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A GEOMETRIC INEQUALITY WITH APPLICATIONS

JIAN LIU

(Communicated by G. Leng)

Abstract. In this paper, we present a new geometric inequality which involves an arbitrary point
in the plane of a triangle. A simpler proof of a known inequality with one parameter is obtained
by using our result. We also derive the famous Sondat fundamental triangle inequality from it.

1. Introduction

In the recent paper [10] the following geometric inequality with one parameter has
been established.

For a point P in the plane of a triangle ABC with side lengths BC = a , CA = b
and AB = c , we denote by R1 , R2 , R3 the distances of P from the vertices A , B , C
and from the sides BC , CA , AB by r1 , r2 , r3 , respectively. Then
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where λ is a parameter such that −2 � λ � 2. The equality condition of (1) is also
given. If λ = −2, then the equality in (1) holds if and only if O is the circumcenter of
ABC . If λ = 2, then the equality holds if and only if P is the Lhuilier-Lemoine point
of ABC . If −2 < λ < 2, then the equality holds if and only if �ABC is equilateral and
P would be its center.

When λ = 2 and λ = −2, (1) yields respectively,
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It is a pity that the proof of (1), given in [10] by the author, is rather complicated
and aided by computer software Maple.

Our purpose of this note is to give an improvement of (3), which can be used to
deduce inequality (1) rapidly. The main result is the following:
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THEOREM 1. Let R be the circumradius of the triangle ABC and O be its cir-
cumcenter. Denote the distance between O and any point P in the plane by d . Then
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with equality holds if and only if the point P lies on the line OK , where K is the
Lhuilier-Lemoine point of ABC.

Clearly, inequality (4) improves the ordinary inequality (3). It is interesting that
the equality condition of (4) is very special (see Figure 1).
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Figure 1: Equality in (4) occurs iff P lies on the line OK .

In the next section, we shall prove Theorem 1. In the third section, we shall use in-
equality (4) to give a simpler proof of inequality (1) and derive the Sondat fundamental
triangle inequality.

2. Proof of Theorem 1

In order to prove our theorems, we bring up “directed distances” (for the defini-
tion, see e.g. [9]). In what follows, we denote the directed distances from the point
P to the sides BC,CA,AB of �ABC by d1 , d2 , d3 , respectively. Denote the di-
rected area of �ABC and the area of the pedal triangle DEF of P with respect to
�ABC by S,Sp , respectively. For simplicity, we also denote cyclic sums over the
triples (a,b,c),(R1,R2,R3) (r1,r2,r3) and (d1,d2,d3) by ∑ , for instance
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Figure 2: d1 = r1 > 0 , d2 = r2 > 0 , d3 = −r3 < 0 .

Now, we are to prove Theorem 1.

Proof. Without loss of generality, we may assume that the triangle ABC has posi-
tive directed area (S > 0) . We firstly prove the following identity:
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For any point P in the plane of �ABC (see Figure 2, where D,E and F are
projections of P on the sides), we apply the law of cosines to �PEF , then it is easy to
obtain that
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where A denotes the angle ∠BAC of �ABC . Since PA is a diameter of the circumra-
dius of �PEF , therefore EF = PAsinA = R1 sinA and then the length of R1 is given
by
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where we used the area formula 2S = bcsinA and the law of cosines in �ABC . The
identity (5) is proved.

Next, we further make use of (5) to prove the following identity:
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By the area relation �S�PBC +�S�PCA +�S�PAB = �S�ABC , we get

∑ad1 = 2S. (9)

In addition, by �S�DEF =�S�PEF +�S�PFD +�S�PDE and �S�PEF = 1
2d2d3 sinA = S

bcd2d3

etc., we obtain the following identity:
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Using (5), (9), (10), and the equivalent form of Heron’s formula will be as follows:
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we have that
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Hence, identity (8) is proved.
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By (8) and (10), we have
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Note that the following well-known identity (see e.g. [4, 9.5]):
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S
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We obtain the following identity from (12):
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which implies that the following inequality holds:
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Since d2
1 = r2

1 , etc., inequality (4) follows from (15). Also, one sees that the
equality in (4) holds if and only if

∑d1
b2− c2

a
= 0, (16)

which signifies that the point P lies on a line. Obviously, the trilinear coordinate (a :
b : c) of the Lhuilier-Lemoine point K satisfies equation (16). Also, it is easy to check
that the identity ∑(b2 +c2−a2)(b2−c2) = 0, which shows that the trilinear coordinate
(a(b2 +c2−a2) : b(c2 +a2−b2) : c(a2 +b2−c2)) of the circumcenter O satisfies (16).
Therefore, the equality of (4) holds if and only if P lies on the line OK . This completes
the proof of Theorem 1. �

3. Applications of Theorem 1

In this section, we provide two applications of Theorem 1.
Firstly, we use Theorem 1 to give a simpler proof of the parameterized inequality

(1) as follows:
By (13), we know that inequality (4) of Theorem 1 is equivalent to
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which is equivalent to
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Further, using (10), (13) and noticing that d2
1 = r2

1 etc., we can obtain the following
inequality:
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where λ � −2.
From the above inequality, one can see that inequality (1) holds for −2 � λ � 2

and the equality condition of (1) is easily obtained.

REMARK 1. Inequality (19) is an unified generalization of inequalities (1), (2),
(3) and (4).

REMARK 2. By Theorem 1 and the area inequality S � 4Sp following from (13),
we can easily deduce the following interesting inequality:

∑ R2
2 +R2

3−2r2
1

a2 +
S2

p

S2 � 25
16

, (20)

which is weaker than (4) but stronger than (3). Equality in (20) holds if and only if P
is the circumcenter of �ABC or P lies on the line OK and Sp : S = 4 : 15.

In the following, we shall give another more interesting application of Theorem 1,
namely, to use (4) to derive the Sondat fundamental triangle inequality (see [4, inequal-
ity 13.8]), stating that

s4 −2(2R2 +10Rr− r2)s2 + r(4R+ r)3 � 0, (21)

where s,R and r are the semi-perimeter, circumcenter and inradius of arbitrary triangle
ABC , respectively. Equality in (21) holds if and only if �ABC is isosceles.

There are several proofs of the fundamental triangle inequality in the literature (see
e.g., [1], [3], [5], [13]–[15]). However, the inequalities from which the fundamental
triangle inequality can be deduced are rare. We now deduce (21) from (4) as follows:

In Theorem 1, we take the point P to be the incenter of �ABC . Then, by Pythago-
ras theorem, we have R2

2 − r2
1 = (s−b)2 and R2

3 − r2
1 = (s− c)2 . Also, the distance d

in this setting is given by the well-known Euler formula, i.e.,

d2 = R2−2Rr. (22)

Thus, it follows from (4) that

∑ (s−b)2 +(s− c)2

a2 � 5
2
− 2r

R
. (23)
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Next, we calculate the left of (22) in terms of R,r and s . Since

∑ (s−b)2 +(s− c)2
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]
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1
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[−2s2∑b2c2 +2sabc∑bc+∑b2c2 ∑a2− (abc)2] .

Then, with the following known identities (see e.g. [12, pp. 52–55]):

abc = 4Rrs, (24)

∑bc = s2 +4Rr+ s2, (25)

∑a2 = 2s2−8Rr−2r2, (26)

∑b2c2 = s4 −2r(4R− r)s2 + r2(4R+ r)2, (27)

we easily obtain the following identity:

∑ (s−b)2 +(s− c)2
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8s2R2 . (28)

Furthermore, one gets

∑ (s−b)2 +(s− c)2

a2 +
2r
R

− 5
2

=
−s4 +2(2R2 +10Rr− r2)s2 − r(4R+ r)3
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Finally, with inequality (23) and (29), we can conclude that inequality (21) holds.
According to the equality condition of (4), we know that the equality in (21) holds

if and only if the incenter I , the circumcenter O and the Lhuilier-Lemoine point K of
triangle ABC are collinear. Note that the trilinear corrdinates of the points I,O and K
are (1 : 1 : 1) , (b2 + c2 −a2 : c2 +a2 −b2 : a2 +b2 − c2) , and (a : b : c) , respectively.
These three points are collinear if and only if∣∣∣∣∣∣

1 1 1
b2 + c2−a2 c2 +a2−b2 a2 +b2− c2

a b c

∣∣∣∣∣∣ = 0,

from which we easily obtain

2(b− c)(c−a)(a−b)= 0.

We therefore conclude that the equality in (21) holds if and only if �ABC is isosceles.

REMARK 3. If we take the point P to be the centroid of ABC in inequality (17),
then the following inequality follows:

∑ 2m2
b +2m2

c −h2
a

a2 +2∑ hbhc

bc
� 45

4
, (30)
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where ma , mb , mc are the medians of �ABC and ha , hb , hc are the altitudes. From
(30), we can also obtain the fundamental triangle inequality (21) after some calcula-
tions.

The Sondat fundamental triangle inequality and its two consequences, i.e., Gerret-
sen inequalities s2 � 16Rr−5r2 and s2 � 4R2 +4Rr+3r2 (see e.g., [12, p. 45]) have
wide applications in the field of triangle geometric inequalities (cf. [6]–[8], [11] and
[17]). Some related results with historical comments on this inequality can be found in
[1]–[3], [6] and [12].
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