A POINCARÉ-TYPE INEQUALITY ON THE EUCLIDEAN UNIT SPHERE

Ai-Jun Li, Yingying Lou and Yurong Ji

(Communicated by G. Leng)

Abstract

We consider the second variation for the volume of convex bodies associated with the L_{p} Minkowski-Firey combination and obtain a Poincaré-type inequality on the Euclidean unit sphere S^{n-1}.

1. Introduction

Throughout this paper, a convex body K (compact convex set with non-empty interior) in \mathbb{R}^{n} is assumed to containing the origin in its interior. Let \mathscr{K}_{0}^{n} denote the set of such convex bodies equipped with the Hausdorff metric. The unit sphere of Euclidean space of \mathbb{R}^{n} is denoted by S^{n-1}.

In the early 1960s, the L_{p} Minkowski-Firey combination (or L_{p} addition) of convex bodies was introduced and studied by Firey [13]: Let $1 \leqslant p<\infty$ and $0<t_{1}, t_{2}<\infty$. If $K, L \in \mathscr{K}_{0}^{n}$, then the L_{p} Minkowski-Firey combination $t_{1} \cdot K+{ }_{p} t_{2} \cdot L$ is defined by

$$
h_{t_{1} \cdot K+{ }_{p} t_{2} \cdot L}(\cdot)^{p}=t_{1} h_{K}(\cdot)^{p}+t_{2} h_{L}(\cdot)^{p},
$$

where h is the support function of convex bodies. The L_{p} combination is the generalization of the classic Minkowski combination defined by

$$
K+t L=\{x+t y: x \in K, y \in L\}
$$

In the mid 1990s, Lutwak in his profound papers [22, 23] investigated the L_{p} addition and introduced the L_{p}-surface area measure by the first variational formula of the volume associated with L_{p} addition.

It is the starting point towards many other inequalities involving volumes and L_{p} mixed volumes, such as the L_{p} Minkowski inequality and L_{p} Brunn-Minkowski inequality. The first variation, together with the L_{p}-surface area measure, also leads to an embryonic L_{p} Brunn-Minkowski theory. A good reference is the book by Schneider [30], in particular Chapter 9, for a detailed presentation of the L_{p} Brunn-Minkowski theory. For the various elements of the L_{p} Brunn-Minkowski theory, please see, for example, [6, 7], [14]-[29], [31].

[^0]It is a motivation for us to investigate the second variation of volume for the L_{p} addition. Note that the second variation of the volume for the Minkowski combination was studied by Colesanti [10]. He then used it to lead from the Brunn-Minkowski inequality to a Poincaré type inequality on the smooth boundary of a convex body.

In this paper, we will adopt a new approach to consider the second variation for the volume of the convex body for the L_{p} addition. We use a selfadjoint operator (see Section 3) developed by Cheng and Yau [8] concerning the regularity of the solution of the Minkowski problem. Consider the convex body Ω_{t} associated with the L_{p} addition defined by

$$
\Omega_{t}=\bigcap_{u \in S^{n-1}}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leqslant\left(h_{K}(u)^{p}+t \varphi(u)^{p}\right)^{\frac{1}{p}}\right\}
$$

where $K \in \mathscr{K}_{0}^{n}$ is of class $C_{+}^{2}\left(S^{n-1}\right)$, and $\varphi \in C^{2}\left(S^{n-1}\right)$ is positive such that $\left(h_{K}(u)^{p}+\right.$ $\left.t \varphi(u)^{p}\right)^{\frac{1}{p}} \in C_{+}^{2}\left(S^{n-1}\right)$ for sufficient small $t>0$.

Let \mathscr{H}^{n-1} denote the $(n-1)$-dimensional Hasusforff measure. A Poincaré-type inequality on the unit sphere is deduced.

THEOREM 1.1. Let $1 \leqslant p<\infty$. For every positive function $\psi \in C^{1}\left(S^{n-1}\right)$, we have

$$
\begin{align*}
& \frac{p-n}{n \omega_{n}}\left(\int_{S^{n-1}} \psi(u) d \mathscr{H}^{n-1}(u)\right)^{2}+(n-p) \int_{S^{n-1}} \psi(u)^{2} d \mathscr{H}^{n-1}(u) \\
& \leqslant \int_{S^{n-1}}|\nabla \psi(u)|^{2} d \mathscr{H}^{n-1}(u) \tag{1.1}
\end{align*}
$$

where ω_{n} is the volume of unit ball of \mathbb{R}^{n}.
If $p=1$ and $\int_{S^{n-1}} \psi(u) d \mathscr{H}^{n-1}(u)=0$, then the inequality (1.1) implies the classic Poincaré inequality on S^{n-1} with the sharp constant:

$$
(n-1) \int_{S^{n-1}} \psi(u)^{2} d \mathscr{H}^{n-1}(u) \leqslant \int_{S^{n-1}}|\nabla \psi(u)|^{2} d \mathscr{H}^{n-1}(u)
$$

There have been a lot of literature about the Poincaré-type inequalities and related topic, see for example, [2]-[5], [9], [11], [12], [18], [25], [32] and the references therein.

2. Notations and preliminaries

We shall work in \mathbb{R}^{n} equipped with the canonical scalar product $\langle\cdot, \cdot\rangle$ and write $|\cdot|$ for the corresponding Euclidean norm. The support function of a convex body K, $h(\cdot): \mathbb{R}^{n} \rightarrow(0, \infty)$, is defined for $x \in \mathbb{R}^{n}$ by

$$
h(x):=h_{K}(x)=\max \{\langle x, y\rangle: y \in K\}
$$

Obviously, h is positively homogeneous of order 1 . The set \mathscr{K}_{0}^{n} will be viewed as equipped with the Hausdorff metric and thus for $K_{i} \in \mathscr{K}_{0}^{n}$, we have $K_{i} \rightarrow K \in \mathscr{K}_{0}^{n}$
provided that

$$
\left\|h_{K_{i}}-h_{K}\right\|_{\infty}:=\max _{u \in S^{n-1}}\left|h_{K_{i}}(u)-h_{K}(u)\right| \rightarrow 0
$$

A convex body $K \in \mathscr{K}_{0}^{n}$ is said to be of class C_{+}^{2} if $\partial K \in C^{2}$ and the Gauss curvature is strictly positive at each point of ∂K. If K is of class C_{+}^{2} we denote its Gauss map by v. Then the support function of K can be written as

$$
\begin{equation*}
h(x)=\langle x, v(x)\rangle, \quad x \in \partial K . \tag{2.1}
\end{equation*}
$$

Let h^{*} denote the support function of K^{*}, where K^{*} is the polar of K defined by

$$
K^{*}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leqslant 1 \text { for all } y \in K\right\} .
$$

Note that

$$
\begin{equation*}
h^{*}(x)=1, \text { for each } x \in \partial K \tag{2.2}
\end{equation*}
$$

Then the Gauss map can be defined on ∂K as

$$
\begin{equation*}
v=\frac{\nabla h^{*}}{\left|\nabla h^{*}\right|} \tag{2.3}
\end{equation*}
$$

Since $h\left(\nabla h^{*}(x)\right)=1$, it follows that

$$
\begin{equation*}
h(v(x))=\frac{1}{\left|\nabla h^{*}(x)\right|} \tag{2.4}
\end{equation*}
$$

for all $x \in \partial K$. The Gauss map is a homeomorphism between a closed smooth convex hypersurface M in \mathbb{R}^{n} and the unite sphere S^{n-1}. It assigns each point of the boundary of M to its outer normal. Then the Gauss curvature H of M can be transplanted via the Gauss map to a function defined on S^{n-1}. If the closed smooth convex hypersurface M encloses a body K in \mathbb{R}^{n}, then

$$
\begin{equation*}
\frac{1}{H} d \mathscr{H}^{n-1}(u)=d S_{K}(u) \tag{2.5}
\end{equation*}
$$

where $d S_{K}(u)$ is the surface area measure of K, which is defined on S^{n-1} by

$$
\begin{equation*}
S_{K}(\omega)=\mathscr{H}^{n-1}\left(v^{-1}(K, \omega)\right) \tag{2.6}
\end{equation*}
$$

for each Borel set $\omega \subseteq S^{n-1}$, where v^{-1} denotes the inverse Gauss map v.
Let $K, L \in \mathscr{K}_{0}^{n}$. The L_{p}-mixed volume of K and L is defined by

$$
\frac{n}{p} V_{p}(K, L)=\lim _{t \rightarrow 0^{+}} \frac{V\left(K+{ }_{p} t \cdot L\right)-V(K)}{t} .
$$

The L_{p}-surface area measure $S_{p}(K, \cdot)$ of K is a positive Borel measure on S^{n-1} such that the L_{p}-mixed volume has the following integral representation

$$
\begin{equation*}
V_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} h_{L}^{p}(u) d S_{p}(K, u) \tag{2.7}
\end{equation*}
$$

It generalizes the mixed volume $V_{1}(K, L)$ of K and L defined by

$$
n V_{1}(K, L)=\lim _{t \rightarrow 0^{+}} \frac{V(K+t L)-V(K)}{t}
$$

A fundamental fact is that the mixed volume $V_{1}(K, L)$ can be expressed as

$$
\begin{equation*}
V_{1}(K, L)=\frac{1}{n} \int_{S^{n-1}} h_{L}(u) d S_{K}(u) \tag{2.8}
\end{equation*}
$$

As showed in [22], if $K \in \mathscr{K}_{0}^{n}$, then the L_{p}-surface area measure $S_{p}(K, \cdot)$ of K defined on S^{n-1} is absolutely continuous with respect to its surface area measure and that the Radon- Nikodym derivative is

$$
\frac{d S_{p}(K, \cdot)}{d S_{K}(\cdot)}=h_{K}^{1-p}(\cdot)
$$

The L_{p} Brunn-Minkowski inequality says that if $K, L \in \mathscr{K}_{0}^{n}$, and $1 \leqslant p<\infty$, then for $0 \leqslant \lambda \leqslant 1$,

$$
\begin{equation*}
V\left((1-\lambda) \cdot K+{ }_{p} \lambda \cdot L\right)^{\frac{p}{n}} \geqslant(1-\lambda) V(K)^{\frac{p}{n}}+\lambda V(L)^{\frac{p}{n}} \tag{2.9}
\end{equation*}
$$

with equality if and only if K and L are dilates.

3. A selfadjoint operator

Let $K \in \mathscr{K}_{0}^{n}$. If K is of class C_{+}^{2}, the differential $D v$ is the Weingarten map of ∂K. Let h be the support function of K and v^{-1} be the inverse Gauss map. Then the matrix associated with the linear map $D\left(v^{-1}\right)$ is $\left(h_{i j}+h \delta_{i j}\right), i, j=1, \ldots, n-1$, where h_{i} and $h_{i j}$ is the first and second covariant derivatives of h with respect to an orthonormal frame $\left\{e_{1}, \ldots, e_{n-1}\right\}$ on S^{n-1} and $\delta_{i j}$ is the standard Kronecker symbol. In other words, $\left(h_{i j}+h \delta_{i j}\right)$ is the matrix of the reverse second fundamental form of ∂K. It follows that the reciprocal Gauss curvature has the following formula,

$$
\begin{equation*}
\frac{1}{H}=\operatorname{det}\left(h_{i j}+h \delta_{i j}\right), i, j=1, \ldots, n-1 \tag{3.1}
\end{equation*}
$$

Define the coefficients $c_{i j}$ of the cofactor matrix of $\left(h_{i j}+h \delta_{i j}\right)$ by

$$
\begin{equation*}
\sum_{j l} c_{i j}\left(h_{j l}+h \delta_{j l}\right)=\delta_{i l} \operatorname{det}\left(h_{p q}+h \delta_{p q}\right)=\frac{\delta_{i l}}{H} \tag{3.2}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left(c_{i j}\right)_{i}=0 \tag{3.3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\sum_{i j} c_{i j}\left(h_{i j}+h \delta_{i j}\right)=\operatorname{tr}\left(c_{i j}\right) h+\sum_{i j}\left(c_{i j} h_{j}\right)_{i} . \tag{3.4}
\end{equation*}
$$

Let L_{h} be the linear operator of the operator $h \rightarrow \operatorname{det}\left(h_{i j}+h \delta_{i j}\right)$ defined by

$$
\begin{equation*}
L_{h}(g)=\sum_{i j} c_{i j}\left(g_{i j}+g \delta_{i j}\right) \tag{3.5}
\end{equation*}
$$

for each $g \in C^{2}\left(S^{n-1}\right)$. Cheng and Yau [8] obtained the following result.

Lemma 3.1. The operator L_{h} is selfadjoint, i.e.,

$$
\begin{equation*}
\int_{S^{n-1}} g L_{h}(w) d \mathscr{H}^{n-1}(u)=\int_{S^{n-1}} w L_{h}(g) d \mathscr{H}^{n-1}(u) \tag{3.6}
\end{equation*}
$$

where g, w are functions in $C^{2}\left(S^{n-1}\right)$.
Define the set \mathscr{C} of functions by

$$
\mathscr{C}=\left\{f \in C^{2}\left(S^{n-1}\right):\left(f_{i j}+f \delta_{i j}\right)>0 \text { on } S^{n-1}\right\}
$$

Obviously, the set \mathscr{C} consists of support functions of convex bodies (containing the origin in its interior) of class C_{+}^{2}.

4. The first and second variational formula

Let $K \in \mathscr{K}_{0}^{n}$ be of class $C_{+}^{2}, \varphi \in C^{2}\left(S^{n-1}\right)$ be positive and $1 \leqslant p<\infty$. For $t>0$ sufficient small such that $\left(h_{K}(u)^{p}+t \varphi(u)^{p}\right)^{\frac{1}{p}} \in \mathscr{C}$. Define a convex body Ω_{t} by

$$
\Omega_{t}=\bigcap_{u \in S^{n-1}}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leqslant\left(h_{K}(u)^{p}+t \varphi(u)^{p}\right)^{\frac{1}{p}}\right\}
$$

It follows that Ω_{t} contains the origin in its interior. The critical observations of this body are

$$
h_{\Omega_{t}} \leqslant\left(h_{K}^{p}+t \varphi^{p}\right)^{\frac{1}{p}}
$$

and

$$
h_{\Omega_{t}}=\left(h_{K}^{p}+t \varphi^{p}\right)^{\frac{1}{p}} \text {, a.e. with respect to } S_{\Omega_{t}} \text {. }
$$

In fact, the inverse Gauss map of Ω of the set

$$
\omega=\left\{u \in S^{n-1}: h_{\Omega}(u)<\left(h_{K}(u)^{p}+t \varphi(u)^{p}\right)^{\frac{1}{p}}\right\}
$$

which was shown by Aleksandrov [1] (see [22] also), must be a singular boundary point of Ω_{t}. Since the set of singular boundary points of a convex body has \mathscr{H}^{n-1} measure zero, we conclude from Reidemeister's theorem [30] that $S_{\Omega_{t}}(\omega)=0$ and $h_{\Omega_{t}}=\left(h_{K}^{p}+t \varphi^{p}\right)^{\frac{1}{p}}$ almost everywhere with respect to the surface measure $S_{\Omega_{t}}$. Denote
$g_{t}(u)$ by the function $\left(h_{K}(u)^{p}+t \varphi(u)^{p}\right)^{\frac{1}{p}}$. From this, (2.8), (2.5) and (3.1) we have

$$
\begin{align*}
V\left(\Omega_{t}\right) & =\frac{1}{n} \int_{S^{n-1}} h_{\Omega_{t}}(u) d S_{\Omega_{t}}(u) \\
& =\frac{1}{n} \int_{S^{n-1}}\left(h_{K}(u)^{p}+t \varphi(u)^{p}\right)^{\frac{1}{p}} d S_{\Omega_{t}}(u) \\
& =\frac{1}{n} \int_{S^{n-1}} g_{t}(u) \operatorname{det}\left(\left(g_{t}(u)\right)_{i j}+g_{t}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u) \tag{4.1}
\end{align*}
$$

LEMMA 4.1. If $K \in \mathscr{K}_{0}^{n}$ be of class C_{+}^{2} and $\varphi \in C^{2}\left(S^{n-1}\right)$ be positive such that $\left(h_{K}(u)^{p}+t \varphi(u)^{p}\right)^{\frac{1}{p}} \in \mathscr{C}$ for sufficient small $t>0$, then, for $1 \leqslant p<\infty$,

$$
\begin{equation*}
\left.\frac{d}{d t} V\left(\Omega_{t}\right)\right|_{t=0}=\frac{1}{p} \int_{S^{n-1}} \varphi(u)^{p} h_{K}(u)^{1-p} \operatorname{det}\left(\left(h_{K}(u)\right)_{i j}+h_{K}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u) \tag{4.2}
\end{equation*}
$$

Proof. For every $u \in S^{n-1}$, from (3.2), we have

$$
\begin{aligned}
& \frac{d}{d t}\left[g_{t}(u) \operatorname{det}\left(\left(g_{t}(u)\right)_{i j}+g_{t}(u) \delta_{i j}\right)\right] \\
& =g_{t}^{\prime}(u) \operatorname{det}\left(\left(g_{t}(u)\right)_{i j}+g_{t}(u) \delta_{i j}\right)+g_{t}(u) \sum_{i, j=1}^{n-1} c_{i j}^{t}(u)\left(\left(g_{t}^{\prime}(u)\right)_{i j}+g_{t}^{\prime}(u) \delta_{i j}\right)
\end{aligned}
$$

where $\left(c_{i j}^{t}\right)$ denotes the cofactor matrix of $\left(\left(g_{t}\right)_{i j}+g_{t} \delta_{i j}\right)$.
Differentiating under the integral sign we obtain

$$
\begin{align*}
\frac{d}{d t} V\left(\Omega_{t}\right)= & \frac{1}{n} \int_{S^{n-1}} g_{t}^{\prime}(u) \operatorname{det}\left(\left(g_{t}(u)\right)_{i j}+g_{t}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u) \\
& +\frac{1}{n} \int_{S^{n-1}} g_{t}(u) \sum_{i, j=1}^{n-1} c_{i j}^{t}(u)\left(\left(g_{t}^{\prime}(u)\right)_{i j}+g_{t}^{\prime}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u) \\
= & \frac{1}{n} \int_{S^{n-1}} g_{t}^{\prime}(u) \operatorname{det}\left(\left(g_{t}(u)\right)_{i j}+g_{t}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u) \\
& +\frac{1}{n} \int_{S^{n-1}} g_{t}(u) L_{g_{t}}\left(g_{t}^{\prime}(u)\right) d \mathscr{H}^{n-1}(u) \tag{4.3}
\end{align*}
$$

where $L_{g_{t}}$ is a linear operator given by (3.5).
It is easy to check from (3.2) and (3.1) that

$$
\begin{equation*}
L_{g_{t}}\left(g_{t}\right)=(n-1) \operatorname{det}\left(\left(g_{t}\right)_{i j}+g_{t} \delta_{i j}\right) \tag{4.4}
\end{equation*}
$$

Then, using Lemma 3.1, we have

$$
\begin{aligned}
& \frac{1}{n} \int_{S^{n-1}} g_{t}(u) L_{g_{t}}\left(g_{t}^{\prime}(u)\right) d \mathscr{H}^{n-1}(u) \\
& =\frac{1}{n} \int_{S^{n-1}} g_{t}^{\prime}(u) L_{g_{t}}\left(g_{t}(u)\right) d \mathscr{H}^{n-1}(u) \\
& =\frac{n-1}{n} \int_{S^{n-1}} g_{t}^{\prime}(u) \operatorname{det}\left(\left(g_{t}(u)\right)_{i j}+g_{t}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u)
\end{aligned}
$$

Inserting the above equation into (4.3) gives that

$$
\begin{equation*}
\frac{d}{d t} V\left(\Omega_{t}\right)=\int_{S^{n-1}} g_{t}^{\prime}(u) \operatorname{det}\left(\left(g_{t}(u)\right)_{i j}+g_{t}(u) \delta_{i j}\right) d \mathscr{H} \mathscr{C}^{n-1}(u) . \tag{4.5}
\end{equation*}
$$

Then (4.2) follows by letting $t=0$.
Analogously, differentiating the function $t \mapsto \frac{d}{d t} V\left(\Omega_{t}\right)$ (4.5) again gives

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} V\left(\Omega_{t}\right)= & \int_{S^{n-1}} g_{t}^{\prime \prime}(u) \operatorname{det}\left(\left(g_{t}(u)\right)_{i j}+g_{t}(u) \delta_{i j}\right) d u \\
& +\int_{S^{n-1}} g_{t}^{\prime}(u) \sum_{i, j=1}^{n-1} c_{i j}^{t}(u)\left(\left(g_{t}^{\prime}(u)\right)_{i j}+g_{t}^{\prime}(u) \delta_{i j}\right) d u
\end{aligned}
$$

where $\left(c_{i j}^{t}\right)$ denotes the cofactor matrix of $\left(\left(g_{t}\right)_{i j}+g_{t} \delta_{i j}\right)$. Therefore, we obtain the second variational formula.

Lemma 4.2. If $K \in \mathscr{K}_{0}^{n}$ is of class C_{+}^{2} and $\varphi \in C^{2}\left(S^{n-1}\right)$ positive such that $\left(h_{K}(u)^{p}+t \varphi(u)^{p}\right)^{\frac{1}{p}} \in \mathscr{C}$ for sufficient small $t>0$, then, for $1 \leqslant p<\infty$,

$$
\begin{aligned}
\left.\frac{d^{2}}{d t^{2}} V\left(\Omega_{t}\right)\right|_{t=0}= & \frac{1-p}{p^{2}} \int_{S^{n-1}} h_{K}(u)^{1-2 p} \varphi(u)^{2 p} \operatorname{det}\left(\left(h_{K}(u)\right)_{i j}+h_{K}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u) \\
& +\frac{1}{p^{2}} \int_{S^{n-1}} h_{K}^{1-p}(u) \varphi(u)^{p} \sum_{i, j=1}^{n-1} c_{i j}(u)\left(\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right)_{i j}\right. \\
& \left.+h_{K}(u)^{1-p} \varphi(u)^{p} \delta_{i j}\right) d \mathscr{H}^{n-1}(u),
\end{aligned}
$$

where $\left(c_{i j}\right)$ is the cofactor matrix of $\left(\left(h_{K}\right)_{i j}+h_{K} \delta_{i j}\right)$.

5. The Poincaré-type inequalities

THEOREM 5.1. Let $K \in \mathscr{K}_{0}^{n}$ be of class C_{+}^{2}. For every positive function $\phi \in$ $C^{1}(\partial K)$, we have

$$
\begin{aligned}
& \frac{p-n}{n V(K)}\left(\int_{\partial K} \frac{\phi(x)^{p}}{\left|\nabla h_{K}^{*}(x)\right|^{1-p}} d \mathscr{H}^{n-1}(x)\right)^{2}+(1-p) \int_{\partial K} \frac{\phi(x)^{2 p}}{\left|\nabla h_{K}^{*}(x)\right|^{1-2 p}} d \mathscr{H}^{n-1}(x) \\
& \quad+\int_{\partial K} \operatorname{tr}\left(D v_{K}(x)\right) \frac{\phi(x)^{2 p}}{\left|\nabla h_{K}^{*}(x)\right|^{2(1-p)}} d \mathscr{H}^{n-1}(x) \\
& \leqslant \int_{\partial K}\left\langle\left(D v_{K}(x)\right)^{-1} \nabla\left(\frac{\phi(x)^{p}}{\left|\nabla h_{K}^{*}(x)\right|^{1-p}}\right), \nabla\left(\frac{\phi(x)^{p}}{\left|\nabla h_{K}^{*}(x)\right|^{1-p}}\right)\right\rangle d \mathscr{H}^{n-1}(x),
\end{aligned}
$$

where $D \nu_{K}$ is the differential of the Gauss map; i.e., the Weingarten map.

Proof. Assume that $\varphi \in C^{2}\left(S^{n-1}\right)$ is positive. Let $t>0$ be sufficient small such that $\left(h_{K}(u)^{p}+t \varphi(u)^{p}\right)^{\frac{1}{p}} \in \mathscr{C}$. It follows from the L_{p} Brunn-Minkowski inequality (2.9) that the function $V\left(\Omega_{t}\right)^{\frac{p}{n}}$ is concave, so that

$$
\left(V\left(\Omega_{0}\right)^{\frac{p}{n}}\right)^{\prime \prime}=\frac{p(p-n)}{n^{2}} V\left(\Omega_{0}\right)^{\frac{p}{n}-2}\left(V^{\prime}\left(\Omega_{0}\right)\right)^{2}+\frac{p}{n} V\left(\Omega_{0}\right)^{\frac{p}{n}-1} V^{\prime \prime}\left(\Omega_{0}\right) \leqslant 0
$$

By Lemma 4.1 and 4.2 we obtain

$$
\begin{align*}
& \frac{p-n}{n V(K)}\left(\int_{S^{n-1}} h_{K}(u)^{1-p} \varphi(u)^{p} \operatorname{det}\left(\left(h_{K}(u)\right)_{i j}+h_{K}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u)\right)^{2} \\
& \quad+(1-p) \int_{S^{n-1}} h_{K}(u)^{1-2 p} \varphi(u)^{2 p} \operatorname{det}\left(\left(h_{K}(u)\right)_{i j}+h_{K}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u) \\
& \leqslant-\int_{S^{n-1}} h_{K}(u)^{1-p} \varphi(u)^{p} \sum_{i, j=1}^{n-1} c_{i j}(u)\left(\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right)_{i j}\right. \tag{5.1}\\
& \left.\quad+h_{K}(u)^{1-p} \varphi(u)^{p} \delta_{i j}\right) d \mathscr{H}^{n-1}(u) \tag{5.2}
\end{align*}
$$

where $\left(c_{i j}\right)$ is the cofactor matrix of $\left(\left(h_{K}\right)_{i j}+h_{K} \delta_{i j}\right)$. Using (3.4), integrating by parts and using (3.3), the integral in the right hand-side is equal to

$$
\begin{align*}
& -\int_{S^{n-1}} \\
& \operatorname{tr}\left(c_{i j}\right) h_{K}(u)^{2(1-p)} \varphi(u)^{2 p} d \mathscr{H}^{n-1}(u) \tag{5.3}\\
& \quad+\int_{S^{n-1}} \sum_{i, j=1}^{n-1} c_{i j}(u)\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right)_{i}\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right)_{j} d \mathscr{H}^{n-1}(u)
\end{align*}
$$

By a standard approximation argument, the above equation can fulfills for positive $\varphi \in C^{1}\left(S^{n-1}\right)$. So let $\varphi(u)=\phi\left(v_{K}^{-1}(u)\right), u \in S^{n-1}$, where $\phi \in C^{1}(\partial K)$ is positive and v_{K}^{-1} is the inverse Gauss map. Note that

$$
\begin{equation*}
\left(c_{i j}\right)=\operatorname{det}\left(\left(h_{K}\right)_{i j}+h_{K} \delta_{i j}\right)\left(\left(h_{K}\right)_{i j}+h_{K} \delta_{i j}\right)^{-1} \tag{5.4}
\end{equation*}
$$

Making the change of variable $u=v(x)$ and using (2.4) we have

$$
\begin{align*}
& \int_{S^{n-1}} \varphi(u)^{p} h_{K}(u)^{1-p} \operatorname{det}\left(\left(h_{K}(u)\right)_{i j}+h_{K}(u) \delta_{i j}\right) d \mathscr{H}^{n-1}(u) \\
& =\int_{\partial K} \frac{\phi(x)^{p}}{\left|\nabla h_{K}^{*}(x)\right|^{1-p}} d \mathscr{H}^{n-1}(x) \tag{5.5}
\end{align*}
$$

and from (5.4) we obtain

$$
\begin{align*}
& \int_{S^{n-1}} \operatorname{tr}\left(c_{i j}\right) h_{K}(u)^{2(1-p)} \varphi(u)^{2 p} d \mathscr{H}^{n-1}(u) \\
& =\int_{\partial K} \operatorname{tr}\left(D v_{K}(x)\right) \frac{\phi(x)^{2 p}}{\left|\nabla h_{K}^{*}(x)\right|^{2(1-p)}} d \mathscr{H}^{n-1}(x) \tag{5.6}
\end{align*}
$$

Moreover, by (5.4) and (2.4) we have

$$
\begin{align*}
& \sum_{i, j=1}^{n-1} c_{i j}(u)\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right)_{i}\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right)_{j} \\
& =\operatorname{det}\left(\left(h_{K}(u)\right)_{i j}+h_{K}(u) \delta_{i j}\right)\left\langle D v_{K}^{-1}(u) \nabla\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right), \nabla\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right)\right\rangle \\
& =\operatorname{det}\left(\left(h_{K}(u)\right)_{i j}+h_{K}(u) \delta_{i j}\right) \\
& \quad \times\left\langle D v_{K}^{-1}(u) \nabla\left(\frac{\phi\left(v_{K}^{-1}(u)\right)^{p}}{\left|\nabla h_{K}^{*}\left(v_{K}^{-1}(u)\right)\right|^{1-p}}\right), \nabla\left(\frac{\phi\left(v_{K}^{-1}(u)\right)^{p}}{\left|\nabla h_{K}^{*}\left(v_{K}^{-1}(u)\right)\right|^{1-p}}\right)\right\rangle \tag{5.7}
\end{align*}
$$

Thus,

$$
\begin{align*}
& \int_{S^{n-1}} \sum_{i, j=1}^{n-1} c_{i j}(u)\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right)_{i}\left(h_{K}(u)^{1-p} \varphi(u)^{p}\right)_{j} d \mathscr{H}^{n-1}(u) \\
& =\int_{\partial K}\left\langle\left(D v_{K}(x)\right)^{-1} \nabla\left(\frac{\phi(x)^{p}}{\left|\nabla h_{K}^{*}(x)\right|^{1-p}}\right), \nabla\left(\frac{\phi(x)^{p}}{\left|\nabla h_{K}^{*}(x)\right|^{1-p}}\right)\right\rangle d \mathscr{H}^{n-1}(x) . \tag{5.8}
\end{align*}
$$

Finally, combining (5.1), (5.3), and (5.5), (5.6) and (5.8) we obtain the desired result.

The case of $p=1$ of Theorem 5.1 was proved by Colesanti [10]. Moreover, Colesanti and Saorin-Gomez [11] used Brunn-Minkowski inequalities for quermassintegrals to deduce a family of Poincaré type inequalities.

If we choose K to be the unit ball, then $\partial K=S^{n-1}, v_{K}$ is the identity map on S^{n-1} and $\left|\nabla h_{K}^{*}(x)\right|=1$ for $x \in \partial K$. In this case, let $\varphi(u)^{p}=\psi(u)$, we obtain the Poincaré-type inequality on S^{n-1} as follows.

THEOREM 5.2. Let $1 \leqslant p<\infty$. For every positive function $\psi \in C^{1}\left(S^{n-1}\right)$, we have

$$
\begin{align*}
& \frac{p-n}{n \omega_{n}}\left(\int_{S^{n-1}} \psi(u) d \mathscr{H}^{n-1}(u)\right)^{2}+(n-p) \int_{S^{n-1}} \psi(u)^{2} d \mathscr{H}^{n-1}(u) \\
& \leqslant \int_{S^{n-1}}|\nabla \psi(u)|^{2} d \mathscr{H}^{n-1}(u) . \tag{5.9}
\end{align*}
$$

Note that when $p=1$, the inequality (5.9) can be obtained from Colesanti' result [10] by replacing ψ by $\psi-\frac{1}{n \omega_{n}} \int_{S^{n-1}} \psi(u) d \mathscr{H}^{n-1}(u)$. From (5.9) it immediately yields the following Poincaré-type inequality on S^{n-1}.

Corollary 5.3. Let $1 \leqslant p<\infty$. For every positive function $\psi \in C^{1}\left(S^{n-1}\right)$, if

$$
\int_{S^{n-1}} \psi(u) d \mathscr{H}^{n-1}(u)=0
$$

then we have

$$
(n-p) \int_{S^{n-1}} \psi(u)^{2} d \mathscr{H}^{n-1}(u) \leqslant \int_{S^{n-1}}|\nabla \psi(u)|^{2} d \mathscr{H}^{n-1}(u)
$$

REFERENCES

[1] A. D. Aleksandrov, Konvexe Polyeder, Akademie-Verlag, Berlin (Russian original: 1950), 1958.
[2] S. BOBKOV, Isoperimetric and analytic inequalities for log-concave probability measures, Ann. Probability 27 (1999), 1903-1921.
[3] S. Bobkov, M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), 1028-1052.
[4] S. Bobkov, M. Ledoux, Weighted Poincaré-type inequalities for cauchy and other convex measures, Ann. Probability 37 (2009), 403-427.
[5] S. Bobkov, M. Ledoux, From Brunn-Minkowski to sharp Sobolev inequalities, Ann. Mat. Pure Appl. 187 (2008), 369-384.
[6] S. CAmpi, P. Gronchi, The L_{p}-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), 128141.
[7] S. Campi, P. Gronchi, On the reverse L_{p}-Busemann-Petty centroid inequality, Mathematika 49 (2002), 1-11.
[8] S.-Y. ChENG, S.-T. YAU, On the regularity of the solutions of the n-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), 495-516.
[9] A. Colesanti, Brunn-Minkowski inequalities for variational problems and related problems, Adv. Math. 194 (2005), 105-140.
[10] A. Colesanti, From the Brunn-Minkowski inequality to a class of Poincaré type inequalities, Commun. Contemp. Math. 10 (2008), 765-772.
[11] A. Colesanti, E. Saorin-Gomez, Functional inequalities derived from The Brunn-Minkowski inequality for quermassintegrals, J. Convex Anal. 17 (2010), 35-49,
[12] A. Colesanti, I. Fragalà, The first variation of the total mass of log-concave functions and related inequalities, Adv. Math. 244 (2013), 708-749.
[13] W. J. Firey, p-means of convex bodies, Math. Scand., 10 (1962), 17-24.
[14] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 355-405.
[15] C. Haberl, L_{p} intersection bodies, Adv. Math. 217 (2008), 2599-2624.
[16] C. Haberl, M. Ludwig, A characterization of L_{p} intersection bodies, Int. Math. Res. Not. 17 (2006) Art. ID 10548, 29 pp .
[17] C. Haberl, F. Schuster, General L_{p} affine isoperimetric inequalities, J. Differential Geom. 83 (2009), 1-26.
[18] C. Haberl, F. Schuster, Asymmetric affine L_{p} Sobolev inequalities, J. Funct. Anal. 257 (2009), 641-658.
[19] M. Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), 158-168.
[20] M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), 4191-4213.
[21] M. Ludwig, Intersection bodies and valuations, Amer. J. Math. 128 (2006), 1409-1428.
[22] E. Lutwak, The Brunn-Minkowski-Firey Theory I: Mixed volumes and the Minkowski Problem, J. Differential Geom. 38 (1993), 131-150.
[23] E. Lutwak, The Brunn-Minkowski-Firey Theory II, Adv. Math. 118 (1996), 244-294.
[24] E. Lutwak, D. Yang, G. Zhang, L_{p} affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111-132,
[25] E. Lutwak, D. Yang, G. Zhang, Sharp affine L_{p} Sobolev inequalities, J. Differential Geom. 62 (2002), 17-38.
[26] E. Lutwak, D. Yang, G. Zhang, On the L_{p}-Minkowski problem, Tran. Amer. Math. Soc. 356 (2004), 4359-4370.
[27] E. Lutwak, D. Yang, G. Zhang, Volume inequalities for subspaces of L_{p}, J. Differential Geom. 68 (2004), 159-184.
[28] E. Lutwak, D. Yang, G. Zhang, L_{p} John ellipsoids, Proc. London Math. Soc. 90 (2005), 497520.
[29] M. Meyer, E. Werner, On the p-affine surface area, Adv. Math. 152 (2000), 288-313.
[30] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, Vol. 44, Cambridge University Press, Cambridge, 2014.
[31] E. Werner, D.-P. Ye, New L_{p} affine isoperimetric inequalities, Adv. Math. 218 (2008), 762-780.
[32] G. ZHANG, The affine Sobolev inequality, J. Differential Geom. 53 (1999), 183-202.

Ai-Jun Li
School of Mathematics and Information Science Henan Polytechnic University Jiaozuo 454000, China e-mail: liaijun72@163.com

Yingying Lou
School of Mathematics and Information Science
Henan Polytechnic University
Jiaozuo 454000, China
e-mail: 1094708723@qq.com
Yurong Ji
School of Mathematics and Information Science
Henan Polytechnic University
Jiaozuo 454000, China
e-mail: jiyurong@hpu.edu.cn

[^0]: Mathematics subject classification (2010): 52A20.
 Keywords and phrases: Convex body, L_{p}-addition, Poincaré-type inequality.
 The first author is supported by NSFC-Henan Joint Fund (U1204102) and Doctoral Fund of Henan Polytechnic University (B2011-024).

