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ON CERTAIN ANALYTIC FUNCTIONS

MAMORU NUNOKAWA AND JANUSZ SOKOL

(Communicated by J. Pecari¢)

Abstract. We apply Nunokawa’s lemma from the paper: On Properties of Non-Carathéodory
Functions, Proc. Japan Acad. 68, Ser. A (1992) 152-153, to prove some new results.

1. Introduction

For integer n > 0, denote by %, the class of meromorphic functions, defined in
U ={z:0<|z| < 1}, which are of the form

1
F(z)= B +apd +an '+
A function F € X is said to be starlike if it is univalent and the complement of F (U) is
starlike with respect to the origin. Denote by X the class of such functions. If F € X,
then it is well-known that F' € Zj if and only if

")

for ze U. For a < 1, let

F'(z .
z;a:{Fezn:sRe{—Z (Z)}>a,zEIU},

F(z)
the class of meromorphic-starlike functions of order ¢. For 0 < o < 1, let
x ZF'(2) on .
()= FeZX,:|argq — <—,z€U 1.1
@~ of-LE) <% (L)

the class of meromorphic-strongly starlike functions of order o.
Let p be positive integer and let .o/ (p) be the class of functions

fla)=2"+ i ',

n=p+1
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which are analytic in the unit disk D = {z € C : |z| < 1}. Furthermore, denote by
</ the class of analytic functions in D and usually normalized, i.e. &/ ={f € 7 :
f(0) =0,7(0) = 1}. We say that the f € . is subordinate to g € % in the unit
disc D, written f < g if and only if there exists an analytic function w € .5 such that
w(z)| < |z] and f(z) = g[w(z)] for z € D. Therefore f < g in D implies f(D) C g(D).
In particular if g is univalent in D then the Subordination Principle says that f < g if
and only if f(0) =g(0) and f(|z| <r) C g(|z] <), forall r € (0,1].

The subclass of o7 (p) consisting of p-valently starlike functions is denoted by
*(p). An analytic description of .#*(p) is given by

zf'(2)
f(2)

The subclass of o7 (p) consisting of p-valently and strongly starlike functions of order
o, 0 < o<1 isdenoted by .7 (p). An analytic description of .7 (p) is given by

(@) < or ZGD}.

arg

S (p) = {f e (p): "

T
<—,Z€D}.

F2(p) = {f e (p):

arg -
f(2) 2
The subclass of &7 (p) consisting of p-valently convex functions and p -valently strongly

convex functions of order o, 0 < o < 1 are denoted by €*(p) and €, (p) respectively.
The analytic descriptions of €*(p) and € (p) are given by

wfi1 ) <5 e

¢ (p) = {de(p)i

and

Gi(p) = {f e (p):

arg{l—f—zjjjl(g)}l < %7 ZGD}.

2. Main result

To prove the main results, we also need the following generalization of Nunokawa’s
lemma, [3], [4], see also [2].

LEMMA 2.1. [5] Let p(z) be of the form

p(z)=1+ i @', am#0, (2] <1), 2.1

n=m>=1

with p(z) #0 in |z| < 1. If there exists a point zy, |z0| < 1, such that
larg{p(2)}| < mee/2 in 2] < |z

and
larg{p(z0)} | = mer/2
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for some o« > 0, then we have

20p'(20) _ it
p(z0) ’
where
k>=m(a*+1)/(2a) when arg{p(z)} = ma,/2 (2.2)
and
k<-m(a®+1)/(2a) when arg{p(z)}=—ma/2, (2.3)
where

{p(zg)}l/a = +ia, a > 0.

3. Main result

THEOREM 3.1. Let p(z) be analytic in D with p(0) —1 = p’(0) = 0. Assume
that o € [0,1/2]. If for z€D

on

|arg { p(z) —zp'(2) }| < arctan(20r) — R (3.1)

then o
arg {p(2)} | < = (z€D). (3.2)

Proof. 1f there exists a point zg, |z0| < 1, such that

larg{p(2)}| <mat/2 (|2 < [z0])

and
larg{p(z0)} | = mex/2,

then from Nunokawa’s lemma 2.1, with m = 2, we have

= ika,

where k is a real number
k> (a®+1)/a, when arg{p(z0)} = mar/2

and
k< —(a*+1)/a, when arg{p(z0)} = —ma/2

and where p(z9)'/* = +ia, a > 0. For the case arg {p(z0)} = wa/2, we have

p(Zo) —ZOP/(ZO) = p(ZO) <1 B ZO;)(/T(OZ)O))

= (ia)* (1 —iak), (3.3)
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where k > (a®+1)/a and 0 < a. Because, k > (a*+1)/a > 2, we have
- g <arg(l—iok) < —arctan(20r). (3.4)
It is easy to see that for a € [0,1/2] we have
arctan(20t) — % >0.

Therefore, using (3.3) and (3.4), we obtain

arg { p(z0) — 200" (20) } = arg{p(z0)} +arg {1 - Z(Z)(/T(S))}

=arg{(ia)*} +arg{l —iak}

< - {arctan(Za) - %} : (3.5)

This is a contradiction with (3.1). For the case arg{p(z9)} = —mwa/2, we have

p(Zo) —ZOP/(ZO) = p(ZO) <1 B ZO;)(/T(OZ)O))

= (—ia)* (1 —iak), (3.6)
where k < —(a®+1)/a < —2. We also have

arctan(2¢r) < arg (1 —iak) < g (3.7)

Therefore, using (3.6) and (3.7) and applying the same method as above, we obtain

arg {p(20) — 207/ (20) } = arg{p(20)} + arg { - Z(;i/z(j)o) }
= arg {(—ia)"} +arg {1 — iok}

> arctan(20) — %. (3.3)

This is also a contradiction with (3.1), and it completes the proof. [

Let us put p(z) = e Bg(ePz) in Theorem 3.1.

COROLLARY 3.2. Let p(z) = e Pq(ePz), B € R, be analytic in D with p(0) —
1=p'(0) =0. Assume that o € [0,1/2]. If for z€ D

o : an
‘arg {e*’ﬁq(e’ﬁz) - zq’(e’ﬁz)} ‘ < arctan(20) — R (3.9)
then

\arg{e*"ﬁq(e"ﬁz)}| < % (zeD). (3.10)
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COROLLARY 3.3. Let p(z) = e Pq(e'Pz), B € R, be analytic in D with p(0) —

1 =p/'(0) =0. Assume that o. € [0,1/2]. If for z€ D

’arg {q(eiﬁz) - eiﬁzq/(eiﬁz)} - [3’ < arctan(20() — %,

then o
| < —-

jarg{q(eP2)} B (zeD).

(3.11)

(3.12)

COROLLARY 3.4. Let q(z) be analytic in D with q(0) = ¢P, ¢/(0) =0, B € R.

Assume that o € [0,1/2]. If for z€ D

(074

|arg {q(z) —2d'(z)} — [3} < arctan(20t) — R

then
jarg {q(2)} Bl < 5 (z€D).

THEOREM 3.5. Let
1 .
F(z)=E+alz+azzz+~~~, zeU.

Assume that o € [0,1/2]. If for z€ D

o
}arg{_z2F/(z)}} < arctan(20t) — 7”’
then
ar
|arg {<F (2)} | < =~ (z€D).
Proof. Let
p(z) =zF(2) = a2 +ams+ -, p(0) = 1.
Then

p(2) —2p'(z) = —2°F'(2).
Applying Theorem 3.1 we obtain the result. [J

COROLLARY 3.6. Let
1 .
F(z)=E+alz+azzz+~~~, zeU.

Assume that o € [0,1/2]. If for z€ D

|arg {—2*F'(2) }| < arctan(2cx) — %’

then F(z) is meromorphic-strongly starlike function of order arctan(2¢).

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Proof. For showing that F(z) is meromorphic-strongly starlike function we need
to show (1.1). By Theorem 3.5 we have |arg{zF(z)}| < am/2, since this and since

(3.17), we obtain

w{ e |l

< |arg {—2*F'(2) }| + |arg {zF (z)}|

on on
< arctan(2at) — > + >

= arctan(20).

Therefore, F(z) is meromorphic-strongly starlike function of order arctan(2ct).

For o € [0,1/2] we have

0T

on
0 < arctan(20r) — -5 < arctan(20p) — —

2

where

4—r
=4/ ——=0.26....
% 4r

This gives for o € [0,1/2] the inequalities
0 < arctan(20r) — % <0.07....
THEOREM 3.7. Let
F(z)= %+a12+a222+~“, zeU.
Assume that o € [0,1/2]. If for z€ D

A(—F"(2) = (F'(2))?)
arg{ F2(2)

then

|arg{ _;};gz) } | < % (zeD).

Proof. Let p(z) = —zF'(z)/F(z). By (3.18) we have that
p(2) =14+po?+p3+---.
Moreover

20 N (1! )
plo)- /e = EE G Q)

Applying Theorem 3.1 we obtain the result. []

} ‘ < arctan(20) —

orn
2

O

(3.18)

(3.19)

(3.20)
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THEOREM 3.8. Let p(z) be analytic in D with p(0) —1 = p'(0) = 0. Assume

that
200 (1—a\"F9? g
o) =-14 (m) cos -
and
200 (1—a\"? o
ulo)=1-7—4 (m) sin=5~-
Assume that oy is the smallest positive root of the equation
u(or) =0,
(0.72 < ap < 0.75).
Iffor zeD
tan‘lﬁ—% when 0 < o < 0,
'(2) 12— 9 yuhen o =
arg p(Z)—m < T > wnen —a(),
m+tan~! _M‘EEXO;) — &E when o < o0 < 1,
then

g {p(3)}| < 5 (z€D).

Proof. If there exists a point 7, |z0| < 1, such that

larg{p(2)}| <mo/2 (|2 <lzol)
and
larg{p(z0)}| =mar/2,
then from Nunokawa’s lemma, with m = 2, we have

20p'(20)

= ika,
p(20)

where k is a real number
k> (a*+1)/a, when arg{p(z0)} = mo,/2

and

k< —(a*+1)/a, when arg{p(z0)} = —ma/2

and where p(z9)!/% =

2P (20) 207’ (20)
p(z0) — W = p(20) (1 pz(Zo) )

~ (ia)® (1 - (ZZ‘)';>
= (ia)* (1 —i““j—f) :

+ia, a > 0. For the case arg{p(zo)} = mo/2, we have

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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where k > (a®>+1)/a and 0 < a. Then we have

ok

O sa(a e ra ),

Let us put
gla)=a""%+a "% a>o0.

Then, by easy calculation, we have

gla)=(1—-a)a*—(1+a)ja >

and g(a) takes its minimum value at ap = /(1 + a)/(1 — &) since
2 l—a (14+a)/2
_ - —1—0:2 —
da)=d ) - o (1)
and

ro 1 o\ 1+
ok O‘( O‘) . 3.27)

a” 1—-a\l+a
Because of the facts
0<arg{p(z0)} =moa/2< /2

and
/!
207’ (20) } { 1 ak}
—mw<arg 1 — =argq1l—i — 7 <0,
g{ P*(20) £ a*
we have
/ /
z20p’(20) } { 20p'(20) }
ar, 20) — =ar Z0)+argq 1 — (3.28)
e{ ) 22 arg (p(a) + arg {1 - 241
or d_o Ok
:7+arg{l—z aa—a}. (3.29)
Observe that
1— il—aa_k
aO(

lies on a half-line with the end point u(o) + iv(cr) because of the inequality (3.27).
Note that v(or) < 0 while u(a) >0 for 0 < ot < o and u(or) <0 for op < o0 < 1, 50
in the sequel we will have 3 of cases.

v(a)

1 . —m—tan~! oy When u(a) <0,

—n+¢<arg{l—il_aa—a}< —n/2 when u(a) =0,
a

—tan~! % when u(o) >0
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Therefore, using this in (3.28) we obtain

arg {P(ZO) - Z(Z)(Z(j;)> } = arg {p(z0)} +arg {1 - Z%(Z? }

:w@«mW%M@{l—ﬂﬁ}

-~ (ia)®
9 —m—tan™! _uv(gg) when u(a) <0,
< Gt —m/2 when u(o) =0, (3.30)
9 tan~! % when u(0o) > 0.
It is easy to see that (o7r)/2 — 7 —tan~! % <0, u(a) <0,and (an)/2—m/2<0.

Now we shall show that also the third bound is negative. Namely, if u(ct) > 0, then

an L —v(a) 200 (1-a\"?  an
— —tan <0 & —|— —sin— > 0.
2 u(o) l-oa\l+a 2

Therefore, it suffices to show that

N (140))2
20 (1 a) “ %o o €1[0,0)

l—-oa\1+o 2
o (1+a)/2
2 1—o\ e T
- (= ~Too 0. o).
l—a<l+a> 7 >0 @el0m)

Let G(at) be defined by

2 -« (I+a)/2 T

Then we have
) | — o\ 1)/ 1— o\ 1-®/2
/ R 1+1 — .
G(a) (l—a)2<l+a) +Og<l+a> » @€ 0,00)

For o € [0, ) we have
1—o “*"‘)/2>1
I+o e

hence G'(a) >0, o € [0, 04). Because G(0) =2 — /2> 0 we finally obtain G(ct) >
0, a € [0,00). Thus (3.30) is a contradiction with (3.24). For the case arg {p(zo)} =
—mo /2, applying the same method as the above, we can have the contradiction. [J

It should be noted that the known results connected with the Briot-Boquet differ-

ential subordination /( )
' (z

p(2)+ ———— <h(z

Ot By +y <M
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are usually proved under the assumptions that /1, is a convex function and Re {Bh(z) + y}

> 0.

It is easy to see that the assumptions of Theorem 3.8 are of another type.
COROLLARY 3.9. Let

1 .
F(Z):Z+alz+azzz+--~, zeU.

Under the assumptions of Theorem 3.8, if for z € D

o tan ! ;‘EE;;) — %E when 0 < o0 < @y,
arg{_l_ZF((j)H < n/2 — %F when o = oy, (3.31)
z
m+tan~! ;V(EXO? — 2% when op < a0 < 1,

then F(z) is meromorphic-strongly starlike function of order o.

Proof. Let p(z) = —zF'(z)/F(z). By (3.18) we have that

p(2) =14po?+p3+---.

Moreover,

'@ Q)
PO T TR

Therefore, it is sufficient to apply Theorem 3.8. [
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