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Abstract. A geometric approach to the improvement of Blundon’s inequalites given in [11]
is presented. If φ = min{|A−B| , |B−C| , |C−A|}, then we proved the inequality −cosφ �
cos ÎON � cosφ , where O is the circumcenter, I is the incenter, and N is the Nagel point of
triangle ABC . As a direct consequence, we obtain a sharp version to Gerretsen’s inequalities [7].

1. Introduction

Given a triangle ABC , denote by O the circumcenter, I the incenter, N the Nagel
point, s the semiperimeter, R the circumradius, and r the inradius of ABC . W. J.
Blundon [5] has proved in 1965 that the following inequalities hold

2R2+10Rr−r2−2(R−2r)
√

R2−2Rr � s2 � 2R2+10Rr−r2+2(R−2r)
√

R2 −2Rr.
(1)

The inequalities (1) are fundamental in triangle geometry because they represent
necessary and sufficient conditions (see [6]) for the existence of a triangle with given
elements R,r and s . The original proof obtained by W. J. Blundon [4] is based on the
following algebraic property of the roots of a cubic equation: The roots x1,x2,x3 to the
equation

x3 +a1x
2 +a2x+a3 = 0

are the side lengths of a (nondegenerate) triangle if and only if the following three
conditions are verified: i) 18a1a2a3 + a2

1a
2
2 − 27a3

3 − 4a3
2 − 4a3

1a3 > 0; ii) −a1 > 0,
a2 > 0, −a3 > 0; iii) a3

1−4a1a2+8a3 > 0. For more details we refer to the monograph
of D. Mitrinović, J. Pečarić, V. Volenec [7], and to the papers of C. Niculescu [8], [9],
and R. A. Satnoianu [10]. Recall that G. Dospinescu, M. Lascu, C. Pohoaţă, M. Tetiva
[6] have proposed an algebraic proof to the weaker Blundon’s inequality

s � 2R+(3
√

3−4)r.

This inequality is a direct consequence of the right-hand side of (1). In fact, all these
approaches illustrate the algebraic character of inequalities (1).
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We mention that D. Andrica, C. Barbu [2] (see also [1, Section 4.6.5, pp. 125–
127]) give a direct geometric proof to Blundon’s inequalities by using the Law of
Cosines in triangle ION . They have obtained the formula

cos ÎON =
2R2 +10Rr− r2− s2

2(R−2r)
√

R2 −2Rr
. (2)

Because −1 � cos ÎON � 1, obviously it follows that (2) implies (1), showing the
geometric character of (1). In the paper [3] other Blundon’s type inequalities are ob-
tained using the same idea and different points instead of points I , O , N . S. Wu [11]
gives a sharp version of the Blundon’s inequalities by introducing the parameter φ of
the triangle defined by φ = min{|A−B| , |B−C|, |C−A|}, and proving the following
inequality:

2R2 +10Rr− r2−2(R−2r)
√

R2−2Rrcosφ

� s2 � 2R2 +10Rr− r2 +2(R−2r)
√

R2−2Rrcosφ . (3)

The original proof to (3) given by S. Wu in the paper [11] considers various cases for
the angles of the triangle and it uses many algebraic and trigonometric computations.
Because the formula (2) is exact, it is natural to expect to obtain a direct proof to in-
equalities (3) based on it. In this short note we explore this idea and we present a
geometric proof to (3).

2. The main result

It is well-known that distance between points O and N is given by

ON = R−2r (4)

The relation (4) reflects geometrically the difference between the quantities involved in
the Euler’s inequality R � 2r . In the book of T. Andreescu and D. Andrica [1, Theorem
1, pp. 122–123] is given a proof to the relation (4) using complex numbers. In the
paper [4] similar relations involving the circumradius and the exradii of the triangle are
proved and discussed.

Denote by T (R,r) the family of all triangles having the circumradius R and the
inradius r . Let us observe that the inequalities (1) give in terms of R and r the exact
interval containing the semiperimeter s for triangles in family T (R,r) . More exactly,
we have

s2
min = 2R2 +10Rr− r2−2(R−2r)

√
R2−2Rr

and
s2
max = 2R2 +10Rr− r2 +2(R−2r)

√
R2−2Rr.

The triangles in the family T (R,r) are “between” two extremal triangles AminBminCmin

and AmaxBmaxCmax determined by smin and smax . These triangles are isosceles. Indeed,
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according to formula (2), the triangle in the family T (R,r) with minimal semiperime-
ter corresponds to the equality case cos ÎON = 1, i.e. the points I , O , N are collinear
and I and N belong to the same ray with the origin O . Let G and H be the centroid and
the orthocenter of triangle. Taking in to account the well-known property that points
O , G , H belong to Euler’s line of triangle, this implies that O , I , G must be collinear,
hence in this case triangle ABC is isosceles. In similar way, the triangle in the family
T (R,r) with maximal semiperimeter corresponds to the equality case cos ÎON = −1,
i.e. the points I , O , N are collinear and O is situated between I and N . Using again
the Euler’s line of the triangle, it follows that triangle ABC is isosceles. Note that we
have BminCmin � BmaxCmax .

Denote by Nmin and Nmax the Nagel’s points of the triangles AminBminCmin and
AmaxBmaxCmax, respectively.

Obviously, because the distance ON is constant, the Nagel’s point N moves on
the circle of diameter NminNmax, and the angle ÎON varies from 0 to 180◦.

Figure 1: Nagel’s point N moves on the circle of diameter NminNmax.

We will give a geometric proof to the following result.

THEOREM. For any triangle ABC, the following inequalities hold

− cosφ � cos ÎON � cosφ , (5)

where φ = min{|A−B|, |B−C| , |C−A|}. Both equalities in (5) hold if and only if the
triangle is equilateral.
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Clearly, combining relations (2) and (5) we obtain the stronger inequalities (3).
Firstly, we prove the right-hand side of inequality (5), that is

cos ÎON � cosφ .

Let us note that the vertices of the two extremal triangles AminBminCmin and
AmaxBmaxCmax give a partition of the circumcircle into six arcs, each of them corre-
sponding to an order of the angles of triangle ABC . Therefore, without loss of gener-
ality, we can assume that A > C > B (i.e. a > c > b , where a,b,c are the sidelengths
of triangle ABC ), and the vertices of triangle ABC move in trigonometric sense on the
circumcircle. In this case A is between Amin and Cmax , B is between Bmin and Amax ,
and C is between Cmin and Bmax (Figure 1). Clearly, we have

φ = min{|A−B| , |B−C|, |C−A|} = C−B.

Now, we refer to the configuration in Figure 2. Let D be the intersection point
of the line AI with the circumcircle of the triangle ABC. Denote by E and F the
points of intersection of the Nagel’s line NI with the lines DO and AO, respectively.
The triangle AOD is isosceles, then we have ̂ADO = D̂AO. It follows ÂOC = 2B̂ and
̂COD = Â.

Figure 2: The geometric illustration of the parameter φ
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Therefore

̂ADO =
180◦− (ÂOC+ ̂COD)

2
=

180◦− (2B̂+ Â)
2

=
Ĉ− B̂

2

that is
φ = 2̂ADO. (6)

Let A1 , B1 , C1 be the projections of the incenter I on the sides of triangle ABC ,
and let A2,C2 be the antipodal points to A1 and C1 in the incircle of triangle ABC .
Consider {A′} = AN ∩BC , Ia the excenter and ra the exradius corresponding to the
side BC . Because IA1 and A′Ia are perpendicular to BC , we have IA1 ‖ A′Ia . The
incircle and the a -excircle are homothetic by the homothecy of center A and ratio
ra
r , and we have A′Ia

IA2
= ra

r . It follows that the points A′ and A2 correspond by this
homothecy, hence A2 ∈ AN .

Let {A3} = AN ∩OMa and {C3} = CN ∩OMc , where Ma and Mc are the mid-
points of the sides BC and AC , respectively. Because BA′ = CA1 = s− c , it fol-
lows that Ma is the midpoint of the segment A′A1 , hence MaA3 is midline in triangle
A1A2A′ . From IA1 = IA2 we obtain that IA3 is midline in triangle A1A2A′ . From
IA3 ‖MaA1,MaA3 ‖ IA1 and ̂IA1Ma = 90◦ , it follows that the quadrilateral IA1MaA3 is
a rectangle. Similarly, we prove that the quadrilateral IC1McC3 is a rectangle. Consid-
ering the position of the point N with respect to the perpendicular bisector OMa of the
side BC , we have the following three possibilities:

1) If N and B are in the same halfplane, then ÎON > ̂IOA3 = ÎOE > ̂FOE .

2) If N = A3 = E , then ÎON = ÎOE � ̂FOE .

3) If N and A are in the same halfplane, then N ∈ [AA3] , not possible since N ∈
CC3 and C3 ∈ OMc .

In all possible situations considered above we have obtained the inequality

̂FOE � ÎON. (7)

Remark that
2̂ADO = ÂOE = ̂FOE, (8)

and by relations (6) - (8), it follows

φ � ÎON. (9)

Because the function cos is strictly decreasing on (0,180◦) , it follows

cos ÎON � cosφ , (10)

and we are done. Now, let us prove the left-hand side inequality in (5), that is

− cosφ � cos ÎON (11)
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If ÎON � 90◦, then the inequality (11) is trivial, because the numbers cosφ and cos ÎON
are non-negative. If ÎON > 90◦, then the inequality (11) is equivalent to

−2cos
α + φ

2
cos

α −φ
2

� 0,

that is

cos
α + φ

2
cos

α −φ
2

� 0. (12)

where we note α = ÎON . The inequality (12) is true because we have α+φ
2 , α−φ

2 ∈
(0,90◦) .

REMARK. In fact, the parameter φ divides the triangles of family T (R,r) ac-
cording to the position of the point A on the circumcircle of triangle ABC .

Recall the Gerretsen’s inequalities [7]

16Rr−5r2 � s2 � 4R2 +4Rr+3r2. (13)

A simple computation shows that the inequalities (13) can be written in the equivalent
form

|s2 −2R2−10Rr+ r2| � 2(R2−3Rr+2r2). (14)

Using the inequalities (5) proved in our main result, we have

|cos ÎON| � cosφ � R− r√
R2−2Rr

cosφ ,

since clearly cosφ � 0 and the right hand side inequality is reducing to r2 � 0. Now,
from formula (2), we get

|s2 −2R2−10Rr+ r2|
2(R−2r)

√
R2−2Rr

� R− r√
R2−2Rr

cosφ .

After easy computation, we obtain the following sharp version to Gerretsen’s inequali-
ties involving the parameter φ of the triangle:

COROLLARY. For every triangle ABC, the following inequality holds

|s2 −2R2−10Rr+ r2| � 2(R2−3Rr+2r2)cosφ . (15)

Acknowledgements. The authors express their thanks to the anonymous referee for
his very useful remarks and suggestions improving the level of the paper.



THE GEOMETRIC PROOF TO A SHARP VERSION OF BLUNDON’S INEQUALITIES 1143

RE F ER EN C ES

[1] T. ANDREESCU AND D. ANDRICA, Complex Number from A to Z, Second Edition, Birkhäuser, 2014.
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