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REMARK ON ORDINARY AND RANDIĆ ENERGY OF GRAPHS
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(Communicated by J. Pečarić)

Abstract. Let G be an undirected simple graph with n vertices and m edges. Denote with
|λ1|� |λ2|� · · ·� |λn| and |ρ1|� |ρ2|� · · ·� |ρn| absolute eigenvalues and Randić eigenvalues
of G arranged in non-increasing order, respectively. Upper bound of graph invariant E(G) =
∑n

i=1 |λi| , and lower and upper bounds of invariant RE(G) = ∑n
i=1 |ρi| are obtained in this paper.

1. Introduction and preliminaries

Let G be an undirected simple graph with n vertices and m edges. If i-th and
j -th vertices of graph G are adjacent, we denote it as i∼ j . Then the adjacency matrix
A = (ai j) of G is defined as

ai j =

{
1, if i �= j and i ∼ j

0, otherwise
.

Denote by |λ1| � |λ2| � · · · � |λn| absolute ordinary eigenvalues of G arranged
in non-increasing order. Some well known results on graph eigenvalues are (see [6])

n

∑
i=1

λi = 0 and
n

∑
i=1

λ 2
i = 2m. (1)

Energy of graph G is determined from [9]

E(G) =
n

∑
i=1

|λi|.

The following inequality that establishes an upper bound for E(G) in terms of
parameters n and m was proved in [13]

E(G) �
√

2mn. (2)

Energy-like spectral invariants have been introduced also for other graph matrices.
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c© � � , Zagreb
Paper JMI-10-55

687

http://dx.doi.org/10.7153/jmi-10-55
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Let d1 � d2 � · · · � dn be a sequence of vertex degrees of G arranged in non-
increasing order. Denote by D diagonal matrix of its vertex degrees. Then L = D−A
is the Laplacian matrix of G . Let the eigenvalues of L be μ1 � μ2 � · · · � μn−1 �
μn = 0 (see [2, 6, 8, 14]). If G is a simple graph with no isolated vertices, then matrix
D−1/2 is well–defined. The normalized Laplacian matrix of the graph G is calculated
as L∗ = D−1/2LD−1/2 . Its eigenvalues are γ1 � γ2 � · · · � γn−1 � γn = 0.

Some well known properties of the normalized Laplacian eigenvalues are (see
[18]):

n−1

∑
i=1

γi = n and
n−1

∑
i=1

γ2
i = n+2R−1, (3)

where R−1 = ∑
i∼ j

1
did j

is the general Randić index (see [3, 11, 17]).

The normalized Laplacian energy of G is defined as [4, 10]

NLE(G) =
n

∑
i=1

|γi −1|.

It is convenient to write the normalized Laplacian matrix as L∗ = I−R , where
R = D−1/2AD−1/2 is the so-called Randić matrix [3]. Denote with |ρ1| � |ρ2| � · · · �
|ρn| absolute eigenvalues of R arranged in non-increasing order. Then, Randić energy
of graph G is defined as

RE(G) =
n

∑
i=1

|ρi|.

Having in mind that γi = 1−ρn−i+1 , i = 1,2, . . . ,n , Randić energy coincides with the
normalized Laplacian energy (see [10]). The following inequality that determines an
upper bound for RE(G) in terms of n and R−1 , was proved in [3]

RE(G) �
√

2nR−1. (4)

In this paper we are going to prove inequalities that establish upper bounds for
graph invariants E(G) and lower and upper bounds for RE(G) .

2. Main results

The following theorem provides an upper bound for E(G) in terms of n , m , |λ1|
and |λn| .

THEOREM 1. Let G be an undirected simple graph with n vertices and m edges.
Then

E(G) �
√

2mn− n
2
(|λ1|− |λn|)2. (5)

Equality holds if and only if G ∼= Kn or if n is even and G is disjoint union of n
2 paths

K2 .
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Proof. According to

n
n

∑
i=1

|λi|2 −
(

n

∑
i=1

|λi|
)2

= ∑
1�i� j�n

(|λi|− |λ j|)2,

we have that

n
n

∑
i=1

|λi|2−
(

n

∑
i=1

|λi|
)2

�
n−1

∑
i=2

(
(|λ1|− |λi|)2 +(|λi|− |λn|)2)+(|λ1|− |λn|)2. (6)

Based on Jensen’s inequality (see [16]) we have that

n−1

∑
i=2

((|λ1|− |λi|)2 +(|λi|− |λn|)2) � n−2
2

(|λ1|− |λn|)2. (7)

According to equality (1) and inequalities (6) and (7) we obtain the inequality (5).
Equality in (6) holds if and only if |λ2| = |λ3| = · · · = |λn| , whereas in (7) if and

only if |λ1|− |λi| = |λi|− |λn| , for each i = 2, . . . ,n− 1. This means that equality in
(5) holds if and only if |λ1| = |λ2| = · · · = |λn| . Consequently, the equality in (5) holds
if and only if G ∼= Kn , or if n is even and G is disjoint union of n

2 paths K2 . �

REMARK 1. Since for every undirected simple graphwith n vertices and m edges,
with the property |λ1| �= |λn| holds√

2mn− n
2
(|λ1|− |λn|)2 �

√
2mn,

it follows that inequality (5) is stronger than (2).

COROLLARY 1. Let G be an undirected simple graph with n vertices and m
edges, with the property |λ1| �= |λn| . Then

E(G) �
√

2nm
|λ1|− |λn| . (8)

Proof. Inequality (5) can be rewritten as

E(G)2 +
n
2
(|λ1|− |λn|)2 � 2mn.

Having in mind inequality between arithmetic and geometric means, A-G inequality,
(see [16]), we have that

2

√
n
2
E(G)2(|λ1|− |λn|)2 � 2mn

wherefrom the inequality (8) follows. �
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REMARK 2. Inequalities (8) and (2) are not comparable. For the graphs with the
property |λ1|−|λn|>√

m , inequality (8) is stronger than inequality (2). When G∼= Kn ,
the inequality (8) is stronger than (2) if n � 6. When 2 � n � 5, the opposite is valid.
In the case of complete bipartite graph, bounds (8) and (2) are identical.

REMARK 3. Let us note that inequality (5) is opposite to the inequalities

E(G) �
√

2mn−n2(|λ1|− |λn|)2α(n) �
√

2mn− n2

4
(|λ1|− |λn|)2, (9)

where

α(n) =
1
n

⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
=

1
4

(
1− 1+(−1)n+1

2n2

)
=

{
1
4 , if n is even
(n−1)(n+1)

4n2 , if n is odd
. (10)

The first inequality in (9) was proved in [15] and the second one in [7].

In the following theorem we establish lower and upper bounds for RE(G) in terms
of parameters n , R−1 , |ρ1| and |ρn| .

THEOREM 2. Let G be an undirected simple graph of order n with no isolated
vertices. Then

2nR−1−n2(|ρ1|− |ρn|)2α(n) � RE2(G) � 2nR−1− n
2
(|ρ1|− |ρn|)2. (11)

Equality holds if and only if n is even and G is disjoint union of n
2 paths K2 .

Proof. If in inequality (see [1])∣∣∣∣∣n
n

∑
i=1

aibi−
n

∑
i=1

ai

n

∑
i=1

bi

∣∣∣∣∣� (A−a)(B−b)n
⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
(12)

we substitute ai and bi with |ρi| , i = 1,2, . . .n , a and b with |ρn| , and A and B with
|ρ1| , we obtain ∣∣∣∣∣∣n

n

∑
i=1

|ρi|2−
(

n

∑
i=1

|ρi|
)2
∣∣∣∣∣∣� n2α(n)(|ρ1|− |ρn|)2. (13)

Since

n

∑
i=1

|ρi|2 =
n

∑
i=1

|γn−i+1−1|2 = 2R−1 and 2nR−1−RE(G)2 � 0,

inequality (13) becomes

2nR−1−RE(G)2 � n2α(n)(|ρ1|− |ρn|)2.
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By rearranging the above inequality, left part of inequality (11) is obtained.
Equality in (13) holds if and only if |ρ1| = |ρ2| = · · · = |ρn| . This means that

equality in the left part of (11) holds if and only if G ∼= Kn or G ∼= K2 . Since G has no
isolated vertices, it must be G � Kn , thus equality in the left part of (11) holds if and
only if G is isomorphic to disjoint union of n

2 paths K2 , where n is even.
By the similar procedure used in proof of Theorem 1, the right side of inequality

(11) is proved. �

REMARK 4. Since (|ρ1|−|ρn|)2 � 0, right side of inequality (11) is stronger than
(4).

COROLLARY 2. Let G be an undirected simple graph of order n with no isolated
vertices. If n is even then

n2

n−1
− n2

4
(|ρ1|− |ρn|)2 � RE2(G) � n2− n

2
(|ρ1|− |ρn|)2.

If n is odd then

n2

n−1
− (n−1)(n+1)

4
(|ρ1|− |ρn|)2 � RE2(G) � n(n−1)− n

2
(|ρ1|− |ρn|)2.

Proof. Inequalities are obtained from Theorem 2 and inequality

n
2(n−1)

� R−1 �
⌊n
2

⌋

proved in [12]. �

COROLLARY 3. Let G be an undirected simple graph of order n with no isolated
vertices. If |ρ1| �= |ρn| , then

RE(G) �
√

2nR−1

|ρ1|− |ρn| .
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