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Abstract. In this paper, we obtain some improved Young and Heinz inequalities and the reverse
versions for scalars and matrices with Kantorovich constant, equipped with the Hilbert-Schmidt
norm, and then we present the corresponding interpolations of recent refinements in the literature.

1. Introduction

Let B(H) be the C∗ -algebra of all bounded linear operators on a Hilbert space H
equipped with the operator norm and S(H) the set of all bounded self-adjoint operators.
For X ,Y ∈ S(H) , we write X � Y if Y −X is positive, and X < Y if Y −X is positive
invertible. The set of all positive operators of S(H) will be denoted by P(H) .

Let Mn be the set of all n× n matrices with entries in the complex field C . For
A = (ai j) ∈ Mn , unitarily invariant norms ||| · ||| are defined on the matrix algebra
Mn so that |||UAV ||| = |||A||| for any unitary matrices U,V . The Hilbert-Schmidt

norm of A is defined by ||A||2 = (
n
∑
j=1

s2
j(A))1/2 , where s1(A),s2(A), · · · ,sn(A) are the

singular values of A , i.e. the eigenvalues of the positive matrix |A|= (A∗A)
1
2 , arranged

in decreasing order and repeated according to multiplicity. It is known that the Hilbert-
Schmidt norm is unitarily invariant.

The classical Young inequality says that if a,b � 0 and 0 � v � 1, then

avb1−v � va+(1− v)b (1.1)

with equality if and only if a = b .
This inequality has been studied, generalized and refined in different directions. It

is worth to mention that in [7], J. Wu and J. Zhao obtained an improved version which
can be stated as follows:

K(
√

h,2)r′avb1−v + r(
√

a−
√

b)2 � va+(1− v)b, (1.2)
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where h = b
a , r = min{v,1− v} , r′ = min{2r,1−2r} and K(·,2) is Kantorovich con-

stant, defined by K(t,2) = (t+1)2
4t for t > 0.

On the other hand, they [7] also presented a reverse of the scalar Young type in-
equality with a,b ∈ R+ and v ∈ [0,1]−{ 1

2} :

K(
√

h,2)−r′avb1−v + s(
√

a−
√

b)2 � va+(1− v)b, (1.3)

where h = b
a , s = max{v,1− v} , r = min{v,1− v} and r′ = min{2r,1−2r} .

In [6], M. Sababheh, A. Yousef and R. Khalil presented a generalization of the
Young’s inequality as follow:

apbq � p−q+ r
p−q+2r

ap+rbq−r +
r

p−q+2r
aq−rbp+r, (1.4)

where a,b ∈ R+ and p � q � r � 0.
Then, they proved a series of interpolated inequalities, reverse inequalities and

their matrix versions.
Since then, many researchers have tried to give new refinements and generaliza-

tions of these inequalities and have obtained a series of improvements. One can refer
to the references of [2, 3, 4].

These inequalities are extended to matrices in various contexts. The original
Young’s inequality was first extended to Mn in [1] as follows: For A,B,X ∈ Mn and
A,B ∈ P(H) , we have

|||ApXBq||| � p
p+q

|||Ap+qX |||+ q
p+q

|||XBp+q|||,

for all p,q > 0.
In [5], M. Sababheh interpolated the above inequality as follow:

|||ApXBq||| � p−q+ r
p−q+2r

|||Ap+rXBq−r|||+ r
p−q+2r

|||Aq−rXBp+r|||,

for all p � q � r � 0.
Then, each refinement of the scalar Young’s inequality accompanies a correspond-

ing refinement of the matrix inequality. For example, let A,B ∈ P(H) . Then the matrix
versions of (1.2) and (1.3) are

K(
√

h,2)r′ ||AvXB1−v||2 + r||A 1
2 X −XB

1
2 ||22 � ||vAX +(1− v)XB||2, 0 � v � 1

and

K(
√

h,2)−r′ ||AvXB1−v||2 + s||A 1
2 X −XB

1
2 ||22 � ||vAX +(1− v)XB||2, 0 � v � 1

respectively, where h = ||B||2
||A||2 , s = max{v,1−v} , r = min{v,1−v} and r′ = min{2r,1−

2r} .
Getting the matrix version from the scalars version is somehow easy in the case of

the Hilbert-Schmidt norm, however, it is not always valid for general norms. In [6], M.
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Sababheh, A. Yousef and R. Khalil gave a series of generalizations of the scalar Young
type interpolated inequalities and the corresponding matrix versions of [2, 3, 4] for the
Hilbert-Schmidt norm, furthermore, some reverse inequalities were obtained. However,
interpolated inequalities for unitarily invariant norms have appeared recently in [5].

In this paper, we obtain 3-term refinements of Young’s inequality, different from
most results in the literature that treat 2-term refinements.

2. Refinements of the Young’s inequality for scalars

We begin this section with an improvement of the Young type inequality with
Kantorovich constant.

THEOREM 2.1. Let a,b ∈ R+ and let p � q � r � 0 . Then

K(
√

h,2)r′apbq +
r

p−q+2r

(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2
(2.1)

� p−q+ r
p−q+2r

ap+rbq−r +
r

p−q+2r
aq−rbp+r,

where h = ( b
a)p−q+2r and r′ = min

{
2r

p−q+2r ,
p−q

p−q+2r

}
.

Proof. Let p−q+r
p−q+2r = v . Then r

p−q+2r = 1−v , and by the inequality (1.2),we have

p−q+ r
p−q+2r

ap+rbq−r +
r

p−q+2r
aq−rbp+r

=v(ap+rbq−r)+ (1− v)(aq−rbp+r)

�K(
√

h,2)r′(ap+rbq−r)v(aq−rbp+r)1−v +
r

p−q+2r

(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2

=K(
√

h,2)r′apbq +
r

p−q+2r

(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2
.

This completes the proof. �

In the following, we present some refinements of this inequality together with their
reverse inequalities by using computations similar to those in [2, 3, 4].

To facilitate our statements, let α = p−q+r
p−q+2r and β = r

p−q+2r , for p � q � r � 0.

THEOREM 2.2. Let a,b ∈ R+ and let p > q � r � 0 . Then

K(
√

(1−2β )h,2)r′(α −β )2βa2pb2q + β 2(ap+rbq−r +aq−rbp+r)2 (2.2)

+ γ0(α −β )ap+rbq−r
(

1√
1−2β

a
p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2

�(αap+rbq−r + βaq−rbp+r)2,
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where h = ( b
a)p−q+2r , γ0 = min{2β ,1−2β} and r′ = min{2γ0,1−2γ0} .

Proof. Observe that

(αap+rbq−r + βaq−rbp+r)2 −β 2(ap+rbq−r +aq−rbp+r)2

− γ0(α −β )ap+rbq−r
(

1√
1−2β

a
p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2

=(α −β )ap+rbq−r
[
ap+rbq−r +2βaq−rbp+r− γ0

(
1√

1−2β
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2]

=(α−β )ap+rbq−r
[
(1−2β )

ap+rbq−r

1−2β
+2βaq−rbp+r−γ0

(
1√

1−2β
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2]

�(α −β )ap+rbq−r
[
K(
√

(1−2β )h,2)r′
(

ap+rbq−r

1−2β

)1−2β
(aq−rbp+r)2β

]

=K(
√

(1−2β )h,2)r′(α −β )2β a2pb2q.

This completes the proof. �

Now we present the v-version of the inequality (2.2) as an application of the The-
orem 2.2.

COROLLARY 2.3. Let a,b ∈ R+ . Then for 0 < v < 1
2 ,

K(
√

(1−2v)h−1,2)r′(1−2v)2v(avb1−v)2+v2(a+b)2+γ1(1−2v)b
(√

a−
√

b
1−2v

)2

�(va+(1−v)b)2,

for 1
2 < v � 1 ,

K(
√

(2v−1)h,2)r′′(2v−1)2(1−v)(avb1−v)2 +(1− v)2(a+b)2

+ γ2(2v−1)a
(√

a
2v−1

−
√

b

)2

�(va+(1− v)b)2,

where h = b
a , γ1 = min{2v,1−2v} , γ2 = min{2v−1,2−2v} , r′ = min{2γ1,1−2γ1}

and r′′ = min{2γ2,1−2γ2} .

Proof. Suppose first that 1− v > v . Then, by replacing p by 1− v , q by v and r
by v in (2.2), we get

K(
√

(1−2v)h−1,2)r′(1−2v)2v(avb1−v)2+v2(a+b)2+γ1(1−2v)b
(√

a−
√

b
1−2v

)2

�(va+(1− v)b)2.

A similar argument works if v > 1− v . �
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THEOREM 2.4. Let a,b ∈ R+ and let p � q � r � 0 . Then

K(
√

h,2)r′a2pb2q + β 2(ap+rbq−r −aq−rbp+r)2 (2.3)

+ γ0a
p+rbq−r

(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2

�(αap+rbq−r + βaq−rbp+r)2,

and

K(
√

h,2)−r′a2pb2q + β 2(ap+rbq−r −aq−rbp+r)2 (2.4)

+ s0a
p+rbq−r

(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2

�(αap+rbq−r + βaq−rbp+r)2,

where h = ( b
a)

p−q+2r , γ0 = min{2β ,1−2β} , s0 = max{2β ,1−2β} and r′ = min{2γ0,
1−2γ0} .

Proof. For (2.3), observe that

(αap+rbq−r + βaq−rbp+r)2 −β 2(ap+rbq−r −aq−rbp+r)2

− γ0a
p+rbq−r

(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2

=ap+rbq−r
[
(α −β )ap+rbq−r +2βaq−rbp+r− γ0

(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2
]

�ap+rbq−r
[
K(

√
h,2)r′(ap+rbq−r)α−β (aq−rbp+r)2β

]
=K(

√
h,2)r′a2pb2q.

As for (2.4), using the inequality (1.3), observe that

(αap+rbq−r + βaq−rbp+r)2−β 2(ap+rbq−r −aq−rbp+r)2

− sap+rbq−r
(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2

=ap+rbq−r
[
(α −β )ap+rbq−r +2βaq−rbp+r − s

(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2
]

�aq−rbp+r
[
K(

√
h,2)−r′(ap+rbq−r)α−β (aq−rbp+r)2β

]
=K(

√
h,2)−r′a2pb2q. �

By the same processing methods of Theorem 2.4, we can obtain the following
Theorems.
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THEOREM 2.5. Let a,b ∈ R+ and let p � q � r � 0 . Then

K(
√

h,2)r′β 2β apbq + β 2
(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2
(2.5)

+ γ0a
p+r
2 b

q−r
2

(
a

p+r
4 b

q−r
4 −

√
βa

q−r
4 b

p+r
4

)2

�α2ap+rbq−r + β 2aq−rbp+r,

and

K(
√

h,2)−r′β 2β apbq + β 2
(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2
(2.6)

+ s0a
p+r
2 b

q−r
2

(
a

p+r
4 b

q−r
4 −

√
βa

q−r
4 b

p+r
4

)2

�α2ap+rbq−r + β 2aq−rbp+r,

where h = ( b
a)

p−q+2r , γ0 = min{2β ,1−2β} , s0 = max{2β ,1−2β} and r′ = min{2γ0,
1−2γ0} .

THEOREM 2.6. Let a,b ∈ R
+ and let p � q � r � 0 . Then

K(
√

h,2)r′apbq + β
(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2
(2.7)

+ γ0a
p+r
2 b

q−r
2

(
a

p+r
4 b

q−r
4 −a

q−r
4 b

p+r
4

)2

�αap+rbq−r + βaq−rbp+r,

and

K(
√

h,2)−r′apbq + β
(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2
(2.8)

+ s0a
p+r
2 b

q−r
2

(
a

p+r
4 b

q−r
4 −a

q−r
4 b

p+r
4

)2

�αap+rbq−r + βaq−rbp+r,

where h = ( b
a)

p−q+2r , γ0 = min{2β ,1−2β} , s0 = max{2β ,1−2β} and r′ = min{2γ0,
1−2γ0} .

The following Corollary can be easily obtained by applying Theorem 2.6 twice
and will be used to prove the refined interpolated Heinz inequality.

COROLLARY 2.7. Let a,b ∈ R+ and let p � q � r � 0 . Then

K(
√

h,2)r′(apbq +aqbp)2 +2β (ap+rbq−r −aq−rbp+r)2 (2.9)

+ γ0(ap+rbq−r +aq−rbp+r)
(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2 −
(
K(

√
h,2)r′ −1

)
ap+qbp+q

�(ap+rbq−r +aq−rbp+r)2,
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and

K(
√

h,2)−r′(apbq +aqbp)2 +2β (ap+rbq−r −aq−rbp+r)2 (2.10)

+ s0(ap+rbq−r +aq−rbp+r)
(
a

p+r
2 b

q−r
2 −a

q−r
2 b

p+r
2

)2−
(
K(

√
h,2)−r′ −1

)
ap+qbp+q

�(ap+rbq−r +aq−rbp+r)2,

where h = ( b
a)

p−q+2r , γ0 = min{2β ,1−2β} , s0 = max{2β ,1−2β} and r′ = min{2γ0,
1−2γ0} .

REMARK 1. Since K(t,2) = (t+1)2
4t � 1 for all t > 0, the inequalities (2.1)–(2.10)

except the reverse inequalities, are the improvements of the scalar Young type inequal-
ities of [6].

REMARK 2. Obviously, the inequalities (2.1)–(2.10) are 3-term refinements of
Young’s inequality, different from most results in the literature that treat 2-term refine-
ments.

3. Refinements of the Young’s inequality for matrices

Based on the improvements of the scalar Young type inequalities (2.1)–(2.10), we
present matrix versions of these inequalities.

We first prove the matrix version of Theorem 2.2.

THEOREM 3.1. Let A,B,X ∈ Mn such that A,B ∈ P(H) and let p > q � r � 0 .
Then

K(
√

(1−2β )h,2)r′(α −β )2β ||ApXBq||22 + β 2||Ap+rXBq−r±Aq−rXBp+r||22 (3.1)

+ γ0(α −β )
∥∥∥ 1√

1−2β
Ap+rXBq−r −A

p+q
2 XB

p+q
2

∥∥∥2

2

� ||αAp+rXBq−r + βAq−rXBp+r||22,

where h =
( ||B||2
||A||2

)p−q+2r
, γ0 = min{2β ,1−2β} and r′ = min{2γ0,1−2γ0} .

Proof. Since A,B � 0, then by the spectral decomposition, there are unitary matri-
ces U,V ∈ Mn such that A = UΛU∗ and B = VΓV ∗ , where Λ = diag(λ1,λ2, · · · ,λn) ,
Γ = diag(μ1,μ2, · · · ,μn) , and λ j , μ j ( j = 1, · · · ,n) are the eigenvalues of A and B ,
respectively. Let Y = U∗XV = [yi j] . Then

ApXBq = UΛpYΓqV ∗ = U
[
λ p

i μq
j yi j

]
V ∗, (3.2)

Ap+rXBq−r±Aq−rXBp+r = U
[(

λ p+r
i μq−r

j ±λ q−r
i μ p+r

j

)
yi j

]
V ∗, (3.3)

αAp+rXBq−r + βAq−rXBp+r = U
[(

αλ p+r
i μq−r

j + β λ q−r
i μ p+r

j

)
yi j

]
V ∗, (3.4)
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1√
1−2β

Ap+rXBq−r −A
p+q
2 XB

p+q
2 = U

[(
1√

1−2β
λ p+r

i μq−r
j −λ

p+q
2

i μ
p+q
2

j

)
yi j

]
V ∗,

(3.5)

It follows from (3.2), (3.3), (3.4), (3.5) and Theorem 2.2 that

K(
√

(1−2β )h,2)r′(α −β )2β ||ApXBq||22 + β 2||Ap+rXBq−r ±Aq−rXBp+r||22
+ γ0(α −β )|| 1√

1−2β
Ap+rXBq−r−A

p+q
2 XB

p+q
2 ||22

=K(
√

(1−2β )h,2)r′(α −β )2β
n

∑
i, j=1

(
λ 2p

i μ2q
j

)
|yi j|2

+ β 2
n

∑
i, j=1

(
λ p+r

i μq−r
j ±λ q−r

i μ p+r
j

)2 |yi j|2

+ γ0(α −β )
n

∑
i, j=1

(
1√

1−2β
λ p+r

i μq−r
j −λ

p+q
2

i μ
p+q
2

j

)2

|yi j|2

�
n

∑
i, j=1

(
αλ p+r

i μq−r
j + β λ q−r

i μ p+r
j

)2 |yi j|2

= ||αAp+rXBq−r + βAq−rXBp+r||22.
This completes the proof. �

By similar computations to Theorem 3.1, one can prove the matrix version of
Theorem 2.4.

THEOREM 3.2. Let A,B,X ∈ Mn such that A,B ∈ P(H) and let p � q � r � 0 .
Then

K(
√

h,2)r′ ||ApXBq||22 + β 2||Ap+rXBq−r −Aq−rXBp+r||22
+ γ0||Ap+rXBq−r −A

p+q
2 XB

p+q
2 ||22

� ||αAp+rXBq−r + βAq−rXBp+r||22,
and

K(
√

h,2)−r′ ||ApXBq||22 + β 2||Ap+rXBq−r −Aq−rXBp+r||22
+ s0||Ap+rXBq−r−A

p+q
2 XB

p+q
2 ||22

� ||αAp+rXBq−r + βAq−rXBp+r||22,

where h =
( ||B||2
||A||2

)p−q+2r
, γ0 = min{2β ,1− 2β} , s0 = max{2β ,1− 2β} and r′ =

min{2γ0,1−2γ0} .

In the following, we give the matrix version of Theorem 2.5.
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THEOREM 3.3. Let A,B,X ∈ Mn such that A,B ∈ P(H) and let p � q � r � 0 .
Then

K(
√

h,2)r′β 2β ||ApXBq||22 + β 2||Ap+rXBq−r −Aq−rXBp+r||22 (3.6)

+2αβ ||A p+q
2 XB

p+q
2 ||22 + γ0||A

p+r
2 XB

q−r
2 −

√
βA

p+q
4 XB

p+q
4 ||22

� ||αAp+rXBq−r + βAq−rXBp+r||22,
and

K(
√

h,2)−r′β 2β ||ApXBq||22 + β 2||Ap+rXBq−r −Aq−rXBp+r||22 (3.7)

+2αβ ||A p+q
2 XB

p+q
2 ||22 + s0||A

p+r
2 XB

q−r
2 −

√
βA

p+q
4 XB

p+q
4 ||22

� ||αAp+rXBq−r + βAq−rXBp+r||22,

where h =
( ||B||2
||A||2

)p−q+2r
, γ0 = min{2β ,1− 2β} , s0 = max{2β ,1− 2β} and r′ =

min{2γ0,1−2γ0} .

Proof. For (3.6), following the same notations of the Theorem 3.1, we have

A
p+q
2 XB

p+q
2 = U

[(
λ

p+q
2

i μ
p+q
2

j

)
yi j

]
V ∗, (3.8)

Ap+rXBq−r−Aq−rXBp+r = U
[(

λ p+r
i μq−r

j −λ q−r
i μ p+r

j

)
yi j

]
V ∗, (3.9)

A
p+r
2 XB

q−r
2 −

√
βA

p+q
4 XB

p+q
4 = U

[(
λ

p+r
2

i μ
q−r
2

j −
√

β λ
p+q
4

i μ
p+q
4

j

)
yi j

]
V ∗, (3.10)

It follows from (3.2), (3.4), (3.8)–(3.10) and Theorem 2.5 that

K(
√

h,2)r′β 2β ||ApXBq||22 + β 2||Ap+rXBq−r−Aq−rXBp+r||22 +2αβ ||A p+q
2 XB

p+q
2 ||22

+ γ0||A
p+r
2 XB

q−r
2 −

√
βA

p+q
4 XB

p+q
4 ||22

=K(
√

h,2)r′β 2β
n

∑
i, j=1

(
λ 2p

i μ2q
j

)
|yi j|2 + β 2

n

∑
i, j=1

(
λ p+r

i μq−r
j −λ q−r

i μ p+r
j

)2 |yi j|2

+2αβ
n

∑
i, j=1

(
λ

p+q
2

i μ
p+q
2

j

)2

|yi j|2 + γ0

n

∑
i, j=1

(
λ

p+r
2

i μ
q−r
2

j −
√

β λ
p+q
4

i μ
p+q
4

j

)2

|yi j|2

�
n

∑
i, j=1

(
α2λ p+r

i μq−r
j + β 2λ q−r

i μ p+r
j

)
|yi j|2 +2αβ

n

∑
i, j=1

(
λ

p+q
2

i μ
p+q
2

j

)2

|yi j|2

=
n

∑
i, j=1

(
αλ p+r

i μq−r
j + β λ q−r

i μ p+r
j

)2 |yi j|2

=||αAp+rXBq−r + βAq−rXBp+r||22.
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For (3.7), the proceeding is similar to that of the above.
This completes the proof. �

Next, we present the matrix version of Corollary 2.7.

THEOREM 3.4. Let A,B,X ∈ Mn such that A,B ∈ P(H) and let p � q � r � 0 .
Then

K(
√

h,2)r′ ||ApXBq +AqXBp||22 +2β ||Ap+rXBq−r −Aq−rXBp+r)2

+ γ0

(
||Ap+rXBq−r −A

p+q
2 XB

p+q
2 ||22 + ||Aq−rXBp+r−A

p+q
2 XB

p+q
2 ||22

)
−
(
K(

√
h,2)r′ −1

)
||A p+q

2 XB
p+q
2 ||22

� ||Ap+rXBq−r +Aq−rXBbp+r||22,

and

K(
√

h,2)−r′ ||ApXBq +AqXBp||22 +2β ||Ap+rXBq−r −Aq−rXBp+r)2

+ s0

(
||Ap+rXBq−r −A

p+q
2 XB

p+q
2 ||22 + ||Aq−rXBp+r−A

p+q
2 XB

p+q
2 ||22

)
−
(
K(

√
h,2)−r′ −1

)
||A p+q

2 XB
p+q
2 ||22

� ||Ap+rXBq−r +Aq−rXBbp+r||22,

where h =
( ||B||2
||A||2

)p−q+2r
, γ0 = min{2β ,1− 2β} , s0 = max{2β ,1− 2β} and r′ =

min{2γ0,1−2γ0} .

REMARK 3. Obviously, the inequalities of section 3 are the improvements of the
matrix version Young type inequalities of [6]. And the reverse inequalities are the
refinements of the Young type inequality which are different from those in [6].
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