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A POINCARÉ–TYPE INEQUALITY ON THE EUCLIDEAN UNIT SPHERE

AI-JUN LI, YINGYING LOU AND YURONG JI

(Communicated by G. Leng)

Abstract. We consider the second variation for the volume of convex bodies associated with the
Lp Minkowski-Firey combination and obtain a Poincaré-type inequality on the Euclidean unit
sphere Sn−1 .

1. Introduction

Throughout this paper, a convex body K (compact convex set with non-empty
interior) in R

n is assumed to containing the origin in its interior. Let K n
0 denote the

set of such convex bodies equipped with the Hausdorff metric. The unit sphere of
Euclidean space of R

n is denoted by Sn−1 .
In the early 1960s, the Lp Minkowski-Firey combination (or Lp addition) of con-

vex bodies was introduced and studied by Firey [13]: Let 1 � p < ∞ and 0 < t1,t2 < ∞ .
If K,L ∈ K n

0 , then the Lp Minkowski-Firey combination t1 ·K +p t2 ·L is defined by

ht1·K+pt2·L(·)p = t1hK(·)p + t2hL(·)p,

where h is the support function of convex bodies. The Lp combination is the general-
ization of the classic Minkowski combination defined by

K + tL = {x+ ty : x ∈ K,y ∈ L}.
In the mid 1990s, Lutwak in his profound papers [22, 23] investigated the Lp addi-
tion and introduced the Lp -surface area measure by the first variational formula of the
volume associated with Lp addition.

It is the starting point towards many other inequalities involving volumes and Lp

mixed volumes, such as the Lp Minkowski inequality and Lp Brunn-Minkowski in-
equality. The first variation, together with the Lp -surface area measure, also leads to
an embryonic Lp Brunn-Minkowski theory. A good reference is the book by Schneider
[30], in particular Chapter 9, for a detailed presentation of the Lp Brunn-Minkowski
theory. For the various elements of the Lp Brunn-Minkowski theory, please see, for
example, [6, 7], [14]–[29], [31].
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It is a motivation for us to investigate the second variation of volume for the Lp

addition. Note that the second variation of the volume for the Minkowski combination
was studied by Colesanti [10]. He then used it to lead from the Brunn-Minkowski
inequality to a Poincaré type inequality on the smooth boundary of a convex body.

In this paper, we will adopt a new approach to consider the second variation for
the volume of the convex body for the Lp addition. We use a selfadjoint operator (see
Section 3) developed by Cheng and Yau [8] concerning the regularity of the solution of
the Minkowski problem. Consider the convex body Ωt associated with the Lp addition
defined by

Ωt =
⋂

u∈Sn−1

{
x ∈ R

n : 〈x,u〉 �
(
hK(u)p + tϕ(u)p) 1

p
}
,

where K ∈K n
0 is of class C2

+(Sn−1) , and ϕ ∈C2(Sn−1) is positive such that
(
hK(u)p +

tϕ(u)p
) 1

p ∈C2
+(Sn−1) for sufficient small t > 0.

Let H n−1 denote the (n−1)-dimensional Hasusforff measure. A Poincaré-type
inequality on the unit sphere is deduced.

THEOREM 1.1. Let 1 � p < ∞ . For every positive function ψ ∈ C1(Sn−1) , we
have

p−n
nωn

(∫
Sn−1

ψ(u)dH n−1(u)
)2

+(n− p)
∫
Sn−1

ψ(u)2dH n−1(u)

�
∫

Sn−1

∣∣∇ψ(u)
∣∣2dH n−1(u), (1.1)

where ωn is the volume of unit ball of R
n .

If p = 1 and
∫
Sn−1 ψ(u)dH n−1(u) = 0, then the inequality (1.1) implies the clas-

sic Poincaré inequality on Sn−1 with the sharp constant:

(n−1)
∫
Sn−1

ψ(u)2dH n−1(u) �
∫

Sn−1

∣∣∇ψ(u)
∣∣2dH n−1(u).

There have been a lot of literature about the Poincaré-type inequalities and re-
lated topic, see for example, [2]–[5], [9], [11], [12], [18], [25], [32] and the references
therein.

2. Notations and preliminaries

We shall work in R
n equipped with the canonical scalar product 〈·, ·〉 and write

| · | for the corresponding Euclidean norm. The support function of a convex body K ,
h(·) : R

n → (0,∞) , is defined for x ∈ R
n by

h(x) := hK(x) = max{〈x,y〉 : y ∈ K}.
Obviously, h is positively homogeneous of order 1. The set K n

0 will be viewed as
equipped with the Hausdorff metric and thus for Ki ∈ K n

0 , we have Ki → K ∈ K n
0
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provided that
‖hKi −hK‖∞ := max

u∈Sn−1
|hKi(u)−hK(u)| → 0.

A convex body K ∈ K n
0 is said to be of class C2

+ if ∂K ∈ C2 and the Gauss
curvature is strictly positive at each point of ∂K . If K is of class C2

+ we denote its
Gauss map by ν . Then the support function of K can be written as

h(x) = 〈x,ν(x)〉, x ∈ ∂K. (2.1)

Let h∗ denote the support function of K∗ , where K∗ is the polar of K defined by

K∗ = {x ∈ R
n : 〈x,y〉 � 1 for all y ∈ K}.

Note that
h∗(x) = 1, for each x ∈ ∂K. (2.2)

Then the Gauss map can be defined on ∂K as

ν =
∇h∗

|∇h∗| . (2.3)

Since h(∇h∗(x)) = 1, it follows that

h(ν(x)) =
1

|∇h∗(x)| (2.4)

for all x ∈ ∂K . The Gauss map is a homeomorphism between a closed smooth convex
hypersurface M in R

n and the unite sphere Sn−1 . It assigns each point of the boundary
of M to its outer normal. Then the Gauss curvature H of M can be transplanted via the
Gauss map to a function defined on Sn−1 . If the closed smooth convex hypersurface M
encloses a body K in R

n , then

1
H

dH n−1(u) = dSK(u), (2.5)

where dSK(u) is the surface area measure of K , which is defined on Sn−1 by

SK(ω) = H n−1(ν−1(K,ω)) (2.6)

for each Borel set ω ⊆ Sn−1 , where ν−1 denotes the inverse Gauss map ν .
Let K,L ∈ K n

0 . The Lp -mixed volume of K and L is defined by

n
p
Vp(K,L) = lim

t→0+

V (K +p t ·L)−V(K)
t

.

The Lp -surface area measure Sp(K, ·) of K is a positive Borel measure on Sn−1 such
that the Lp -mixed volume has the following integral representation

Vp(K,L) =
1
n

∫
Sn−1

hp
L(u)dSp(K,u). (2.7)
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It generalizes the mixed volume V1(K,L) of K and L defined by

nV1(K,L) = lim
t→0+

V (K + tL)−V(K)
t

.

A fundamental fact is that the mixed volume V1(K,L) can be expressed as

V1(K,L) =
1
n

∫
Sn−1

hL(u)dSK(u). (2.8)

As showed in [22], if K ∈ K n
0 , then the Lp -surface area measure Sp(K, ·) of K

defined on Sn−1 is absolutely continuous with respect to its surface area measure and
that the Radon- Nikodym derivative is

dSp(K, ·)
dSK(·) = h1−p

K (·).

The Lp Brunn-Minkowski inequality says that if K,L ∈ K n
0 , and 1 � p < ∞ , then for

0 � λ � 1,
V ((1−λ ) ·K+p λ ·L)

p
n � (1−λ )V(K)

p
n + λV(L)

p
n , (2.9)

with equality if and only if K and L are dilates.

3. A selfadjoint operator

Let K ∈ K n
0 . If K is of class C2

+ , the differential Dν is the Weingarten map of
∂K . Let h be the support function of K and ν−1 be the inverse Gauss map. Then
the matrix associated with the linear map D(ν−1) is (hi j + hδi j) , i, j = 1, . . . ,n− 1,
where hi and hi j is the first and second covariant derivatives of h with respect to an
orthonormal frame {e1, . . . ,en−1} on Sn−1 and δi j is the standard Kronecker symbol.
In other words, (hi j + hδi j) is the matrix of the reverse second fundamental form of
∂K . It follows that the reciprocal Gauss curvature has the following formula,

1
H

= det(hi j +hδi j), i, j = 1, . . . ,n−1. (3.1)

Define the coefficients ci j of the cofactor matrix of (hi j +hδi j) by

∑
jl

ci j(h jl +hδ jl) = δil det(hpq +hδpq) =
δil

H
. (3.2)

Recall that
n−1

∑
i=1

(ci j)i = 0. (3.3)

It follows that

∑
i j

ci j(hi j +hδi j) = tr(ci j)h+∑
i j

(ci jh j)i. (3.4)
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Let Lh be the linear operator of the operator h → det(hi j +hδi j) defined by

Lh(g) = ∑
i j

ci j(gi j +gδi j) (3.5)

for each g ∈C2(Sn−1) . Cheng and Yau [8] obtained the following result.

LEMMA 3.1. The operator Lh is selfadjoint, i.e.,

∫
Sn−1

gLh(w)dH n−1(u) =
∫

Sn−1
wLh(g)dH n−1(u), (3.6)

where g,w are functions in C2(Sn−1) .

Define the set C of functions by

C = { f ∈C2(Sn−1) : ( fi j + fδi j) > 0 on Sn−1}.

Obviously, the set C consists of support functions of convex bodies (containing the
origin in its interior) of class C2

+ .

4. The first and second variational formula

Let K ∈ K n
0 be of class C2

+ , ϕ ∈C2(Sn−1) be positive and 1 � p < ∞ . For t > 0

sufficient small such that (hK(u)p + tϕ(u)p)
1
p ∈ C . Define a convex body Ωt by

Ωt =
⋂

u∈Sn−1

{x ∈ R
n : 〈x,u〉 �

(
hK(u)p + tϕ(u)p) 1

p }.

It follows that Ωt contains the origin in its interior. The critical observations of this
body are

hΩt � (hp
K + tϕ p)

1
p

and

hΩt = (hp
K + tϕ p)

1
p , a.e. with respect to SΩt .

In fact, the inverse Gauss map of Ω of the set

ω = {u ∈ Sn−1 : hΩ(u) <
(
hK(u)p + tϕ(u)p) 1

p },

which was shown by Aleksandrov [1] (see [22] also), must be a singular boundary
point of Ωt . Since the set of singular boundary points of a convex body has H n−1 -
measure zero, we conclude from Reidemeister’s theorem [30] that SΩt (ω) = 0 and

hΩt =
(
hp

K +tϕ p
) 1

p almost everywhere with respect to the surface measure SΩt . Denote
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gt(u) by the function
(
hK(u)p + tϕ(u)p

) 1
p . From this, (2.8), (2.5) and (3.1) we have

V (Ωt) =
1
n

∫
Sn−1

hΩt (u)dSΩt (u)

=
1
n

∫
Sn−1

(
hK(u)p + tϕ(u)p) 1

p dSΩt (u)

=
1
n

∫
Sn−1

gt(u)det
(
(gt(u))i j +gt(u)δi j

)
dH n−1(u). (4.1)

LEMMA 4.1. If K ∈ K n
0 be of class C2

+ and ϕ ∈C2(Sn−1) be positive such that

(hK(u)p + tϕ(u)p)
1
p ∈ C for sufficient small t > 0 , then, for 1 � p < ∞ ,

d
dt

V (Ωt)
∣∣
t=0 =

1
p

∫
Sn−1

ϕ(u)phK(u)1−p det
(
(hK(u))i j +hK(u)δi j

)
dH n−1(u). (4.2)

Proof. For every u ∈ Sn−1 , from (3.2), we have

d
dt

[
gt(u)det

(
(gt(u))i j +gt(u)δi j

)]

= g′t(u)det
(
(gt(u))i j +gt(u)δi j

)
+gt(u)

n−1

∑
i, j=1

ct
i j(u)((g′t(u))i j +g′t(u)δi j),

where (ct
i j) denotes the cofactor matrix of ((gt)i j +gtδi j) .

Differentiating under the integral sign we obtain

d
dt

V (Ωt) =
1
n

∫
Sn−1

g′t(u)det
(
(gt(u))i j +gt(u)δi j

)
dH n−1(u)

+
1
n

∫
Sn−1

gt(u)
n−1

∑
i, j=1

ct
i j(u)((g′t(u))i j +g′t(u)δi j)dH n−1(u)

=
1
n

∫
Sn−1

g′t(u)det
(
(gt(u))i j +gt(u)δi j

)
dH n−1(u)

+
1
n

∫
Sn−1

gt(u)Lgt

(
g′t(u)

)
dH n−1(u), (4.3)

where Lgt is a linear operator given by (3.5).
It is easy to check from (3.2) and (3.1) that

Lgt (gt) = (n−1)det((gt)i j +gtδi j). (4.4)

Then, using Lemma 3.1, we have

1
n

∫
Sn−1

gt(u)Lgt

(
g′t(u)

)
dH n−1(u)

=
1
n

∫
Sn−1

g′t(u)Lgt (gt(u))dH n−1(u)

=
n−1

n

∫
Sn−1

g′t(u)det((gt(u))i j +gt(u)δi j)dH n−1(u).
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Inserting the above equation into (4.3) gives that

d
dt

V (Ωt) =
∫

Sn−1
g′t(u)det

(
(gt(u))i j +gt(u)δi j

)
dH n−1(u). (4.5)

Then (4.2) follows by letting t = 0. �

Analogously, differentiating the function t 
→ d
dtV (Ωt) (4.5) again gives

d2

dt2
V (Ωt) =

∫
Sn−1

g′′t (u)det
(
(gt(u))i j +gt(u)δi j

)
du

+
∫

Sn−1
g′t(u)

n−1

∑
i, j=1

ct
i j(u)((g′t(u))i j +g′t(u)δi j)du,

where (ct
i j) denotes the cofactor matrix of ((gt)i j + gtδi j) . Therefore, we obtain the

second variational formula.

LEMMA 4.2. If K ∈ K n
0 is of class C2

+ and ϕ ∈ C2(Sn−1) positive such that

(hK(u)p + tϕ(u)p)
1
p ∈ C for sufficient small t > 0 , then, for 1 � p < ∞ ,

d2

dt2
V (Ωt)

∣∣
t=0 =

1− p
p2

∫
Sn−1

hK(u)1−2pϕ(u)2p det
(
(hK(u))i j +hK(u)δi j

)
dH n−1(u)

+
1
p2

∫
Sn−1

h1−p
K (u)ϕ(u)p

n−1

∑
i, j=1

ci j(u)
(
(hK(u)1−pϕ(u)p)i j

+hK(u)1−pϕ(u)pδi j
)
dH n−1(u),

where (ci j) is the cofactor matrix of ((hK)i j +hKδi j) .

5. The Poincaré-type inequalities

THEOREM 5.1. Let K ∈ K n
0 be of class C2

+ . For every positive function φ ∈
C1(∂K) , we have

p−n
nV (K)

(∫
∂K

φ(x)p

|∇h∗K(x)|1−p dH n−1(x)
)2

+(1− p)
∫

∂K

φ(x)2p

|∇h∗K(x)|1−2p dH n−1(x)

+
∫

∂K
tr(DνK(x))

φ(x)2p

|∇h∗K(x)|2(1−p) dH n−1(x)

�
∫

∂K

〈
(DνK(x))−1∇

(
φ(x)p∣∣∇h∗K(x)

∣∣1−p

)
,∇

(
φ(x)p∣∣∇h∗K(x)

∣∣1−p

)〉
dH n−1(x),

where DνK is the differential of the Gauss map; i.e., the Weingarten map.
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Proof. Assume that ϕ ∈C2(Sn−1) is positive. Let t > 0 be sufficient small such

that (hK(u)p + tϕ(u)p)
1
p ∈ C . It follows from the Lp Brunn-Minkowski inequality

(2.9) that the function V (Ωt)
p
n is concave, so that

(
V (Ω0)

p
n
)′′ = p(p−n)

n2 V (Ω0)
p
n −2(V ′(Ω0))2 +

p
n
V (Ω0)

p
n −1V ′′(Ω0) � 0.

By Lemma 4.1 and 4.2 we obtain

p−n
nV (K)

(∫
Sn−1

hK(u)1−pϕ(u)p det
(
(hK(u))i j +hK(u)δi j

)
dH n−1(u)

)2

+(1− p)
∫
Sn−1

hK(u)1−2pϕ(u)2p det
(
(hK(u))i j +hK(u)δi j

)
dH n−1(u)

� −
∫

Sn−1
hK(u)1−pϕ(u)p

n−1

∑
i, j=1

ci j(u)
(
(hK(u)1−pϕ(u)p)i j (5.1)

+hK(u)1−pϕ(u)pδi j
)
dH n−1(u), (5.2)

where (ci j) is the cofactor matrix of ((hK)i j +hKδi j) . Using (3.4), integrating by parts
and using (3.3), the integral in the right hand-side is equal to

−
∫

Sn−1
tr(ci j)hK(u)2(1−p)ϕ(u)2pdH n−1(u)

+
∫

Sn−1

n−1

∑
i, j=1

ci j(u)(hK(u)1−pϕ(u)p)i(hK(u)1−pϕ(u)p) jdH n−1(u). (5.3)

By a standard approximation argument, the above equation can fulfills for positive
ϕ ∈C1(Sn−1) . So let ϕ(u) = φ(ν−1

K (u)) , u ∈ Sn−1 , where φ ∈C1(∂K) is positive and
ν−1

K is the inverse Gauss map. Note that

(ci j) = det((hK)i j +hKδi j)((hK)i j +hKδi j)−1. (5.4)

Making the change of variable u = ν(x) and using (2.4) we have

∫
Sn−1

ϕ(u)phK(u)1−p det
(
(hK(u))i j +hK(u)δi j

)
dH n−1(u)

=
∫

∂K

φ(x)p

|∇h∗K(x)|1−p dH n−1(x), (5.5)

and from (5.4) we obtain
∫

Sn−1
tr(ci j)hK(u)2(1−p)ϕ(u)2pdH n−1(u)

=
∫

∂K
tr(DνK(x))

φ(x)2p

|∇h∗K(x)|2(1−p) dH n−1(x). (5.6)
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Moreover, by (5.4) and (2.4) we have

n−1

∑
i, j=1

ci j(u)(hK(u)1−pϕ(u)p)i(hK(u)1−pϕ(u)p) j

= det
(
(hK(u))i j +hK(u)δi j

)〈
Dν−1

K (u)∇(hK(u)1−pϕ(u)p),∇(hK(u)1−pϕ(u)p)
〉

= det
(
(hK(u))i j +hK(u)δi j

)

×
〈

Dν−1
K (u)∇

(
φ(ν−1

K (u))p∣∣∇h∗K(ν−1
K (u))

∣∣1−p

)
,∇

(
φ(ν−1

K (u))p∣∣∇h∗K(ν−1
K (u))

∣∣1−p

)〉
. (5.7)

Thus,

∫
Sn−1

n−1

∑
i, j=1

ci j(u)(hK(u)1−pϕ(u)p)i(hK(u)1−pϕ(u)p) jdH n−1(u)

=
∫

∂K

〈
(DνK(x))−1∇

(
φ(x)p∣∣∇h∗K(x)

∣∣1−p

)
,∇

(
φ(x)p∣∣∇h∗K(x)

∣∣1−p

)〉
dH n−1(x). (5.8)

Finally, combining (5.1), (5.3), and (5.5), (5.6) and (5.8) we obtain the desired
result. �

The case of p = 1 of Theorem 5.1 was proved by Colesanti [10]. Moreover, Cole-
santi and Saorin-Gomez [11] used Brunn-Minkowski inequalities for quermassintegrals
to deduce a family of Poincaré type inequalities.

If we choose K to be the unit ball, then ∂K = Sn−1 , νK is the identity map on
Sn−1 and |∇h∗K(x)| = 1 for x ∈ ∂K . In this case, let ϕ(u)p = ψ(u) , we obtain the
Poincaré-type inequality on Sn−1 as follows.

THEOREM 5.2. Let 1 � p < ∞ . For every positive function ψ ∈ C1(Sn−1) , we
have

p−n
nωn

(∫
Sn−1

ψ(u)dH n−1(u)
)2

+(n− p)
∫
Sn−1

ψ(u)2dH n−1(u)

�
∫

Sn−1

∣∣∇ψ(u)
∣∣2dH n−1(u). (5.9)

Note that when p = 1, the inequality (5.9) can be obtained from Colesanti’ re-
sult [10] by replacing ψ by ψ − 1

nωn

∫
Sn−1 ψ(u)dH n−1(u) . From (5.9) it immediately

yields the following Poincaré-type inequality on Sn−1 .

COROLLARY 5.3. Let 1 � p < ∞ . For every positive function ψ ∈C1(Sn−1) , if
∫

Sn−1
ψ(u)dH n−1(u) = 0,

then we have

(n− p)
∫
Sn−1

ψ(u)2dH n−1(u) �
∫

Sn−1

∣∣∇ψ(u)
∣∣2dH n−1(u).
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