A .

DEFINITION 4.5. Suppose that A is an E -convex set. A function f : A → R is
said to be ϕE -convex if

f (λE(x)+ (1−λ )E(y)) � f (E(y))+ λ ϕ( f (E(x)), f (E(y))).

Also it is called ϕE -quasiconvex if

f (λE(x)+ (1−λ )E(y)) � max{ f (E(y)), f (E(y))+ ϕ( f (E(x)), f (E(y)))}.

The restriction of a ϕE -convex (ϕE -quasiconvex) function is a ϕ -convex (ϕ -quasiconvex)
function. This fact is shown in Theorem 4.6. In Theorem 4.7 we show that if a ϕE -
convex (ϕE -quasiconvex) function is restricted on a suitable domain it is equivalent to
a ϕ -convex (ϕ -quasiconvex) function.
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THEOREM 4.6. Suppose A ⊆ R is an E -convex set and B ⊆ E(A) is a nonempty
convex set. If f : A→R is ϕE -convex (ϕE -quasiconvex), then it’s restriction f : B→R

defined as
f (x′) = f (x′) f or all x′ ∈ B,

is ϕ -convex (ϕ -quasiconvex) on B .

Proof. For x′,y′ ∈ B there are x,y ∈ A such that x′ = E(x) and y′ = E(y) . Since
B is convex set, then for any λ ∈ [0,1] , we have λx′ +(1−λ )y′ ∈ B . So

f (λx′ +(1−λ )y′) = f (λE(x)+ (1−λ )E(y))
� f (E(y))+ λ ϕ( f (E(x)), f (E(y)))

= f (y′)+ λ ϕ( f (x′), f (y′)).

THEOREM 4.7. Suppose A ⊆ R is an E -convex set and E(A) is a convex set.
The function f : A → R is ϕE -convex (ϕE -quasiconvex) if and only if it’s restriction
f : E(A) → R defined as

f (x′) = f (x′) f or all x′ ∈ E(A),

is ϕ -convex (ϕ -quasiconvex) on E(A) .

Proof. Necessary, is the same as proof of Theorem 4.6. For sufficient, consider
any x,y ∈ A . Hence E(x),E(y) ∈ E(A) . From ϕ -convexity of f on E(A) we have

f (λE(x)+ (1−λ )E(y)) � f (E(y))+ λ ϕ( f (E(x)), f (E(y))).

Since f is the restriction of f to E(A) then:

f (λE(x)+ (1−λ )E(y)) � f (E(y))+ λ ϕ( f (E(x)), f (E(y))).
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