A POINCARÉ-TYPE INEQUALITY ON THE EUCLIDEAN UNIT SPHERE

AI-JUN LI, YINGYING LOU AND YURONG JI

(Communicated by G. Leng)

Abstract. We consider the second variation for the volume of convex bodies associated with the L_p Minkowski-Firey combination and obtain a Poincaré-type inequality on the Euclidean unit sphere S^{n-1} .

1. Introduction

Throughout this paper, a convex body K (compact convex set with non-empty interior) in \mathbb{R}^n is assumed to containing the origin in its interior. Let \mathcal{K}_0^n denote the set of such convex bodies equipped with the Hausdorff metric. The unit sphere of Euclidean space of \mathbb{R}^n is denoted by S^{n-1} .

In the early 1960s, the L_p Minkowski-Firey combination (or L_p addition) of convex bodies was introduced and studied by Firey [13]: Let $1 \le p < \infty$ and $0 < t_1, t_2 < \infty$. If $K, L \in \mathscr{K}_0^n$, then the L_p Minkowski-Firey combination $t_1 \cdot K + pt_2 \cdot L$ is defined by

$$h_{t_1\cdot K+pt_2\cdot L}(\cdot)^p = t_1h_K(\cdot)^p + t_2h_L(\cdot)^p,$$

where h is the support function of convex bodies. The L_p combination is the generalization of the classic *Minkowski combination* defined by

$$K + tL = \{x + ty : x \in K, y \in L\}.$$

In the mid 1990s, Lutwak in his profound papers [22, 23] investigated the L_p addition and introduced the L_p -surface area measure by the first variational formula of the volume associated with L_p addition.

It is the starting point towards many other inequalities involving volumes and L_p mixed volumes, such as the L_p Minkowski inequality and L_p Brunn-Minkowski inequality. The first variation, together with the L_p -surface area measure, also leads to an embryonic L_p Brunn-Minkowski theory. A good reference is the book by Schneider [30], in particular Chapter 9, for a detailed presentation of the L_p Brunn-Minkowski theory. For the various elements of the L_p Brunn-Minkowski theory, please see, for example, [6, 7], [14]–[29], [31].

The first author is supported by NSFC-Henan Joint Fund (U1204102) and Doctoral Fund of Henan Polytechnic University (B2011-024).

Mathematics subject classification (2010): 52A20.

Keywords and phrases: Convex body, Lp-addition, Poincaré-type inequality.

It is a motivation for us to investigate the second variation of volume for the L_p addition. Note that the second variation of the volume for the Minkowski combination was studied by Colesanti [10]. He then used it to lead from the Brunn-Minkowski inequality to a Poincaré type inequality on the smooth boundary of a convex body.

In this paper, we will adopt a new approach to consider the second variation for the volume of the convex body for the L_p addition. We use a selfadjoint operator (see Section 3) developed by Cheng and Yau [8] concerning the regularity of the solution of the Minkowski problem. Consider the convex body Ω_t associated with the L_p addition defined by

$$\Omega_t = \bigcap_{u \in S^{n-1}} \left\{ x \in \mathbb{R}^n : \langle x, u \rangle \leqslant \left(h_K(u)^p + t \, \varphi(u)^p \right)^{\frac{1}{p}} \right\},\,$$

where $K \in \mathscr{K}_0^n$ is of class $C^2_+(S^{n-1})$, and $\varphi \in C^2(S^{n-1})$ is positive such that $(h_K(u)^p +$ $t\varphi(u)^p)^{\frac{1}{p}} \in C^2_+(S^{n-1})$ for sufficient small t > 0. Let \mathscr{H}^{n-1} denote the (n-1)-dimensional Hasusforff measure. A Poincaré-type

inequality on the unit sphere is deduced.

THEOREM 1.1. Let $1 \leq p < \infty$. For every positive function $\psi \in C^1(S^{n-1})$, we have

$$\frac{p-n}{n\omega_n} \left(\int_{S^{n-1}} \psi(u) d\mathcal{H}^{n-1}(u) \right)^2 + (n-p) \int_{S^{n-1}} \psi(u)^2 d\mathcal{H}^{n-1}(u)$$

$$\leq \int_{S^{n-1}} \left| \nabla \psi(u) \right|^2 d\mathcal{H}^{n-1}(u), \tag{1.1}$$

where ω_n is the volume of unit ball of \mathbb{R}^n .

If p = 1 and $\int_{S^{n-1}} \psi(u) d\mathcal{H}^{n-1}(u) = 0$, then the inequality (1.1) implies the classic Poincaré inequality on S^{n-1} with the sharp constant:

$$(n-1)\int_{S^{n-1}}\psi(u)^2d\mathscr{H}^{n-1}(u)\leqslant\int_{S^{n-1}}\left|\nabla\psi(u)\right|^2d\mathscr{H}^{n-1}(u)$$

There have been a lot of literature about the Poincaré-type inequalities and related topic, see for example, [2]–[5], [9], [11], [12], [18], [25], [32] and the references therein.

2. Notations and preliminaries

We shall work in \mathbb{R}^n equipped with the canonical scalar product $\langle \cdot, \cdot \rangle$ and write $|\cdot|$ for the corresponding Euclidean norm. The support function of a convex body K, $h(\cdot): \mathbb{R}^n \to (0,\infty)$, is defined for $x \in \mathbb{R}^n$ by

$$h(x) := h_K(x) = \max\{\langle x, y \rangle : y \in K\}.$$

Obviously, h is positively homogeneous of order 1. The set \mathcal{K}_0^n will be viewed as equipped with the Hausdorff metric and thus for $K_i \in \mathscr{K}_0^n$, we have $K_i \to K \in \mathscr{K}_0^n$

provided that

$$||h_{K_i} - h_K||_{\infty} := \max_{u \in S^{n-1}} |h_{K_i}(u) - h_K(u)| \to 0.$$

A convex body $K \in \mathscr{K}_0^n$ is said to be of class C_+^2 if $\partial K \in C^2$ and the Gauss curvature is strictly positive at each point of ∂K . If K is of class C_+^2 we denote its Gauss map by v. Then the support function of K can be written as

$$h(x) = \langle x, v(x) \rangle, \ x \in \partial K.$$
 (2.1)

Let h^* denote the support function of K^* , where K^* is the polar of K defined by

$$K^* = \{ x \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \text{ for all } y \in K \}$$

Note that

$$h^*(x) = 1$$
, for each $x \in \partial K$. (2.2)

Then the Gauss map can be defined on ∂K as

$$v = \frac{\nabla h^*}{|\nabla h^*|}.$$
(2.3)

Since $h(\nabla h^*(x)) = 1$, it follows that

$$h(v(x)) = \frac{1}{|\nabla h^*(x)|}$$
(2.4)

for all $x \in \partial K$. The Gauss map is a homeomorphism between a closed smooth convex hypersurface M in \mathbb{R}^n and the unite sphere S^{n-1} . It assigns each point of the boundary of M to its outer normal. Then the Gauss curvature H of M can be transplanted via the Gauss map to a function defined on S^{n-1} . If the closed smooth convex hypersurface M encloses a body K in \mathbb{R}^n , then

$$\frac{1}{H}d\mathscr{H}^{n-1}(u) = dS_K(u), \qquad (2.5)$$

where $dS_K(u)$ is the surface area measure of K, which is defined on S^{n-1} by

$$S_K(\omega) = \mathscr{H}^{n-1}(\nu^{-1}(K,\omega))$$
(2.6)

for each Borel set $\omega \subseteq S^{n-1}$, where v^{-1} denotes the inverse Gauss map v. Let $K, L \in \mathscr{K}_0^n$. The L_p -mixed volume of K and L is defined by

$$\frac{n}{p}V_p(K,L) = \lim_{t \to 0^+} \frac{V(K+_p t \cdot L) - V(K)}{t}.$$

The L_p -surface area measure $S_p(K, \cdot)$ of K is a positive Borel measure on S^{n-1} such that the L_p -mixed volume has the following integral representation

$$V_p(K,L) = \frac{1}{n} \int_{S^{n-1}} h_L^p(u) dS_p(K,u).$$
(2.7)

It generalizes the mixed volume $V_1(K,L)$ of K and L defined by

$$nV_1(K,L) = \lim_{t \to 0^+} \frac{V(K+tL) - V(K)}{t}.$$

A fundamental fact is that the mixed volume $V_1(K,L)$ can be expressed as

$$V_1(K,L) = \frac{1}{n} \int_{S^{n-1}} h_L(u) dS_K(u).$$
(2.8)

As showed in [22], if $K \in \mathscr{K}_0^n$, then the L_p -surface area measure $S_p(K, \cdot)$ of K defined on S^{n-1} is absolutely continuous with respect to its surface area measure and that the Radon-Nikodym derivative is

$$\frac{dS_p(K,\cdot)}{dS_K(\cdot)} = h_K^{1-p}(\cdot).$$

The L_p Brunn-Minkowski inequality says that if $K, L \in \mathscr{K}_0^n$, and $1 \leq p < \infty$, then for $0 \leq \lambda \leq 1$,

$$V((1-\lambda)\cdot K+_p\lambda\cdot L)^{\frac{p}{n}} \ge (1-\lambda)V(K)^{\frac{p}{n}} + \lambda V(L)^{\frac{p}{n}},$$
(2.9)

with equality if and only if *K* and *L* are dilates.

3. A selfadjoint operator

Let $K \in \mathscr{K}_0^n$. If K is of class C_+^2 , the differential Dv is the Weingarten map of ∂K . Let h be the support function of K and v^{-1} be the inverse Gauss map. Then the matrix associated with the linear map $D(v^{-1})$ is $(h_{ij} + h\delta_{ij})$, i, j = 1, ..., n-1, where h_i and h_{ij} is the first and second covariant derivatives of h with respect to an orthonormal frame $\{e_1, ..., e_{n-1}\}$ on S^{n-1} and δ_{ij} is the standard Kronecker symbol. In other words, $(h_{ij} + h\delta_{ij})$ is the matrix of the reverse second fundamental form of ∂K . It follows that the reciprocal Gauss curvature has the following formula,

$$\frac{1}{H} = \det(h_{ij} + h\delta_{ij}), \ i, j = 1, \dots, n-1.$$
(3.1)

Define the coefficients c_{ij} of the cofactor matrix of $(h_{ij} + h\delta_{ij})$ by

$$\sum_{jl} c_{ij}(h_{jl} + h\delta_{jl}) = \delta_{il} \det(h_{pq} + h\delta_{pq}) = \frac{\delta_{il}}{H}.$$
(3.2)

Recall that

$$\sum_{i=1}^{n-1} (c_{ij})_i = 0.$$
(3.3)

It follows that

$$\sum_{ij} c_{ij}(h_{ij} + h\delta_{ij}) = \operatorname{tr}(c_{ij})h + \sum_{ij} (c_{ij}h_j)_i.$$
(3.4)

Let L_h be the linear operator of the operator $h \rightarrow \det(h_{ij} + h\delta_{ij})$ defined by

$$L_h(g) = \sum_{ij} c_{ij}(g_{ij} + g\delta_{ij})$$
(3.5)

for each $g \in C^2(S^{n-1})$. Cheng and Yau [8] obtained the following result.

LEMMA 3.1. The operator L_h is selfadjoint, i.e.,

$$\int_{S^{n-1}} gL_h(w) d\mathcal{H}^{n-1}(u) = \int_{S^{n-1}} wL_h(g) d\mathcal{H}^{n-1}(u),$$
(3.6)

where g, w are functions in $C^2(S^{n-1})$.

Define the set \mathscr{C} of functions by

$$\mathscr{C} = \{ f \in C^2(S^{n-1}) : (f_{ij} + f\delta_{ij}) > 0 \text{ on } S^{n-1} \}.$$

Obviously, the set \mathscr{C} consists of support functions of convex bodies (containing the origin in its interior) of class C_+^2 .

4. The first and second variational formula

Let $K \in \mathscr{K}_0^n$ be of class C^2_+ , $\varphi \in C^2(S^{n-1})$ be positive and $1 \leq p < \infty$. For t > 0 sufficient small such that $(h_K(u)^p + t\varphi(u)^p)^{\frac{1}{p}} \in \mathscr{C}$. Define a convex body Ω_t by

$$\Omega_t = \bigcap_{u \in S^{n-1}} \{ x \in \mathbb{R}^n : \langle x, u \rangle \leqslant \left(h_K(u)^p + t \, \varphi(u)^p \right)^{\frac{1}{p}} \}.$$

It follows that Ω_t contains the origin in its interior. The critical observations of this body are

$$h_{\Omega_t} \leqslant (h_K^p + t \varphi^p)^{\frac{1}{p}}$$

and

$$h_{\Omega_t} = (h_K^p + t \varphi^p)^{\frac{1}{p}}$$
, a.e. with respect to S_{Ω_t} .

In fact, the inverse Gauss map of Ω of the set

$$\boldsymbol{\omega} = \{ \boldsymbol{u} \in S^{n-1} : h_{\Omega}(\boldsymbol{u}) < \left(h_{K}(\boldsymbol{u})^{p} + t \, \boldsymbol{\varphi}(\boldsymbol{u})^{p} \right)^{\frac{1}{p}} \},\$$

which was shown by Aleksandrov [1] (see [22] also), must be a singular boundary point of Ω_t . Since the set of singular boundary points of a convex body has \mathscr{H}^{n-1} -measure zero, we conclude from Reidemeister's theorem [30] that $S_{\Omega_t}(\omega) = 0$ and $h_{\Omega_t} = (h_K^p + t\varphi^p)^{\frac{1}{p}}$ almost everywhere with respect to the surface measure S_{Ω_t} . Denote

 $g_t(u)$ by the function $(h_K(u)^p + t\varphi(u)^p)^{\frac{1}{p}}$. From this, (2.8), (2.5) and (3.1) we have

$$V(\Omega_{t}) = \frac{1}{n} \int_{S^{n-1}} h_{\Omega_{t}}(u) dS_{\Omega_{t}}(u)$$

= $\frac{1}{n} \int_{S^{n-1}} (h_{K}(u)^{p} + t\varphi(u)^{p})^{\frac{1}{p}} dS_{\Omega_{t}}(u)$
= $\frac{1}{n} \int_{S^{n-1}} g_{t}(u) \det ((g_{t}(u))_{ij} + g_{t}(u)\delta_{ij}) d\mathscr{H}^{n-1}(u).$ (4.1)

LEMMA 4.1. If $K \in \mathscr{K}_0^n$ be of class C^2_+ and $\varphi \in C^2(S^{n-1})$ be positive such that $(h_K(u)^p + t\varphi(u)^p)^{\frac{1}{p}} \in \mathscr{C}$ for sufficient small t > 0, then, for $1 \leq p < \infty$,

$$\frac{d}{dt}V(\Omega_t)\big|_{t=0} = \frac{1}{p}\int_{S^{n-1}}\varphi(u)^p h_K(u)^{1-p} \det\left((h_K(u))_{ij} + h_K(u)\delta_{ij}\right)d\mathscr{H}^{n-1}(u).$$
 (4.2)

Proof. For every $u \in S^{n-1}$, from (3.2), we have

$$\frac{d}{dt} \Big[g_t(u) \det \big((g_t(u))_{ij} + g_t(u)\delta_{ij} \big) \Big] = g'_t(u) \det \big((g_t(u))_{ij} + g_t(u)\delta_{ij} \big) + g_t(u) \sum_{i,j=1}^{n-1} c^t_{ij}(u) ((g'_t(u))_{ij} + g'_t(u)\delta_{ij}),$$

where (c_{ij}^t) denotes the cofactor matrix of $((g_t)_{ij} + g_t \delta_{ij})$.

Differentiating under the integral sign we obtain

$$\frac{d}{dt}V(\Omega_{t}) = \frac{1}{n} \int_{S^{n-1}} g_{t}'(u) \det\left((g_{t}(u))_{ij} + g_{t}(u)\delta_{ij}\right) d\mathcal{H}^{n-1}(u)
+ \frac{1}{n} \int_{S^{n-1}} g_{t}(u) \sum_{i,j=1}^{n-1} c_{ij}^{t}(u)((g_{t}'(u))_{ij} + g_{t}'(u)\delta_{ij}) d\mathcal{H}^{n-1}(u)
= \frac{1}{n} \int_{S^{n-1}} g_{t}'(u) \det\left((g_{t}(u))_{ij} + g_{t}(u)\delta_{ij}\right) d\mathcal{H}^{n-1}(u)
+ \frac{1}{n} \int_{S^{n-1}} g_{t}(u) L_{g_{t}}(g_{t}'(u)) d\mathcal{H}^{n-1}(u),$$
(4.3)

where L_{g_t} is a linear operator given by (3.5).

It is easy to check from (3.2) and (3.1) that

$$L_{g_t}(g_t) = (n-1)\det((g_t)_{ij} + g_t\delta_{ij}).$$
(4.4)

Then, using Lemma 3.1, we have

$$\begin{split} &\frac{1}{n} \int_{S^{n-1}} g_t(u) L_{g_t}(g_t'(u)) d\mathcal{H}^{n-1}(u) \\ &= \frac{1}{n} \int_{S^{n-1}} g_t'(u) L_{g_t}(g_t(u)) d\mathcal{H}^{n-1}(u) \\ &= \frac{n-1}{n} \int_{S^{n-1}} g_t'(u) \det((g_t(u))_{ij} + g_t(u)\delta_{ij}) d\mathcal{H}^{n-1}(u). \end{split}$$

Inserting the above equation into (4.3) gives that

$$\frac{d}{dt}V(\Omega_t) = \int_{S^{n-1}} g'_t(u) \det\left((g_t(u))_{ij} + g_t(u)\delta_{ij}\right) d\mathscr{H}^{n-1}(u).$$
(4.5)

Then (4.2) follows by letting t = 0. \Box

Analogously, differentiating the function $t \mapsto \frac{d}{dt}V(\Omega_t)$ (4.5) again gives

$$\begin{aligned} \frac{d^2}{dt^2} V(\Omega_t) &= \int_{S^{n-1}} g_t''(u) \det \left((g_t(u))_{ij} + g_t(u) \delta_{ij} \right) du \\ &+ \int_{S^{n-1}} g_t'(u) \sum_{i,j=1}^{n-1} c_{ij}^t(u) ((g_t'(u))_{ij} + g_t'(u) \delta_{ij}) du \end{aligned}$$

where (c_{ij}^t) denotes the cofactor matrix of $((g_t)_{ij} + g_t \delta_{ij})$. Therefore, we obtain the second variational formula.

LEMMA 4.2. If $K \in \mathscr{K}_0^n$ is of class C^2_+ and $\varphi \in C^2(S^{n-1})$ positive such that $(h_K(u)^p + t\varphi(u)^p)^{\frac{1}{p}} \in \mathscr{C}$ for sufficient small t > 0, then, for $1 \leq p < \infty$,

$$\begin{aligned} \frac{d^2}{dt^2} V(\Omega_t) \Big|_{t=0} &= \frac{1-p}{p^2} \int_{S^{n-1}} h_K(u)^{1-2p} \varphi(u)^{2p} \det\left((h_K(u))_{ij} + h_K(u)\delta_{ij}\right) d\mathscr{H}^{n-1}(u) \\ &+ \frac{1}{p^2} \int_{S^{n-1}} h_K^{1-p}(u) \varphi(u)^p \sum_{i,j=1}^{n-1} c_{ij}(u) \left((h_K(u)^{1-p} \varphi(u)^p)_{ij} + h_K(u)^{1-p} \varphi(u)^p \delta_{ij}\right) d\mathscr{H}^{n-1}(u), \end{aligned}$$

where (c_{ij}) is the cofactor matrix of $((h_K)_{ij} + h_K \delta_{ij})$.

5. The Poincaré-type inequalities

THEOREM 5.1. Let $K \in \mathscr{K}_0^n$ be of class C^2_+ . For every positive function $\phi \in C^1(\partial K)$, we have

$$\begin{split} \frac{p-n}{nV(K)} \Big(\int_{\partial K} \frac{\phi(x)^p}{|\nabla h_K^*(x)|^{1-p}} d\mathscr{H}^{n-1}(x) \Big)^2 + (1-p) \int_{\partial K} \frac{\phi(x)^{2p}}{|\nabla h_K^*(x)|^{1-2p}} d\mathscr{H}^{n-1}(x) \\ &+ \int_{\partial K} \operatorname{tr}(Dv_K(x)) \frac{\phi(x)^{2p}}{|\nabla h_K^*(x)|^{2(1-p)}} d\mathscr{H}^{n-1}(x) \\ \leqslant \int_{\partial K} \left\langle (Dv_K(x))^{-1} \nabla \left(\frac{\phi(x)^p}{|\nabla h_K^*(x)|^{1-p}} \right), \nabla \left(\frac{\phi(x)^p}{|\nabla h_K^*(x)|^{1-p}} \right) \right\rangle d\mathscr{H}^{n-1}(x), \end{split}$$

where Dv_K is the differential of the Gauss map; i.e., the Weingarten map.

Proof. Assume that $\varphi \in C^2(S^{n-1})$ is positive. Let t > 0 be sufficient small such that $(h_K(u)^p + t\varphi(u)^p)^{\frac{1}{p}} \in \mathscr{C}$. It follows from the L_p Brunn-Minkowski inequality (2.9) that the function $V(\Omega_t)^{\frac{p}{n}}$ is concave, so that

$$\left(V(\Omega_0)^{\frac{p}{n}}\right)'' = \frac{p(p-n)}{n^2} V(\Omega_0)^{\frac{p}{n}-2} (V'(\Omega_0))^2 + \frac{p}{n} V(\Omega_0)^{\frac{p}{n}-1} V''(\Omega_0) \leqslant 0.$$

By Lemma 4.1 and 4.2 we obtain

$$\frac{p-n}{nV(K)} \left(\int_{S^{n-1}} h_K(u)^{1-p} \varphi(u)^p \det\left((h_K(u))_{ij} + h_K(u) \delta_{ij} \right) d\mathscr{H}^{n-1}(u) \right)^2 + (1-p) \int_{S^{n-1}} h_K(u)^{1-2p} \varphi(u)^{2p} \det\left((h_K(u))_{ij} + h_K(u) \delta_{ij} \right) d\mathscr{H}^{n-1}(u) \leqslant - \int_{S^{n-1}} h_K(u)^{1-p} \varphi(u)^p \sum_{i,j=1}^{n-1} c_{ij}(u) \left((h_K(u)^{1-p} \varphi(u)^p)_{ij} \right)$$
(5.1)

$$+h_K(u)^{1-p}\varphi(u)^p\delta_{ij}d\mathscr{H}^{n-1}(u),$$
(5.2)

where (c_{ij}) is the cofactor matrix of $((h_K)_{ij} + h_K \delta_{ij})$. Using (3.4), integrating by parts and using (3.3), the integral in the right hand-side is equal to

$$-\int_{S^{n-1}} \operatorname{tr}(c_{ij}) h_K(u)^{2(1-p)} \varphi(u)^{2p} d\mathscr{H}^{n-1}(u) + \int_{S^{n-1}} \sum_{i,j=1}^{n-1} c_{ij}(u) (h_K(u)^{1-p} \varphi(u)^p)_i (h_K(u)^{1-p} \varphi(u)^p)_j d\mathscr{H}^{n-1}(u).$$
(5.3)

By a standard approximation argument, the above equation can fulfills for positive $\varphi \in C^1(S^{n-1})$. So let $\varphi(u) = \varphi(v_K^{-1}(u))$, $u \in S^{n-1}$, where $\varphi \in C^1(\partial K)$ is positive and v_K^{-1} is the inverse Gauss map. Note that

$$(c_{ij}) = \det((h_K)_{ij} + h_K \delta_{ij})((h_K)_{ij} + h_K \delta_{ij})^{-1}.$$
(5.4)

Making the change of variable u = v(x) and using (2.4) we have

$$\int_{S^{n-1}} \varphi(u)^p h_K(u)^{1-p} \det\left((h_K(u))_{ij} + h_K(u)\delta_{ij}\right) d\mathscr{H}^{n-1}(u)$$

=
$$\int_{\partial K} \frac{\phi(x)^p}{|\nabla h_K^*(x)|^{1-p}} d\mathscr{H}^{n-1}(x),$$
 (5.5)

and from (5.4) we obtain

$$\int_{S^{n-1}} \operatorname{tr}(c_{ij}) h_K(u)^{2(1-p)} \varphi(u)^{2p} d\mathscr{H}^{n-1}(u) = \int_{\partial K} \operatorname{tr}(Dv_K(x)) \frac{\phi(x)^{2p}}{|\nabla h_K^*(x)|^{2(1-p)}} d\mathscr{H}^{n-1}(x).$$
(5.6)

Moreover, by (5.4) and (2.4) we have

$$\sum_{i,j=1}^{n-1} c_{ij}(u) (h_K(u)^{1-p} \varphi(u)^p)_i (h_K(u)^{1-p} \varphi(u)^p)_j$$

$$= \det \left((h_K(u))_{ij} + h_K(u) \delta_{ij} \right) \left\langle Dv_K^{-1}(u) \nabla (h_K(u)^{1-p} \varphi(u)^p), \nabla (h_K(u)^{1-p} \varphi(u)^p) \right\rangle$$

$$= \det \left((h_K(u))_{ij} + h_K(u) \delta_{ij} \right)$$

$$\times \left\langle Dv_K^{-1}(u) \nabla \left(\frac{\phi(v_K^{-1}(u))^p}{\left| \nabla h_K^*(v_K^{-1}(u)) \right|^{1-p}} \right), \nabla \left(\frac{\phi(v_K^{-1}(u))^p}{\left| \nabla h_K^*(v_K^{-1}(u)) \right|^{1-p}} \right) \right\rangle.$$
(5.7)

Thus,

$$\begin{split} &\int_{S^{n-1}} \sum_{i,j=1}^{n-1} c_{ij}(u) (h_K(u)^{1-p} \varphi(u)^p)_i (h_K(u)^{1-p} \varphi(u)^p)_j d\mathscr{H}^{n-1}(u) \\ &= \int_{\partial K} \left\langle (Dv_K(x))^{-1} \nabla \left(\frac{\phi(x)^p}{\left| \nabla h_K^*(x) \right|^{1-p}} \right), \nabla \left(\frac{\phi(x)^p}{\left| \nabla h_K^*(x) \right|^{1-p}} \right) \right\rangle d\mathscr{H}^{n-1}(x). \end{split}$$
(5.8)

Finally, combining (5.1), (5.3), and (5.5), (5.6) and (5.8) we obtain the desired result. \Box

The case of p = 1 of Theorem 5.1 was proved by Colesanti [10]. Moreover, Colesanti and Saorin-Gomez [11] used Brunn-Minkowski inequalities for quermassintegrals to deduce a family of Poincaré type inequalities.

If we choose K to be the unit ball, then $\partial K = S^{n-1}$, v_K is the identity map on S^{n-1} and $|\nabla h_K^*(x)| = 1$ for $x \in \partial K$. In this case, let $\varphi(u)^p = \psi(u)$, we obtain the Poincaré-type inequality on S^{n-1} as follows.

THEOREM 5.2. Let $1 \leq p < \infty$. For every positive function $\psi \in C^1(S^{n-1})$, we have

$$\frac{p-n}{n\omega_n} \left(\int_{S^{n-1}} \psi(u) d\mathcal{H}^{n-1}(u) \right)^2 + (n-p) \int_{S^{n-1}} \psi(u)^2 d\mathcal{H}^{n-1}(u)$$

$$\leq \int_{S^{n-1}} \left| \nabla \psi(u) \right|^2 d\mathcal{H}^{n-1}(u).$$
(5.9)

Note that when p = 1, the inequality (5.9) can be obtained from Colesanti' result [10] by replacing ψ by $\psi - \frac{1}{n\omega_n} \int_{S^{n-1}} \psi(u) d\mathcal{H}^{n-1}(u)$. From (5.9) it immediately yields the following Poincaré-type inequality on S^{n-1} .

COROLLARY 5.3. Let $1 \leq p < \infty$. For every positive function $\psi \in C^1(S^{n-1})$, if

$$\int_{S^{n-1}} \psi(u) d\mathscr{H}^{n-1}(u) = 0,$$

then we have

$$(n-p)\int_{S^{n-1}}\psi(u)^2d\mathscr{H}^{n-1}(u)\leqslant\int_{S^{n-1}}\left|\nabla\psi(u)\right|^2d\mathscr{H}^{n-1}(u).$$

REFERENCES

- [1] A. D. ALEKSANDROV, Konvexe Polyeder, Akademie-Verlag, Berlin (Russian original: 1950), 1958.
- S. BOBKOV, Isoperimetric and analytic inequalities for log-concave probability measures, Ann. Probability 27 (1999), 1903–1921.
- [3] S. BOBKOV, M. LEDOUX, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), 1028–1052.
- [4] S. BOBKOV, M. LEDOUX, Weighted Poincaré-type inequalities for cauchy and other convex measures, Ann. Probability 37 (2009), 403–427.
- [5] S. BOBKOV, M. LEDOUX, From Brunn-Minkowski to sharp Sobolev inequalities, Ann. Mat. Pure Appl. 187 (2008), 369–384.
- [6] S. CAMPI, P. GRONCHI, The L_p-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), 128– 141.
- [7] S. CAMPI, P. GRONCHI, On the reverse L_p-Busemann-Petty centroid inequality, Mathematika 49 (2002), 1–11.
- [8] S.-Y. CHENG, S.-T. YAU, On the regularity of the solutions of the n-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), 495–516.
- [9] A. COLESANTI, Brunn-Minkowski inequalities for variational problems and related problems, Adv. Math. 194 (2005), 105–140.
- [10] A. COLESANTI, From the Brunn-Minkowski inequality to a class of Poincaré type inequalities, Commun. Contemp. Math. 10 (2008), 765–772.
- [11] A. COLESANTI, E. SAORIN-GOMEZ, Functional inequalities derived from The Brunn-Minkowski inequality for quermassintegrals, J. Convex Anal. 17 (2010), 35–49,
- [12] A. COLESANTI, I. FRAGALÀ, The first variation of the total mass of log-concave functions and related inequalities, Adv. Math. 244 (2013), 708–749.
- [13] W. J. FIREY, *p*-means of convex bodies, Math. Scand., 10 (1962), 17–24.
- [14] R. J. GARDNER, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 355-405.
- [15] C. HABERL, L_p intersection bodies, Adv. Math. 217 (2008), 2599–2624.
- [16] C. HABERL, M. LUDWIG, A characterization of L_p intersection bodies, Int. Math. Res. Not. 17 (2006) Art. ID 10548, 29 pp.
- [17] C. HABERL, F. SCHUSTER, General L_p affine isoperimetric inequalities, J. Differential Geom. 83 (2009), 1–26.
- [18] C. HABERL, F. SCHUSTER, Asymmetric affine L_p Sobolev inequalities, J. Funct. Anal. **257** (2009), 641–658.
- [19] M. LUDWIG, Projection bodies and valuations, Adv. Math. 172 (2002), 158-168.
- [20] M. LUDWIG, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), 4191-4213.
- [21] M. LUDWIG, Intersection bodies and valuations, Amer. J. Math. 128 (2006), 1409–1428.
- [22] E. LUTWAK, The Brunn-Minkowski-Firey Theory I: Mixed volumes and the Minkowski Problem, J. Differential Geom. 38 (1993), 131–150.
- [23] E. LUTWAK, The Brunn-Minkowski-Firey Theory II, Adv. Math. 118 (1996), 244–294.
- [24] E. LUTWAK, D. YANG, G. ZHANG, L_p affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111–132,
- [25] E. LUTWAK, D. YANG, G. ZHANG, Sharp affine L_p Sobolev inequalities, J. Differential Geom. 62 (2002), 17–38.
- [26] E. LUTWAK, D. YANG, G. ZHANG, On the L_p-Minkowski problem, Tran. Amer. Math. Soc. 356 (2004), 4359–4370.
- [27] E. LUTWAK, D. YANG, G. ZHANG, Volume inequalities for subspaces of L_p, J. Differential Geom. 68 (2004), 159–184.
- [28] E. LUTWAK, D. YANG, G. ZHANG, L_p John ellipsoids, Proc. London Math. Soc. 90 (2005), 497– 520.

- [29] M. MEYER, E. WERNER, On the p-affine surface area, Adv. Math. 152 (2000), 288–313.
- [30] R. SCHNEIDER, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, Vol. 44, Cambridge University Press, Cambridge, 2014.
- [31] E. WERNER, D.-P. YE, New L_p affine isoperimetric inequalities, Adv. Math. 218 (2008), 762–780.
- [32] G. ZHANG, The affine Sobolev inequality, J. Differential Geom. 53 (1999), 183-202.

(Received September 3, 2015)

Ai-Jun Li School of Mathematics and Information Science Henan Polytechnic University Jiaozuo 454000, China e-mail: liaijun72@163.com

Yingying Lou School of Mathematics and Information Science Henan Polytechnic University Jiaozuo 454000, China e-mail: 1094708723@gg.com

Yurong Ji School of Mathematics and Information Science Henan Polytechnic University Jiaozuo 454000, China e-mail: jiyurong@hpu.edu.cn

Journal of Mathematical Inequalities www.ele-math.com jmi@ele-math.com