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IMPROVED YOUNG AND HEINZ INEQUALITIES

WITH THE KANTOROVICH CONSTANT

WENSHI LIAO AND JUNLIANG WU

(Communicated by M. Krnić)

Abstract. In this article, we study the further refinements and reverses of the Young and Heinz
inequalities with the Kantorovich constant. These modified inequalities are used to establish
corresponding operator inequalities on a Hilbert space and Hilbert-Schmidt norm inequalities.

1. Introduction

The well-known Young inequality for scalars is the weighted arithmetic-geometric
mean inequality, which was due to William Henry Young (1863-1942). The inequality
states that if a,b > 0 and 0 � v � 1, then

(1− v)a+ vb � a1−vbv (1)

with equality if and only if a = b . If v = 1
2 , it gives rise to the elementary arithmetic-

geometric mean inequality
√

ab � a+b
2 .

If v > 1 or v < 0, then the reverse of (1)

(1− v)a+ vb � a1−vbv

holds. For more details, the reader is referred to [1].
The Heinz mean in the parameter 0 � v � 1, defined by

Hv(a,b) =
avb1−v +a1−vbv

2
, a,b > 0

interpolates between the arithmetic mean and geometric mean, i.e.

√
ab = H 1

2
(a,b) � Hv(a,b) � H1(a,b) =

a+b
2

, v ∈ [0,1].

It is easy to see that the Heinz mean is convex as a function of v on the interval [0,1] ,
attains minimum at v = 1/2, and attains maximum at v = 0 and v = 1. Moreover,
Hv(a,b) is symmetric with respect to v = 1/2, that is, Hv(a,b) = H1−v(a,b) , v∈ [0,1] .
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In recent years, Kittaneh and Manasrah [11, 12] improved the Young inequality
(1), and obtained the following relation:

r(
√

a−
√

b)2 � (1− v)a+ vb−a1−vbv � R(
√

a−
√

b)2, (2)

where a,b > 0, v ∈ [0,1] , r = min{v,1− v} and R = max{v,1− v} .
Later, Wu and Zhao [15] presented two improvements of (2) that

(1− v)a+ vb � r(
√

a−
√

b)2 +K(
√

h,2)r1a1−vbv, (3)

(1− v)a+ vb � R(
√

a−
√

b)2 +K(
√

h,2)−r1a1−vbv,

where h = b
a , K(

√
h,2) = (

√
h+1)2

4
√

h
and r1 = min{2r,1−2r} . Note that K(t,2) =

(t+1)2
4t is the classical Kantorovich constant which has properties K(1,2)= 1, K(t,2) =

K
(

1
t ,2

)
� 1 (t > 0) and K(t,2) is monotone increasing on [1,∞) and monotone decreasing on
(0,1] .

Recently, Zhao and Wu [16] obtained the refinements and reverses of Young in-
equality and improved inequalities (2) in the following forms:

PROPOSITION 1. [16] Let a,b be two nonnegative real numbers and v ∈ (0,1) .
(I) If 0 < v � 1

2 , then

(1− v)a+ vb � a1−vbv + v(
√

a−
√

b)2 + r1(
4
√

ab−√
a)2, (4)

(1− v)a+ vb � a1−vbv +(1− v)(
√

a−
√

b)2 − r1(
4
√

ab−
√

b)2, (5)

(II) if 1
2 < v < 1 , then

(1− v)a+ vb � a1−vbv +(1− v)(
√

a−
√

b)2 + r1(
4
√

ab−
√

b)2, (6)

(1− v)a+ vb � a1−vbv + v(
√

a−
√

b)2− r1(
4
√

ab−√
a)2, (7)

where r = min{v,1− v} and r1 = min{2r,1−2r} .

Let B(H ) be the C∗ -algebra of all bounded linear operators on a complex sep-
arable Hilbert space (H ,〈·, ·〉) . I stands for the identity operator. B++(H ) denotes
the cone of all positive invertible operators on H . As a matter of convenience, we use
the following notations to define the weighted arithmetic mean and geometric mean for
operators:

A∇vB = (1− v)A+ vB, A�vB = A
1
2 (A− 1

2 BA− 1
2 )vA

1
2 ,

where A,B ∈ B++(H ) and v ∈ [0,1] . When v = 1
2 , we write A∇B and A�B for

brevity, respectively.
An operator version of the Young inequality proved in [3] says that if A,B ∈

B++(H ) and v ∈ [0,1] , then
A∇vB � A�vB.
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The Heinz operator mean is defined by

Hv(A,B) =
A�vB+A�1−vB

2

for A,B ∈ B++(H ) and 0 � v � 1.
It is easy to see that the Heinz operator mean interpolates the arithmetic-geometric

operator mean inequality:
A�B � Hv(A,B) � A∇B. (8)

Inequalities in (8) are called the Heinz operator inequalities (see [9, 10]).
The first difference-type improvement of the matrix Young inequality is due to

Kittaneh and Manasrah [12] extending (2) to matrices:

r(A∇B−A�B) � A∇vB−A�vB � R(A∇B−A�B) (9)

holds for positive definite matrices A and B and 0 � v � 1, where r = min{v,1− v}
and R = max{v,1− v} , which remain of course valid for Hilbert space operators by a
standard approximation argument.

Note that Furuichi [4] independently established the first inequality in (9) for two
positive operators and Kittaneh et al. [9] also proved (9) by taking a different approach.
In [13], the authors provided the general refinement and reverse of the Jensen’s operator
inequality and the relation (9) appears as a special case of their results.

For the ratio-type improvements of the Young inequality, the readers are referred
to [4, 5, 14, 15, 17].

Zhao and Wu [16] also extended inequalities (4)–(7) to positive invertible opera-
tors and improved (9), which were shown as

PROPOSITION 2. [16] Let A,B ∈ B++(H ) and v ∈ (0,1) .
(I) If 0 < v � 1

2 , then

A∇vB � A�vB+2v(A∇B−A�B)+ r1(A�B−2A� 1
4
B+A), (10)

A∇vB � A�vB+2(1− v)(A∇B−A�B)− r1(A�B−2A� 3
4
B+B), (11)

(II) if 1
2 < v < 1 , then

A∇vB � A�vB+2(1− v)(A∇B−A�B)+ r1(A�B−2A� 3
4
B+B), (12)

A∇vB � A�vB+2v(A∇B−A�B)− r1(A�B−2A� 1
4
B+A), (13)

where r = min{v,1− v} and r1 = min{2r,1−2r} .

In this paper, we are concerned with several improvements of the Young and Heinz
inequalities via the Kantorovich constant. In Section 2, we present the whole series of
refinements and reverses of the scalar Young inequality which will help us to derive
several Heinz mean inequalities. In Section 3, we extend inequalities proved in Section
2 from the scalars setting to a Hilbert space operator setting. In Section 4, the Hilbert-
Schmidt norm inequalities are established.
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2. Scalar inequalities

In this section, we mainly present the direct refinements and reverses of the Young
inequality for two positive numbers a,b . When v = 0 and v = 1, the Young inequality
is trivial. We will study the case v ∈ (0,1) .

THEOREM 1. Let a,b > 0 and v ∈ (0,1) .
(I) If 0 < v � 1

2 , then

(1− v)a+ vb � v(
√

a−
√

b)2 + r1(
4
√

ab−√
a)2 +K( 4

√
h,2)r̂1a1−vbv, (14)

(II) if 1
2 < v < 1 , then

(1− v)a+ vb � (1− v)(
√

a−
√

b)2 + r1(
4
√

ab−
√

b)2 +K( 4
√

h,2)r̂1a1−vbv, (15)

where h = b
a , r = min{v,1− v} , r1 = min{2r,1−2r} and r̂1 = min{2r1,1−2r1} .

Proof. The proof of inequality (15) is similar to that of (14). Thus, we only need
to prove (14).

If v = 1
4 and v = 1

2 , (14) becomes equality.

By the inequality (3), if 0 < v < 1
4 , then we have

(1− v)a+ vb− v(
√

a−
√

b)2 = 2v
√

ab+(1−2v)a

� 2v( 4
√

ab−√
a)2 +K( 4

√
h,2)min{4v,1−4v}a1−vbv,

if 1
4 < v < 1

2 , then we get

(1− v)a+ vb− v(
√

a−
√

b)2 = 2v
√

ab+(1−2v)a

� (1−2v)( 4
√

ab−√
a)2 +K( 4

√
h,2)min{2−4v,4v−1}a1−vbv.

So we conclude that

(1− v)a+ vb � v(
√

a−
√

b)2 + r1(
4
√

ab−√
a)2 +K( 4

√
h,2)r̂1a1−vbv.

This completes the proof. �

REMARK 1. By the properties of Kantorovich constant, (14) and (15) are better
than (4) and (6), respectively. As a direct consequence of Theorem 1, we have the
following inequality with respect to the Heinz mean:

a+b
2

� r(
√

a−
√

b)2 +
1
2
r1

[
( 4
√

ab−√
a)2 +( 4

√
ab−

√
b)2

]
+K( 4

√
h,2)r̂1Hv(a,b).

(16)
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COROLLARY 1. Let a,b > 0 and v ∈ (0,1) .
(I) If 0 < v � 1

2 , then

((1− v)a+ vb)2 � v2(a−b)2 + r1(
√

ab−a)2 +K(
√

h,2)r̂1
(
a1−vbv)2

. (17)

(II) If 1
2 < v < 1 , then

((1−v)a+vb)2 � (1−v)2(a−b)2 + r1(
√

ab−b)2 +K(
√

h,2)r̂1
(
a1−vbv)2

. (18)

Proof. Replacing a by a2 and b by b2 in (14) and (15), respectively, we have

(1− v)a2 + vb2 � v(a−b)2 + r1(
√

ab−a)2 +K(
√

h,2)r̂1
(
a1−vbv)2

and

(1− v)a2 + vb2 � (1− v)(a−b)2 + r1(
√

ab−b)2 +K(
√

h,2)r̂1
(
a1−vbv)2

. (19)

If 0 < v � 1
2 , then by the first inequality above, we obtain

((1− v)a+ vb)2− v2(a−b)2 = (1− v)a2 + vb2− v(a−b)2

� r1(
√

ab−a)2 +K(
√

h,2)r̂1
(
a1−vbv)2

.

If 1
2 < v < 1, then by using (19), we get

((1− v)a+ vb)2− (1− v)2(a−b)2 = (1− v)a2 + vb2− (1− v)(a−b)2

� r1(
√

ab−b)2 +K(
√

h,2)r̂1
(
a1−vbv)2

. �

THEOREM 2. Let a,b > 0 and v ∈ (0,1) .
(I) If 0 < v � 1

2 , then

(1− v)a+ vb � (1− v)(
√

a−
√

b)2 − r1(
4
√

ab−
√

b)2 +K( 4
√

h,2)−r̂1a1−vbv, (20)

(II) If 1
2 < v < 1 , then

(1− v)a+ vb � v(
√

a−
√

b)2 − r1(
4
√

ab−√
a)2 +K( 4

√
h,2)−r̂1a1−vbv, (21)

where h = b
a , r = min{v,1− v} , r1 = min{2r,1−2r} and r̂1 = min{2r1,1−2r1} .

Proof. The proof of inequality (21) is similar to that of (20). Thus, we only need
to prove (20).

If 0 < v < 1
2 , then by the inequality (3), we deduce

K( 4
√

h,2)−r̂1a1−vbv +(1− v)(
√

a−
√

b)2− (1− v)a− vb

= K( 4
√

h,2)−r̂1a1−vbv +(1−2v)b+2v
√

ab−2
√

ab

� K( 4
√

h,2)−r̂1a1−vbv +K( 4
√

h,2)r̂1avb1−v + r1(
4
√

ab−
√

b)2−2
√

ab

� r1(
4
√

ab−
√

b)2.

If v = 1
2 , the inequality (20) becomes equality. �
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REMARK 2. By the properties of Kantorovich constant, (20) and (21) are better
than (5) and (7), respectively. As a direct consequence of Theorem 2, we have the
following inequality with respect to the Heinz mean:

a+b
2

� R(
√

a−
√

b)2 − 1
2
r1[(

4
√

ab−√
a)2 +( 4

√
ab−

√
b)2]+K( 4

√
h,2)−r̂1Hv(a,b),

(22)
where R = max{v,1− v} .

COROLLARY 2. Let a,b > 0 and v ∈ (0,1) .
(I) If 0 < v � 1

2 , then

((1− v)a+ vb)2 � (1− v)2(a−b)2− r1(
√

ab−b)2 +K(
√

h,2)−r̂1
(
a1−vbv)2

.

(II) If 1
2 < v < 1 , then

((1− v)a+ vb)2 � v2(a−b)2− r1(
√

ab−a)2 +K(
√

h,2)−r̂1
(
a1−vbv)2

.

Proof. Replacing a by a2 and b by b2 in (20) and (21), respectively, we have

(1− v)a2 + vb2 � (1− v)(a−b)2− r1(
√

ab−b)2 +K(
√

h,2)−r̂1
(
a1−vbv)2

and

(1− v)a2 + vb2 � v(a−b)2− r1(
√

ab−a)2 +K(
√

h,2)−r̂1
(
a1−vbv)2

.

The remaining proof is similar to that of Corollary 1. �

3. Operator inequalities

If A is a selfadjoint operator and f is a real valued continuous function on Sp(A)
(the spectrum of A), then f (t) � 0 for every t ∈ Sp(A) implies that f (A) � 0, i.e., f (A)
is a positive operator on H . Equivalently, if both f and g are real valued continuous
functions on Sp(A) , then the following monotonic property of operator functions holds:

f (t) � g(t) for any t ∈ Sp(A) implies that f (A) � g(A)

in the operator order of B(H ) .

THEOREM 3. Let A,B ∈ B++(H ) and positive real numbers m,m′,M,M′ sat-
isfy either 0 < m′I � A � mI < MI � B � M′I or 0 < m′I � B � mI < MI � A � M′I .

(I) If 0 < v � 1
2 , then

A∇vB � 2v(A∇B−A�B)+ r1(A�B−2A� 1
4
B+A)+K( 4

√
h,2)r̂1A�vB, (23)

(II) if 1
2 < v < 1 , then

A∇vB � 2(1− v)(A∇B−A�B)+ r1(A�B−2A� 3
4
B+B)+K( 4

√
h,2)r̂1A�vB, (24)

where h = M
m , r = min{v,1− v} , r1 = min{2r,1− 2r} and r̂1 = min{2r1,1− 2r1} .

Equality holds if and only if A = B.
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Proof. If 0 < v � 1
2 , it follows from inequality (14) that for any x > 0,

(1− v)+ vx � v(
√

x−1)2 + r1( 4
√

x−1)2 +K( 4
√

x,2)r̂1xv. (25)

Taking X = A− 1
2 BA− 1

2 , under the condition 0 < m′I � A � mI < MI � B � M′I ,
we have

I � hI =
M
m

I � X � h′I =
M′

m′ I,

and then Sp(X) ⊂ [h,h′] ⊂ (1,+∞) . Thus for positive operator X , it can be deduced
from the inequality (25) and the monotonic property of operator functions that

(1− v)I+ vX � v(X −2X
1
2 + I)+ r1(X

1
2 −2X

1
4 + I)+ min

h�x�h′
K( 4

√
x,2)r̂1Xv.

On the other hand, since the Kantorovich constant K(t,2) is an increasing function on
(1,+∞) , we get

(1− v)I + vA− 1
2 BA− 1

2 � v(A− 1
2 BA− 1

2 −2(A− 1
2 BA− 1

2 )
1
2 + I)

+ r1((A− 1
2 BA− 1

2 )
1
2 −2(A− 1

2 BA− 1
2 )

1
4 + I)

+K( 4
√

h,2)r̂1(A− 1
2 BA− 1

2 )v,

(26)

Likewise, under the condition 0 < m′I � B � mI < MI � A � M′I , we have 0 �
1
h′ I � X � 1

h I < I and then Sp(X) ⊂ [ 1
h′ ,

1
h ] ⊂ (0,1) . Thus for positive operator X , we

obtain

(1− v)I + vX � v(X −2X
1
2 + I)+ r1(X

1
2 −2X

1
4 + I)+ min

1
h′ �x� 1

h

K( 4
√

x,2)r̂1Xv.

On the other hand, the Kantorovich constant K(t,2) is an decreasing function on (0,1)
and K( 1

t ,2) = K(t,2) ,we get

(1− v)I + vX � v(X −2X
1
2 + I)+ r1(X

1
2 −2X

1
4 + I)+K( 4

√
h,2)r̂1Xv. (27)

It is striking that we obtain two same inequalities (26) and (27) under the two different
condition. Then multiplying inequality (26) or (27) by A

1
2 on both sides, we can deduce

the required inequality (23).
If 1

2 < v < 1, the inequality (24) follows from inequality (15) by the similar meth-
ods. �

The operator version of (16) can be shown as follows:

COROLLARY 3. Under the same conditions as Theorem 3, then

A∇B � 2r(A∇B−A�B)+ r1(A∇B+A�B−2H 1
4
(A,B))+K( 4

√
h,2)r̂1Hv(A,B). (28)
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THEOREM 4. Let A,B ∈ B++(H ) and positive real numbers m,m′,M,M′ sat-
isfy either 0 < m′I � A � mI < MI � B � M′I or 0 < m′I � B � mI < MI � A � M′I .

(I) If 0 < v � 1
2 , then

A∇vB � 2(1− v)(A∇B−A�B)− r1(A�B−2A� 3
4
B+B)+K( 4

√
h,2)−r̂1A�vB, (29)

(II) if 1
2 < v < 1 , then

A∇vB � 2v(A∇B−A�B)− r1(A�B−2A� 1
4
B+A)+K( 4

√
h,2)−r̂1A�vB, (30)

where h = M
m , r = min{v,1− v} , r1 = min{2r,1− 2r} and r̂1 = min{2r1,1− 2r1} .

Equality holds if and only if A = B.

Proof. By (20) and (21), using the same ideas as in the proof of Theorem 3, we
can get this theorem. �

The operator version of (22) can be shown as

COROLLARY 4. Under the same conditions as Theorem 4, then

A∇B � 2R(A∇B−A�B)− r1(A∇B+A�B−2H 1
4
(A,B))+K( 4

√
h,2)−r̂1Hv(A,B), (31)

where R = max{v,1− v} .

REMARK 3. (28) and (31) are sharper than (3.4) in [12].
If 0 < v � 1

2 , combining (23) with (29), we have

0 � A�vB

� 2v(A∇B−A�B)+A�vB

� 2v(A∇B−A�B)+ r1(A�B−2A� 1
4
B+A)+A�vB

� 2v(A∇B−A�B)+ r1(A�B−2A� 1
4
B+A)+K( 4

√
h,2)r̂1A�vB

� A∇vB

� 2(1− v)(A∇B−A�B)− r1(A�B−2A� 3
4
B+B)+K( 4

√
h,2)−r̂1A�vB

� 2(1− v)(A∇B−A�B)− r1(A�B−2A� 3
4
B+B)+A�vB

� 2(1− v)(A∇B−A�B)+A�vB.

By the properties of Kantorovich constant, (23) and (24) are better than (10) and (12),
respectively.

If 1
2 < v < 1, combining (24) with (30), we have

0 � A�vB

� 2(1− v)(A∇B−A�B)+A�vB

� 2(1− v)(A∇B−A�B)+ r1(A�B−2A� 3
4
B+B)+A�vB

� 2(1− v)(A∇B−A�B)+ r1(A�B−2A� 3
4
B+B)+K( 4

√
h,2)r̂1A�vB
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� A∇vB

� 2v(A∇B−A�B)− r1(A�B−2A� 1
4
B+A)+K( 4

√
h,2)−r̂1A�vB

� 2v(A∇B−A�B)− r1(A�B−2A� 1
4
B+A)+A�vB

� 2v(A∇B−A�B)+A�vB.

(29) and (30) are better than (11) and (13), respectively.

4. Hilbert-Schmidt norm inequalities

In this section, we present the improved Young and Heinz inequalities for the
Hilbert-Schmidt norm.

Let Mn(C) denote the algebra of all n×n complex matrices. The Hilbert-Schmidt
norm of A ∈ Mn(C) is denoted by ‖A‖2

F . It is well-known that the Hilbert-Schmidt
norm is unitarily invariant in the sense that ‖UAV‖2

F = ‖A‖2
F for all unitary matri-

ces U,V ∈ Mn(C) (see [6, p. 341–342]). The spectrum of A and B are denoted by
Sp(A) = {λ1,λ2, · · · ,λn} and Sp(B) = {ν1,ν2, · · · ,νn} , respectively. The Schur prod-
uct (Hadamard product) of two matrices A,B ∈ Mn(C) is the entrywise product and
denoted by A◦B .

Hirzallah and Kittaneh [7] and Kittaneh and Manasrah [12] had showed that if
A,B,X ∈ Mn(C) with positive semidefinite matrices A and B , then

r2 ‖AX −XB‖2
F � ‖(1− v)AX + vXB‖2

F −∥∥A1−vXBv
∥∥2

F � R2 ‖AX −XB‖2
F , (32)

where v ∈ [0,1] , r = min{v,1− v} and R = max{v,1− v} .
Applying Corollary 1 and 2, we derive two theorems which improve (32).

THEOREM 5. Suppose A,B,X ∈ Mn(C) such that A and B are two positive defi-
nite matrices. Let

K = min
{

K((λi/ν j)
1
2 ,2), i, j = 1,2, · · · ,n

}
.

(I) If 0 < v � 1
2 , then

‖(1− v)AX + vXB‖2
F − v2‖AX −XB‖2

F

� r1

∥∥∥A
1
2 XB

1
2 −AX

∥∥∥2

F
+Kr̂1

∥∥A1−vXBv
∥∥2

F ,
(33)

(II) if 1
2 < v < 1 , then

‖(1− v)AX + vXB‖2
F − (1− v)2‖AX −XB‖2

F

� r1

∥∥∥A
1
2 XB

1
2 −XB

∥∥∥2

F
+Kr̂1

∥∥A1−vXBv
∥∥2

F ,
(34)

where r = min{v,1− v} , r1 = min{2r,1−2r} and r̂1 = min{2r1,1−2r1} .
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Proof. Since A and B are positive definite, it follows by the spectral theorem that
there exist unitary matrices U,V ∈ Mn(C) such that

A = UΛ1U
∗,B = VΛ2V

∗,

where Λ1 = diag(λ1,λ2, · · · ,λn), Λ2 = diag(ν1,ν2, · · · ,νn), λi,νi > 0, i = 1,2, · · · ,n.
Let Y = U∗XV = [yi j] ∈ Mn(C) , then

(1− v)AX + vXB = U((1− v)Λ1Y + vYΛ2)V ∗

= U [((1− v)λi + vν j)◦Y ]V ∗,
AX −XB = U [(λi−ν j)◦Y ]V ∗,

A
1
2 XB

1
2 −AX = U [((λiν j)

1
2 −λi)◦Y ]V ∗,

A
1
2 XB

1
2 −XB = U [((λiν j)

1
2 −ν j)◦Y ]V ∗

and
A1−vXBv = U [(λ 1−v

i νv
j )◦Y ]V ∗.

If 0 < v � 1
2 , utilizing the inequality (17) and the unitary invariance of the Hilbert-

Schmidt norm, we have

‖(1− v)AX + vXB‖2
F − v2‖AX −XB‖2

F

=
n

∑
i, j=1

((1− v)λi + vν j)2|yi j|2− v2
n

∑
i, j=1

(λi−ν j)2|yi j|2

=
n

∑
i, j=1

[
((1− v)λi + vν j)2|yi j|2 − v2(λi−ν j)2|yi j|2

]

�
n

∑
i, j=1

[
r1((λiν j)

1
2 −λi)2|yi j|2 +K

(
(λi/ν j)

1
2 ,2

)r̂1 (
λ 1−v

i νv
j

)2 |yi j|2
]

� r1

n

∑
i, j=1

((λiν j)
1
2 −λi)2|yi j|2 +Kr̂1

n

∑
i, j=1

(
λ 1−v

i νv
j

)2 |yi j|2

= r1

∥∥∥A
1
2 XB

1
2 −AX

∥∥∥2

F
+Kr̂1

∥∥A1−vXBv
∥∥2

F .

Similarly, if 1
2 < v < 1, using the inequality (18), we can derive (34). �

THEOREM 6. Suppose A,B,X ∈ Mn(C) such that A and B are two positive defi-
nite matrices. Let

K = min
{

K((λi/ν j)
1
2 ,2), i, j = 1,2, · · · ,n

}
.

(I) If 0 < v � 1
2 ,

‖(1− v)AX + vXB‖2
F − (1− v)2‖AX −XB‖2

F

� K−r̂1
∥∥A1−vXBv

∥∥2
F − r1

∥∥∥A
1
2 XB

1
2 −XB

∥∥∥2

F
,

(35)



IMPROVED YOUNG AND HEINZ INEQUALITIES WITH THE KANTOROVICH CONSTANT 569

(II) if 1
2 < v < 1 , then

‖(1− v)AX + vXB‖2
F − v2‖AX −XB‖2

F

� K−r̂1
∥∥A1−vXBv

∥∥2
F − r1

∥∥∥A
1
2 XB

1
2 −AX

∥∥∥2

F
,

(36)

where r = min{v,1− v} , r1 = min{2r,1−2r} and r̂1 = min{2r1,1−2r1} .

Proof. By using the same ideas as in the prove of Theorem 5 and Corollary 2, we
can obtain the required results. �

REMARK 4. If 0 < v � 1
2 , combining (33) and (35) with (32), we obtain

0 �
∥∥A1−vXBv

∥∥2
F

�v2 ‖AX −XB‖2
F +

∥∥A1−vXBv
∥∥2

F

�v2 ‖AX −XB‖2
F +Kr̂1

∥∥A1−vXBv
∥∥2

F

�v2 ‖AX −XB‖2
F + r1

∥∥∥A
1
2 XB

1
2 −AX

∥∥∥2

F
+Kr̂1

∥∥A1−vXBv
∥∥2

F

�‖(1− v)AX + vXB‖2
F

�(1− v)2‖AX −XB‖2
F − r1

∥∥∥A
1
2 XB

1
2 −XB

∥∥∥2

F
+K−r̂1

∥∥A1−vXBv
∥∥2

F

�(1− v)2‖AX −XB‖2
F +K−r̂1

∥∥A1−vXBv
∥∥2

F

�(1− v)2‖AX −XB‖2
F +

∥∥A1−vXBv
∥∥2

F ,

if 1
2 < v < 1, combining (34) and (36) with (32), we can obtain similar results,

0 �
∥∥A1−vXBv

∥∥2
F

�(1− v)2‖AX −XB‖2
F +

∥∥A1−vXBv
∥∥2

F

�(1− v)2‖AX −XB‖2
F +Kr̂1

∥∥A1−vXBv
∥∥2

F

�(1− v)2‖AX −XB‖2
F + r1

∥∥∥A
1
2 XB

1
2 −XB

∥∥∥2

F
+Kr̂1

∥∥A1−vXBv
∥∥2

F

�‖(1− v)AX + vXB‖2
F

�v2 ‖AX −XB‖2
F − r1

∥∥∥A
1
2 XB

1
2 −AX

∥∥∥2

F
+K−r̂1

∥∥A1−vXBv
∥∥2

F

�v2 ‖AX −XB‖2
F +K−r̂1

∥∥A1−vXBv
∥∥2

F

�v2 ‖AX −XB‖2
F +

∥∥A1−vXBv
∥∥2

F ,

which are improvements of
∥∥A1−vXBv

∥∥2
F � ‖(1− v)AX + vXB‖2

F (see [2, 8]).
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Heinz means inequalities for Hilbert space operators, Publ. Math. Debrecen. 80, 3-4 (2012), 465–
478.
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