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ON APPROXIMATION IN BA SPACES FOR
JACKSON-MATSUOKA POLYNOMIALS ON THE SPHERE

GUo FENG AND YUAN FENG

(Communicated by V. Dmitrievic Stepanov)

Abstract. We consider the best approximation by Jackson-Matsuoka polynomials on the unit
sphere of RY in the Ba space. Establish and use the relations between K -functionals and mod-
ulus of smoothness on the sphere, we obtain the direct and inverse estimate of approximation by
these polynomials for the 4 -spherical harmonics.

1. Introduction and notations

Let S:=S% ! = {x: x| = 1} denote the unit sphere in R (d >3), d €N,
where ||x|| denotes the usual Euclidean norm, R the set of real numbers. For a nonzero
vector v € RY, let 6, denote the reflection with respect to the hyperplane perpendicular
to v, x0, :=x—2({x,v)/||v|]|*)v, x € R¢, where (x,v) denote the usual Euclidean inner
product. Let G be a finite reflection group on R¢ with a fixed real halfline R , nor-
malized so that (v,v) =2 forall v € R, . Then G is a subgroup of the orthogonal group
generated by the reflections {0, : v € R }. Let k¥ be a nonnegative multiplicity func-
tion v — K, defined on R with the property that x, = K, whenever o, is conjugate
to o, in G, then v — K, is a G-invariant function.

We denote by Lp(h,z(), 1 < p < o, the space of functions defined on S with the
finite norm

Iflri= (o [OIPROMO0) " 1<p <o

and for p = e we assume that L., is replaced by C(S) the space of continuous functions
on S with the usual uniform norm || ||, where A is defined by (see [3])

he = [T lxw)™, xeRY,
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dw is the surface (Lebesgue) measure on S, and a, the normalization constant of
hy, agx' = [sh%(y)dw. The function Ay is a positive homogeneous function of degree
Yi = Xyer, Kv, and it is invariant under the reflection group.
The spherical /-harmonics are the restriction of /-harmonics on the unit sphere.
Throughout this paper, we fie the value of 4 as
A =%+ E (1.1)
2
In terms of the polar coordinates y = ry’, r = ||y||, the h-Laplacian operator A, takes
the form (see [3])
A 97 2A+19 1
A Pl
Ay o s the Laplace-Beltrami operator on the sphere. Hence, applying A;, to h-harmonics
Y € % (hZ) with Y (y) = r"Y (y') shows that spherical /-harmonics are eigenfunctions
of Ay o; thatis,

(1.2)

AnoY (x) = —n(n+20)Y(x), x€S, Y€ (h). (1.3)

It is known that dim ¢ (h2) =dim 22 —dim 2¢_, with dim 2¢ = (""471).
The standard Hilbert space theory shows that L2(h2) = =°_ @ %! (h%). That
is, with each f € L?(hZ) we can associate its /-harmonic expansion

f(x) =T oYa(hys f.x), x€S,

in L?(h2) norm. For the surface measure (k = 0), such a series is called the Laplace
series (see [10, Chap, [2])]. The orthogonal projection Y, (h%) : Ly(hZ) — €% (hZ)
takes the form

Yo(h2: fox) 1= /S FOVP R, ) 2 (V) d o (), (1.4)

where P,(h%;x,y) is the reproducing kernel of the space of -harmonics 2% (hZ),
which is given by (see [3])

_n+A

Palliix,y) = —=VelCH ()] @), (15)

C,;l is the ultraspherical polynomial of degree n, the intertwining operator Vy is a linear
operator uniquely determined by

VKt@nCt@na VK'lzla giVK:VK'gl‘; lglgd
The spherical means denotes by
1
T, = —/ do(y), 1.6
G(f) |Sd—2|(sm9)d—2 <x,y>:cos(~)f(y) (y) (1.6)

d—1

where |S772| = [qi2dw = 2Z ,51 .
(%)
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The spherical means associated with h2d®, which TS(f) is defined by

[ TE(f0)8cos0)(sin0)*d0 = ax [ fVig()R()dal), (1)
0 S

where g is any function [—1,1] — R such that the integral in the right-hand side is

1
finite, c)_Ll = f_ll(l —tz)’l’%dt = W Ty (f) is a proper extension of Ty (f),
since Ty(f) satisfies T (f) when k =0 and Vi = id, and the properties of T are
well known (see [3]).

Based on the classical Jackson-Matsuoka kernel (see [4]), we define a new kernel

i 2s
1 sin® n6 /2
Myjis(6) = Qijis ( sin? 9 /2 ) y r=12,..,0€R,

where j,i,s € N,Q,.;;, is a constant chosen such that c; [ Mp:jis(0) sin?* 040 = 1.
It is known that M,;;(0) is an even nonnegative operator. In particular, it is an even
nonnegative trigonometric polynomial of degree at most 2s(nj+2j — 2i) for j > i
and the Jackson polynomial for j =1i. Using M,. j7,-7_y(0) we consider the spherical
convolution

Insjis(f3%) == (f # Mysjis) (x) == ) /O” TE(f:X)My:ji5(0)(0)sin®* 0d6.  (1.8)

It is called the Jackson-Matsuoka polynomials on the sphere based on the Jackson-
Matsuoka kernel. In particular, (fo*M,,j;s)(x) =1 for fo(x) = 1. The classical
Jackson-Matsuoka polynomials in the classical L, space have been studied by many
authors (see [0, 4]). In [7], we got the equivalent theorem of the approximation for the
Jackson-Matsuoka polynomials on the sphere by means of /-harmonic polynomials in
the weighted Lebesgus space.

The conception of Ba spaces was first put forward by Ding (see [1]) in his dis-
cussion on the prior estimate of Laplace operator in some classical domains and in his
study of the embedding theorem of Orlicz-Sobolev spaces, higher dimensional singular
integrals and harmonic function etc.

DEFINITION 1.1. [1] Let B={By,B2,---,Bn,- -} be asequence of linear normed
function spaces, a = {aj,ay,--,am, -} be a sequence of nonnegative numbers. For

f € N Bp, we form the power series of
m=1

I(f,00) == Y, awo"| fI5, - (1.9)
m=1

If I(f, o) has a non-zero radius of convergence, we say f € Ba.
The norm in Ba is defined by

1
| fllBa := Oigfo{a (f o) <1} (1.10)
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As proved in [1], Ba is a Banach space if B, is a Banach space. Evidently, if
By, = Ly, then Ba space is an Orlicz space. If B,, =Lp,, a={1,0,---,0,---}, then a
Ba space is a classical Lebesgue space (see [8]).

The purpose of this paper is to consider the best approximation by Jackson-Mat-
suoka polynomials on the unit sphere of R? in the Ba space. The results presented
in this paper extend and unify the results of the weighted Lebesgus space Lp(h,2<) and
the weighted Orlicz space. The approximation of /-harmonix polynomials, in the L,
metric can be viewed as weighted approximation, in which the measure d® on the
sphere is replaced by h2dw. Tt is well known that the situation can be quite different
from that of ordinary harmonics, the weighted approximation is not a simple extension.
Since the orthogonal group acts transitively on the point, the reflection groups do not
act transitively on the sphere.

The paper is organized as follows. Section 2 introduces new K -functional and new
modulus of smoothness and establishes their relations. Some properties of the Jackson-
Matsuoka polynomials on the sphere are discussed in section 3. The direct and inverse
estimate for the best approximation by the Jackson-Matsuoka polynomials on the unit
sphere of R in the Ba space in section 4.

2. K-functionals and modulus of smoothness

DEFINITION 2.1. For f € Ba, the modulus of smoothness on the sphere is given
by
o(f:t)pa = sup ||f—Tg (f)llBa- 2.0

0<0<t

The K -functional of the sphere is given by

KU)pai= inf . {I1f = gllsa+ 1808 laal (2.2)

gEWBa hK)

where Wg,(h%) := {f: f € Ba,—k(k+2A)Pi(h%; f) = Pi(h%;g) for some g € Ba},
0 <t <ty, to is a positive constant.

To prove the equivalence between the K -functional and the modulus of smooth-
ness on the sphere, we need the following Lemma.

LEMMA 22. Let 8 = {Lpy (). Lyp (1) Lyn ().} be a sequence of Le-
besgue spaces, pm = 1 m=1,2,..., a = {al,az, -+, dm,--+} be a sequence of non-

negative numbers, {am} el”. If f€Ba:= ﬂ Ly, (%), then

£ 1l

Kpm S IIfHHBa (2.3)

1
where [l = ir;fl{a,’}i }.
m>
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1 1 _1
Proof. Since {aj } €1”, we may let 0 < g = sup,,>{an }. From {a,"} € 1>,
1
we may let i = infm>1{a,’,’1’} Then 0 < 1 < eo.
In view of the 2 amo™[| fII% ,, < 1, the sup || f|lxp,, exists. Let

m=1 m>=1

u= Sup{Hf”Kpm}

m>=1

By the definition of suppremum, for any & > 0, there exists K > 1, such that || f||x px >
u— 0. By the definition of || f||p, = in%{é JI(f,a) < 1} .forany € > 0, there exists
o>

-, such that 2 amo"|| fII% »,, < 1 holds. Therefore || f|p. = info{é A(f,00)} >
o>

1
o
1
T Namely

1> Z amoy”
m=1

By the arbitrariness of &,

> axa | FIK . > [af (u—8)K > [se (u— ).

—_ Z‘LLMZ,LLSUP{”f‘ K7I7m}’
m=1

K;Pm } —&

1
[ fllepm > — — € = p-sup{]|f]
o

m>=1

and also, € is arbitrary, therefore
1
sup{ [ fllx.p.} < = |lfllBa;
m=1 nu
which implies that for any p,,, we have

1Al x.pm < HfIIBu

The proof is completed. [
We will establish the weak equivalence between the K -functional and the modulus
of smoothess on the unit sphere in the Ba space.
THEOREM 2.3. Let B = {Lp, (h%),Lp,(h2%),-+,Lp, (h%),---} be a sequence of
Lebesgue spaces, pm =1, m=1,2,..., a={a,az, - ,am, -} be a sequence of
1

nonnegative numbers. If {aj} € 1. Then, for f € Ba, 0 <t < %, then there exist
constants C(U,q) and Cy(W,q) such that

C1 (1, 9)0(f31)Ba < K(f31*)Ba < C2 (1, q) 0(f31) Ba- (2.4)

1
where |l = 1nf{a +.q = sup{an }.
m>1
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Throughout this paper, C denotes a positive constant independent on » and f and
C(a) denotes a positive constant dependent on a, which may be different in according
to the circumstances.

Proof. Form=1,2,..., g€ WBa(h ), note that [3]
1768 — 8llxc.pw < CO* (| An0gllx.py-

175 flle.pm < 1f 1.
By the definition of the Ba-norm || - || 5, and (2.3), we have

inf{a:E—Teg 8l pn < 1}

o>0
m=1

1 To'g — 8llBa

=

0“2 —CM 07" | A g 1%, < 1}

m= l

< inf
a>0

a>0

) cm
< 1nf{a: Z aq 6> || Ay, 08l pm < 1}

m=1
< inf a-ii(c'q'ez\m I )'"<1 (2.5)
X 050 -mzl o m 1,08 || Ba X . .

.02 o .02
Let o0 = ZC‘LG |AnogllBa, then 21 ﬁ(%\mh?ogﬂ&)m = 1. Consequently
m_ || Ty — gl p, < 1.
Therefore we have
175 — gllpa < C(g, 1) 0| A 08| Ba- (2.6)

The proof is similar to that of (2.6), we get

175" (f = 8)llBa < Clq, 1) | f — 8l Ba- 2.7)

The triangle inequality gives

1T f = fllsa < 211 f = &llsa+C(q: 1) 0°(|Ar 08| 5as

which shows that @(f37)gs < C(q, 1)K (f;1%)ps. On the other hand, define
[?] i u A
2(x) = vo / (sinu)*du / TX £ (x) (sint)*dr
0 0

with vy! = [ (sinu) > du [/ (sint)?*dr. Then Ay, 0g = ve(TS f — f), this also give

om <COZNTES = Fllxpm- (2.8)

[l An gl
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Since for 0 < %, the inequality %6 < sin O < 0 shows that vgl ~ 62 . Moreover,

f-g=vy' /Oe(sinu)—ﬂdu/ou(n" — f)(sine)*dr,

Consequently, we get

(2.9)
By (2.8) and (2.9), similar to the proof of (2.6), we obtain that
1An08l18a < CO2|| T f = £l Ba- (2.10)
and
1f = &llBa < CIT" f = flla- (2.11)
Combining (2.10),(2.11) and the definition of K-functional, we have
K(f; 92)3u < If —gllBa+ 92||Ah 08llBa
< CITESf — fllpa+CO20|TEf — fla
< C|Ty f = fllBa- (2.12)
Thus
K(fi1*)ga <CO(f51)a- O
COROLLARY 2.4. Fort > 0, there is a constant C such that
o(f:18)pa < Cmax{1,1*}0(f;8)pa. (2.13)

Proof. By the equivalent relation between the modulus of smoothness and K-
functional, and the definition of K(f ;t2) Ba, We have

o(f318)pa < CK(f3(t8)*)a < C(If — 8llpa+1>87(| A 08]15a)
Cmax{1L,*}(||f — gllza+ 6| An08ll5a)

<
< Cmax{l,tz}K(f; 52)&, < Cmax{l,tz}w(f;S)Ba

The Corollary 2.4 has been proved. [

3. Auxiliary Lemmas

We need the following auxiliary Lemmas.

sin?/ 2

sin

2s
LEMMA 3.1. Let Q. jis = [o ( — ) sin®* 0d0. Then, the weak equiva-
2

lence
Qn;j7i7s ~ n4lS—2)L—l (31)

holds for 4si > 2A + 1, j > i, where the weak equivalent relation A(n) < B(n) means
that A(n) < B(n) and B(n) < A(n), and relation A, < B, means that there is a
positive constant C independent on n such that A(n) < CB(n) holds.
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Proof. Since % < sing < > and sin0 < 0 for 0 < 0 < &, we have

T [ sin
2
Qn;7,i7i7s:/ (Té) sin** 646

0 Sin

wis a1 "2 o (sin¥ )
=TT / t por dt

0
: 2s : 2s

- /2 sin¥/ ¢ o sin%/¢

= ptis—24-1 / e dt+/ | dt
0 ! n/2 !

=yl (3.2)

as 4si >2A+ 1, j >i. The Lemma 3.1 has been proved. [

LEMMA 3.2. For 4is>r+2A+1, j>i, r €R, there is a constant C(A,j,i,s)
such that

y
/ 0/ My 15(8)sin 040 < C(A, j,i,s)n~". (3.3)
0

Proof. Since %gsing <8 5, and sin@ < 0 for 0< O <, by Qjiy < pis—2A— 1
we have
r A
/ 0/ My;:5(8)sin 646
0
2j nb

2s
. T sin“/ &7
< C(A, i j,s)n Hr2A / 9,< 2,§> sin** 040
0

sin 5

; 2s
- " ni/2 sin®/ ¢
< C(A’l-,j’S)n74l.s+2l+1n4u7r72lf1/ tr+27L ( P dt
0

m/2 in2/¢ 2s - 20, 2
< C(A«,i;j,s)nfr / tr+27L % dt _|_/ tr+2l Sll’lz' dr
0 = /2 12

C(A,j,i,8)Con* <C(A, j,iys)n*,

where

/2 . 2jl 2s oo . 2jt 2s
c2:/ o dt+/ () dr, dis> 42441, j=i O
0 4 /2 4

LEMMA 3.3. [3] For 0 < 0 <, we have

0
Ty (g:x / sin 27Lta’t/ Tr Ahog)sm”L udu
0

7}
/ sin~ 24 1® (1) B, (A 08,x)dt, (3.4)

(=}
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where ) .
B,(Apog.x) = — | TX(A in?* udu,
t( h,Og )C) q)(t)/o u ( h,og)SIIl uau

and ®(t) = cllfo sin®* udu.

LEMMA 3.4. Letg,Ahog,AhOgEBa— ﬂL L(h2), 1< pp<oo, m=1,2,.

Jnjis(f3x) be the Jackson-Matsuoka polynomlals on the sphere based on the Jackson-
Matsuoka kernel, 4is >2A+5, j >i. Then, there is a constant C(A, j,i,s) such that

[ ji.s8 — 8 — 0(n)Anogllsa < C(R, j.i.5.q, 1)n | A7 o8| Bas (3.5)

where a/(n) < n=2.

Proof. By Lemma 3.3, we have
Inijis(8:%) — 8(%)
/a
—af Mn;,-,i,xe)(TeK(g;x)—g(x))sin” 60

= C/l/ My jis( 9)sm2’l OdG/ Br(Ahog’ )dt
0 ®(r
0 sin®*¢

d)()

(Bt(AhOgv) Apog(x))dt
0 s1

dt
o /smz’ludu
0 sin“*t Jo

+cl/ Mnm(e)smz’l 046

= Anog(x /Mnm(e)smﬂede

dt 4
+ / My;5(0)sin? 00 [ —2— / sin? u(By (Ao ) — Anog(x))du
0 Sln 1t

= a(n)Ay08(x) + /O M, 5(8)sin** 0¥ (g,x)d6, (3.6)

where

t
/ Mn /,l,S(G)SIIlz)L 0do /sinmudu,

0 smz’1 tJo

and
6 dt r 21
Yo (g, x) 1—/0 o, /Sln u(B:(An,08,x) = Anog(x))du.

By Lemma3.2, we have
dt 4
/ Mn,“(G)sm”L 0do T/ sin?* udu
0 sin“*¢

0 ; 24
v/ Myji(6 smﬂede/ sin 5
Sln

= / 02M,;:,(6)sin> 646 = n_27 0<& <) 3.7)
0
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Using Lemma 3.3 and the expression of B; (A 0g,x) — A 0g(x), and obtain

I¥o()llxpm < C(A,):0,5)

By Lemma3.2, and Holder-Minkowski inequality shows that

T
”/0 Mn;j,z;.y(e)sinz’l 0Wo(g,x)d0||« p,

T
C(0esiio5) |8 o8l [ 6M1(6) sin® 06

C(A, j,i.)n™ || A% 08l .po- (3.8)
Consequently, by (3.6), (3.7) and (3.8), we have
[ :j.i.58 — 8 = 0L(n)Angllic.py < C(A, jsi8)n™ 4[| A 08l - (3.9)
By Lemma 3.2, we get

||Jn;j,i,.\'g —8— (x(n)Ah,Og”Bu

- a
a: z a_ﬁHJn;j,i,sg_g_a(n) , m7 < 1}

m=1
<

C(A,joi,s)n |87 o8l < 1}

= inf
a>0

< inf {a
a>0

Iy jyiy sy

m

b'ag

IS

m=1

m.cm
m
1 (04

N

inf
a>0

R
MM
ES)

m

C(x7j7 ivqunu)n_“.HAiOg”Btr

The Lemma 3.4 has been proved. [J

4. Main results

The main result of this paper is the following:

THEOREM 4.1. Suppose that f € Ba := ﬂ me (h2), 1 < pm <o, m=1,2,.

m=
Jn:jis(f3x) be the Jackson-Matsuoka polynomlals on the sphere based on the Jackson-
Matsuoka kernel, 4is >2A+5, j >1i. Then

[Jnsjiins(F) = fllBa =< @(f;n™ " )pa. (4.1)
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Proof. First we prove |[Jujis(f) — fllBa < @(f;nV)pa. Since (fo*Myjis)(x) =
1 for fy (x) = 1, therefore, by Lemma 2.2, we have that

Insjis(f) = fllBa
- mf{ ml O o )~ i < 1}
<i { amu/ 30(0)(£2) ~ Ty () sin®* 6061, < }
<gg;g{ o /Ilf T (1)l Mo (0) sin®* 646 )" <1}
<;gg{ 3 L (0= T (@) sin* o0 <1}. @2)

Splitting the integral over [0, 7] into two integrals over [0,1/n] and [1/n, ], respec-
tively, and using the definition of (f;7)g,, we conclude that

If =Ty (f)llBa < @(f5n~ Ba+/ ©(f30)8aMyji5(0)sin** 0d6. (4.3)

From Corollary 2.4 it follows that, for 8 > n~!,

1 1
o(f;0)pa = w(f;n@%)ga < Cmax{1,n26}o (f; Z) <Cn*6’w (f; Z)
Ba

Ba
4.4)
By (4.3), (4.4) and Lemma 3.1, we get
1
If = Tg (f)llpa < Coo (f; —> . (4.5)
n/ Ba
Therefore, by (4.2), (4.5), it follows that
H-In;j7i7s(f) _fHBa
s m. cm T 1 m
<infla: ¥4 (/ (u(f;—) Miyj.15(6) sin?* ede) <1
>0 m=1 am 0 " /) Ba
©o m. cm 1 m
= inf azzq (a)(f;—) ) <1
o>0 1 om n)p,
. 1
C(A,j,1,5,9, 1)@ (f;—) : (4.6)
n/ gq

Next we prove @(f;n ") gy < |[Jn:jis(f) — f||Ba- Let r be a fixed positive integer,
Denote by

Jnrj i, \(f) = i (/(‘)”]Mn;j.,i,s(e)QliL (COSO) Sinz)L 6d9>rYk(h2K,f)

k=0
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By orthogonality of the orthogonal projector Y}, we have that

JHf) = ( / My;.15(8) 0% (cos 6) sin?* ede)

[
Y ( (/ My;15(8) 0 (cos 6) sin* ede) Yv(hi;f)>
= 0

_Jisjzs(‘]njzs(f))' (47)
Let g=J' .. (f), by (4.7) we get

n;j,i,s

f—gBazng{ 3 Ol }

71

:égg{ n;lﬁ“f njzs( )”Kp\ }
p X 9m k—1
gég%{a'mzlﬂ<2”‘]njn n/,l,s(f) K,P) gl}
oo r m
. a
gég%{(%iﬂgﬁﬁ( 2, ]7l,S ; Jr]:jl” nle(f)) K7p> <1}
. - am
< gg{ 3 Gl i)l s (DI < 1}
. o 4" Cl'(A,j.i,s,7)
< inf : Joeii o<1
égo{a mg,l o 1f = Tnsjis (F) B4 }
C(A»J.J»S»K%ﬂ)“f_Jn;j,i,s(f)HBa» (48)
where Jnjzsq,u(f)_f'
On the other hand,

r V1 r
HAhO nle ”Kpm Ek k+2}’)<‘/0 Mn;jJ’s(e)‘Q%(COSG)‘sin2l 9d9> Yk(h?(;f)'
k=0
Note that [5]
C}(cos8)
|07 (cos 0)| = Iﬁ

For k6 > 1, from (3.3) it follows that

| < Cmin{(k6) !, 1}.

HAhO n/,l,s( )”Kpm

CA,j,i,s)| Ek (k+22)k~"* (/ M,;i5(8)6~" sin?* ede) Ye (b2 )|l .
k=0

< C(A, j,iys)n 2 K2 < C i)™ || 1l . om (4.9)
k=0
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holds for r > % For k6 < 1, by (3.3), we get

||Ah0 n; /,l,s( )||K7Pm

<l 2 ( [ i @167 (6%k(k+20) |0 cos0) sin* ede)rwi;f)nwm

Ch,jyiss)] Z (/ Myj15(6)67 7 ((k6)%)F sin® ede) Ye(h2: f)
C(,j,1,s)]| 2 (/ My:ji5(0 rsin”@d@) Yi(h: )l

(A’ ]7l7s 2” ZYk ||Kpm <C(A’ ]7l7s) 2Hf||’<~,pm' (410)
k=0

Consequently, the inequality

A0S .15 (F) lepm < C(As Jsiy5)n 4.1
holds uniformly for r > % thereby
HAhO nle( )”Bl/l
. < Om r
= 0161;%{06 : mz:{l W”Ah,OJn;j,i,s(f)”iﬂPm < 1}
gl)ltgf(‘){amz’lﬂ (2’ ],Z,S) f||KPm<1}
< inf o i "m'CmC(A,Li,s)#HfIIBa <1
a>0 o am
< C(Rs joiy5, g, 17| £ 50 (4.12)

Without loss of generality, we may assume r; > %, r>r+ % . Using Lemma 3.4 and
(4.7), we have

o ()| AnoJyjis(f)llBa
= [lot(n)AnoJy:j.i.s ()l Ba
< Wi () = FllBa+C (A i) |G o5 () B
< rlMsjis(F) = fllga+ CAs iy )n | A7 o (F) | a
< rlnsjis (F) = fllBa + C(, ],1,5)

( ||Ah0 }’Ile( )HBa_Fn || njts( ) Jr’;;,rll,s(f)HBa>
< rHJn;j,i,S(f) _fHBa +C(R,],1,5) < 2||Ah0 i’lle( MBa+ H‘]}:ljls( )_fHBa>

CO i) (higas (£) = Pl 2180005l
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< C(hiss.rq ) (Wi () = £l + 1l ). (4.13)

Consequently, 12 8,0/5 ;1 (/)10 < COh o181y )L — s ()0 by the def-
inition of K(f;¢°)p, and (2.4) shows that

2)3
o(fin™ " pa < CK(fin ?)pa <C(If =T jis(F)lBa+ 121 Bn0 T s (f) | 8a)
< C()ijvivsvraéb.u)”f_Jn;j,i,s(f)HBa' (414)
ie., o(fin p, < | f = Jn:jis(f) | Ba- The proof is completed. [J

REMARK 4.2. Since Ba space is a weighted Lebesgue space if L,,,, (h2) = L, (h%),
a={1,0,---}, and Ba space is a weighted Orlicz space if L,, (h%) = L,,(h%). Thus,
the results presented in the Theorem 4.1 improve, extend and unify the results of the
weighted Lebesgue space and weighted Orlicz space.

Acknowledgements. The authors would like to thank the anonymous referees for
their valuable comments, remarks and suggestions which greatly help us to improve the
presentation of this paper and make it more readable.

REFERENCES

[1] X. X. DING, P. Z. LU0, Ba spaces and some estimates of Laplace operator, J.Sys. Sci. and Math.
Sci, 1981, 1: 9-33.

[2] A.ERDLYI, W. MAGNUS, F. OBERHETTINGER, AND F. G. TRICOMI, Higher Transcendental Func-
tions, Vols. 1, 2, 3, McGraw-hill, New York, NY, USA, 1953.

[3] YUAN XU, Approximation by means of h-harmonic polynomials on the unit sphere, Adv. Comput.
Math., 2004, 21: 37-58.

[4] Y. MATSUOKA, On the approximation of functions by some singular integrals, Tohoku Math. J., 1966,
18: 13-43.

[5] E. BELINSKY, F. DAI, Z. DITZIAN, Multivariate approximating averages, J Approx. Theory, 2003,
125: 85-105.

[6] W. Z. CHEN, Approximation Theory of Operators, Xiamen Univ. Publishing House, 1989, (In Chi-
nese).

[71 G. FENG, Y. FENG, Direct and inverse strong-type inequalities for Jackson-matsulka polnomials on
the sohere, Journal of mathematical Inequalities, 2013, 7 (1): 33-41.

[8] G. R. CHEN, T. Y. ZHAO, Some Functional Spaces and Problems, Journal of Baji College of Arts
and Sciences (Natural Science), 1997, 17 (4): 14-18, (In Chinese).

(Received March 9, 2014) Guo Feng
Department of Mathematics, Taizhou University

Taizhou, 317000, Zhejiang, China

e-mail: gfeng@tzc.edu.cn

Yuan Feng

School of Science

China University of Mining and Technology
Beijing, 100083, China

and

Xiaoshan No. 3 High School

Hangzhou, 311200, Zhejiang

China

e-mail: xzsfdxfy@126.com

Journal of Mathematical Inequalities
www.ele-math.com

jmi@ele-math.com



