SOME NEW RESULTS OF TWO OPEN PROBLEMS RELATED TO INTEGRAL INEQUALITIES

ARTION KASHURI AND ROZANA LIKO

(Communicated by A. Horwitz)

Abstract. In this paper, we have solved two open problems, and as consequence some interesting integral inequalities are obtained.

1. Introduction

More recently, Liu et al. (see [1]) obtained the following theorem.

Theorem 1.1. Let \(f(x) \geq 0 \) be a continuous function on \([a, b]\) satisfying

\[
\int_a^b f_{\min\{1, \beta\}}(t) \, dt \geq \int_a^b (t - a)^{\min\{1, \beta\}} \, dt, \quad \forall x \in [a, b]
\]

Then the inequality

\[
\int_a^b f^{\alpha + \beta}(x) \, dx \geq \int_a^b (x - a)^{\alpha} f^\beta (x) \, dx
\]

holds for every positive real number \(\alpha > 0 \) and \(\beta > 0 \).

Theorem 1.2. Let \(f(x), g(x), h(x) > 0 \) be continuous functions on \([a, b]\) with \(f(x) \leq h(x) \) for all \(x \) and such that \(\frac{f(x)}{h(x)} \) is decreasing and \(f(x), g(x) \) are increasing. Assume that \(\phi(x) \) is a convex function with \(\phi(0) = 0 \).

Then the inequality

\[
\frac{\int_a^b f(x) \, dx}{\int_a^b h(x) \, dx} \geq \frac{\int_a^b \phi(f(x))g(x) \, dx}{\int_a^b \phi(h(x))g(x) \, dx}
\]

holds.

Keywords and phrases: Integral inequality, convex functions.
Liu et al. (see [2]) presented the following two open problems.

Open Problem 1. Under what conditions does the inequality

\[
\int_a^b f^{\alpha+\beta}(x)dx \geq \left(\int_a^b (x-a)^\alpha f^\beta(x)dx \right)^\lambda
\]

(1.4)

hold for \(\alpha, \beta\) and \(\lambda\)?

Open Problem 2. Assume that \(\phi(x)\) is a convex function with \(\phi(0) = 0\). Under what conditions does the inequality

\[
\frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \geq \left(\frac{\int_a^b \phi(f(x))g(x)dx}{\int_a^b \phi(h(x))g(x)dx} \right)^\delta
\]

(1.5)

hold for \(\delta\) and \(\lambda\)?

2. Main results

Theorem 2.1. Let \(f(x) \geq 0\) be a continuous function on \([a,b]\) satisfying

\[
\int_x^b (t-a)^{\min\{1, \beta\}}dt \leq \int_x^b f^{\min\{1, \beta\}}(t)dt, \quad \forall x \in [a,b]
\]

(2.1)

Then the inequality

\[
\int_a^b f^{\alpha+\beta}(x)dx \geq \left(\int_a^b (x-a)^\alpha f^\beta(x)dx \right)^\lambda, \quad \forall \lambda \geq 1
\]

(2.2)

holds under each of the following conditions:

1. For all \(\beta > 1\) and \(\alpha > 0\) such that

\[
\frac{(b-a)^{\alpha+2}}{\alpha+2} \leq 1
\]

2. For \(\beta \in (0,1]\) and \(\alpha > 0\) such that

\[
\frac{(b-a)^{\alpha+\beta+1}}{\alpha+\beta+1} \leq 1
\]

Proof. If \(\lambda = 1\) then (2.2) holds for every positive real number \(\alpha > 0\) and \(\beta > 0\) by theorem 1.1. Let \(\lambda > 1\).

Then

\[
\left(\int_a^b (x-a)^\alpha f^\beta(x)dx \right)^\lambda = \left(\int_a^b (x-a)^\alpha f^\beta(x)dx \right) \cdot \left(\int_a^b (x-a)^\alpha f^\beta(x)dx \right)^{\lambda-1}
\]
By using integration by parts, we obtain the following relation

\[\int_a^b (x-a)^\alpha f^\beta(x)\,dx = \alpha \int_a^b (x-a)^{\alpha-1} \left(\int_x^b f^\beta(t)\,dt \right) \,dx \]
(2.4)

But, by the hypothesis of theorem 2.1

\[\int_x^b (t-a)^{\min\{1,\beta\}}\,dt \leq \int_x^b f^{\min\{1,\beta\}}(t)\,dt, \quad \forall x \in [a,b] \]

We have the following two cases:

1. For all \(\beta > 1 \) and \(\alpha > 0 \) such that

\[\frac{(b-a)^{\alpha+2}}{\alpha+2} \leq 1 \]

by simple calculations inequality (2.3) follows.

2. For \(\beta \in (0,1] \) and \(\alpha > 0 \) such that

\[\frac{(b-a)^{\alpha+\beta+1}}{\alpha+\beta+1} \leq 1 \]

by simple calculations inequality (2.3) holds. \(\square \)

Theorem 2.2. Let \(f(x), g(x), h(x) > 0 \) be continuous functions on \([a,b] \) with \(f(x) \leq h(x) \) for all \(x \) and such that \(\frac{f(x)}{h(x)} \) is decreasing and \(f(x), g(x) \) are increasing.

Assume that \(\varphi(x) \) is positive and convex function with \(\varphi(0) = 0 \).

Then the inequality

\[\frac{\int_a^b f(x)\,dx}{\int_a^b h(x)\,dx} \geq \left(\frac{\int_a^b \varphi(f(x))g(x)\,dx}{\int_a^b \varphi(h(x))g(x)\,dx} \right)^\delta \]
(2.5)

holds under each of the following conditions:

1. \(\lambda = \delta = 0 \) and \(f(x) = h(x) \), for all \(x \in [a,b] \);
2. \(\lambda = \delta \in [1, +\infty) \), for all \(x \in [a,b] \);
3. \(\varphi(f(a)) \geq \frac{1}{(b-a)g(a)} \) for \(1 \leq \delta < \lambda \);
4. \(\varphi(f(b)) \leq \frac{1}{(b-a)g(b)} \) for \(1 \leq \lambda < \delta \).

Proof.

1. If \(\lambda = \delta = 0 \) and \(f(x) = h(x) \), for all \(x \in [a, b] \) then inequality (2.5) turns into an equality.

2. If \(\lambda = \delta = 1 \) inequality (2.5) coincides with theorem 1.2.

Now let \(\lambda = \delta > 1 \) and denote by \(d = \frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \). Since \(0 < f(x) \leq h(x) \), for all \(x \in [a, b] \) then \(d \in [0, 1] \). By theorem 1.2 and the fact that \(\varphi(x) \) is positive and convex function with \(\varphi(0) = 0 \), we have the following inequalities

\[
\left(\frac{\int_a^b \varphi(f(x))g(x)dx}{\int_a^b \varphi(h(x))g(x)dx} \right)^\delta \leq \left(\frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \right)^\delta \leq \frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \tag{2.6}
\]

since \(d \in [0, 1] \), for all \(\delta > 1 \). So inequality (2.5) follows.

3. For \(1 \leq \delta < \lambda \) there exists a real positive number \(r \) such that \(\lambda = \delta + r \). Using case (2) for \(\lambda = \delta \in [1, +\infty) \) we have

\[
\left(\frac{\int_a^b \varphi(f(x))g(x)dx}{\int_a^b \varphi(h(x))g(x)dx} \right)^\lambda = \left(\frac{\int_a^b \varphi(f(x))g(x)dx}{\int_a^b \varphi(h(x))g(x)dx} \right)^\delta \cdot \frac{1}{\left(\frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \right)^r} \leq \left(\frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \right)^\delta \cdot \frac{1}{\left(\frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \right)^r} \leq \frac{\int_a^b f(x)dx}{\int_a^b h(x)dx}
\]

The last inequality above follows by the fact that \(\left(\frac{\int_a^b \varphi(h(x))g(x)dx}{\int_a^b \varphi(h(x))g(x)dx} \right)^r \geq 1 \) for \(r > 0 \), since we have assumed that \(\varphi(f(a)) \geq \frac{1}{(b-a)g(a)} \). So inequality (2.5) holds.

4. For \(1 \leq \lambda < \delta \) there exists a real positive number \(r_1 \) such that \(\delta = \lambda + r_1 \). Using case (2) for \(\lambda = \delta \in [1, +\infty) \) we have

\[
\left(\frac{\int_a^b \varphi(f(x))g(x)dx}{\int_a^b \varphi(h(x))g(x)dx} \right)^\lambda = \left(\frac{\int_a^b \varphi(f(x))g(x)dx}{\int_a^b \varphi(h(x))g(x)dx} \right)^\delta \cdot \left(\frac{\int_a^b \varphi(f(x))g(x)dx}{\int_a^b \varphi(h(x))g(x)dx} \right)^{r_1} \leq \left(\frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \right)^\delta \cdot \left(\frac{\int_a^b \varphi(f(x))g(x)dx}{\int_a^b \varphi(h(x))g(x)dx} \right)^{r_1} \leq \frac{\int_a^b f(x)dx}{\int_a^b h(x)dx}
\]
In the last inequality we have used the fact that \(\left(\int_a^b \varphi(f(x))g(x)dx \right)^{r_1} \leq 1 \) for \(r_1 > 0 \), since we have assumed that \(\varphi(f(b)) \leq \frac{1}{(b-a)g(b)} \). So inequality (2.5) follows. □

3. Applications

Corollary 3.1. Let \(f(x) \geq 0 \) be a continuous function on \([0, 1]\) satisfying
\[
\int_0^1 t^\min\{1, \beta\} dt \leq \int_0^1 f^\min\{1, \beta\}(t) dt, \quad \forall x \in [0, 1]
\]
Then the inequality
\[
\int_0^1 f^{\alpha+\beta}(x)dx \geq \left(\int_0^1 x^\alpha f^\beta(x)dx \right)^\lambda, \quad \forall \lambda > 1
\]
holds for \(\alpha, \beta > 0 \).

Corollary 3.2. Let \(f(x) \geq 0 \) be a continuous function on \([a, b]\) satisfying
\[
\int_a^b (t-a)^\min\{1, \alpha\} dt \leq \int_a^b f^\min\{1, \alpha\}(t) dt, \quad \forall x \in [a, b]
\]
Then the inequality
\[
\int_a^b f^{2\alpha}(x)dx \geq \left(\int_a^b ((x-a) \cdot f(x))^\alpha dx \right)^\lambda, \quad \forall \lambda > 1
\]
holds under each of the following conditions:

1. For \(\alpha > 1 \) such that
\[
\frac{(b-a)^{\alpha+2}}{\alpha+2} \leq 1
\]
2. For \(\alpha \in (0, 1] \) such that
\[
\frac{(b-a)^{2\alpha+1}}{2\alpha+1} \leq 1
\]

Proof. Let \(\alpha = \beta \) and applying theorem 2.1. □

Corollary 3.3. Let \(f(x), g(x), h(x) > 0 \) be continuous functions on \([a, b]\) with \(f(x) \leq h(x) \) for all \(x \) and such that \(\frac{f(x)}{h(x)} \) is decreasing and \(f(x), g(x) \) are increasing. Assume that \(\varphi(x) \) is positive and convex function with \(\varphi(0) = 0 \). Then the inequality
\[
\frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \geq \left(\frac{\int_a^b \varphi(f(x))g^p(x)dx}{\int_a^b \varphi(h(x))g^p(x)dx} \right)^\delta, \quad \forall p \geq 0
\]
holds under each of the following conditions:
1. \(\lambda = \delta = 0 \) and \(f(x) = h(x) \), for all \(x \in [a, b] \);

2. \(\lambda = \delta \in [1, +\infty) \), for all \(x \in [a, b] \);

3. \(\varphi(f(a)) \geq \frac{1}{(b-a)g^p(a)} \) for \(1 \leq \delta < \lambda \);

4. \(\varphi(f(b)) \leq \frac{1}{(b-a)g^p(b)} \) for \(1 \leq \lambda < \delta \).

Proof. Let \(g_p(x) = g^p(x) \), for all \(x \in [a, b] \) and for all \(p \geq 0 \). Since \(g(x) \) is increasing function and \(g(x) > 0 \), then \(g_p(x) \) are increasing functions for all \(p \geq 0 \). By applying theorem 2.2, inequality (3.5) follows. \(\Box \)

Corollary 3.4. Let \(f(x), g(x), h(x) > 0 \) be continuous functions on \([a, b]\) with \(f(x) \leq h(x) \) for all \(x \) and such that \(\frac{f(x)}{h(x)} \) is decreasing and \(f(x), g(x) \) are increasing. Then the inequality

\[
\frac{\int_a^b f(x)dx}{\int_a^b h(x)dx} \geq \left(\frac{\int_a^b f^k(x)g^p(x)dx}{\int_a^b h^k(x)g^p(x)dx} \right)^{\delta}, \quad \forall k \geq 1 \text{ and } \forall p \geq 0
\]

(3.6)

holds under each of the following conditions:

1. \(\lambda = \delta = 0 \) and \(f(x) = h(x) \), for all \(x \in [a, b] \);

2. \(\lambda = \delta \in [1, +\infty) \), for all \(x \in [a, b] \);

3. \(f^k(a) \geq \frac{1}{(b-a)g^p(a)} \) for \(1 \leq \delta < \lambda \);

4. \(f^k(b) \leq \frac{1}{(b-a)g^p(b)} \) for \(1 \leq \lambda < \delta \).

Proof. Let \(\varphi(x) = x^k \) where \(k \geq 1 \). \(\varphi \) is a convex function and \(\varphi(0) = 0 \). By corollary 3.3, inequality (3.6) follows. \(\Box \)

Acknowledgements. We thank anonymous referee for his/her valuable suggestion regarding the manuscript.
REFERENCES

(Received December 2, 2015)