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BOUNDEDNESS FOR THE GENERALIZED
COMMUTATOR OF SJOLIN TYPE OPERATORS

XIAO YU AND SHANZHEN LU

(Communicated by V. Stepanov)

Abstract. In this paper, we study the generalized commutators of Sj6lin type operator T;;X‘ de-
fined by

R (A PR, (A
e = [ Kae-n) P sy = [ B yyay

= n =yl =yt
where Ry (Aix,y) =A(x)— ¥ LDA()(x—y)* with me Z*.
laj<m ~
By using the scale changing method, we prove that if DYA € Aﬁ (0< B < 1) with |y] =

m—1,m>2o0r AcAg (0<p <1) when m=1, Ty’ is bounded on L”(R") for certain
range of p. '

1. Introduction

In 1976, Janson [4] studied the commutator 7}, generated by the Lipschitz function
and the singular integrals as follows.

Tpf(x) =T (f)(x) = T (bf)(x), (1.1)

where T is the classical C-Z singular integral operator and Janson [4] proved that Tj
is bounded from L7 (R") to L4(R") with 1/p—1/q=B/n if and only if b € Ag(0 <
B < 1). Here A,3 is the homogeneous Lipschitz space with its definition defined by

Ul = sp MS@
A nerinzo  |hIP

< oo, (1.2)
where Al f(x) = f(x+h) — f(x) and AFT! f(x) = Ak f(x+h) — A¥ f(x)(k € ZT). Ob-
viously, when 0 < B < 1 and f € Ag, we have |f(x) — f(y)| < |x—y|ﬁ||fHAﬁ for
Vx,y € R".
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In 2003, Lu, Wu and Zhang [9] studied the following generalized commutator 7"
defined as
Qx—y)

Ty'f(x) = /R Wﬂn (Asx,y) f(v)dy, (1.3)
where R, (A;x,y) =A(x)— Y %DVA (y)(x—y)?, the m-th remainder of Taylor series
[yl<m ™

of the function A at y about x. Lu, Wu and Zhang [9] proved that if A has derivatives
of order m—1(m>2) in Aﬁ (0< B <1),then T" is bounded from LP(R") to LY(R")
with I /p—1/g=B/nand 1 <p < %

Here we would like to point out that the operator Ty" was first studied by Cohen
and Gossenlin [2]. In [2], Cohen and Gosselin proved that if A has derivatives of order
m—1 in BMO(R") where BMO(RR") denotes the bounded mean oscillation space, then
the operator 7" is bounded on L”(R") for 1 < p < eo. For the study of the Cohen-
Gosselin type operators, one may see [10, 15, 19] et. al. for more details. In 2012,
Wang and Zhang [16] gave a new and simpler proof of Wu’s theorem in [17] by using
some results about the generalized commutator of Cohen-Gosselin type proved by Yan
[18] (or see [10]).

In 1980, Sjolin [12] introduced the convolution operator 7,; with oscillating ker-
nels defined by
el

= [ Kale—3)s0dy= [ S r (14)
R" R x|

where @ > 0,a# 1 and o < n.
Sjolin [12] proved the following theorem.

THEOREM A. ([12]) If a > n(1 — a/Z) then the Sjolin type operator TS is
bounded on LP(R") if and only if po < p < pj, with py = If a <n(l-7%5),
then TZ is not bounded on any LP(R")(1 < p < o).

na
na—n+ao "

The operator T was also studied by many other authors, one may see [5] or [13]
for more details. Especially in [5], Li proved the boundedness of 7§ by using the scale
changing method which was proposed by Carleson and Sjolin [1]. Moreover, Li [5] also
studied the following generalized commutator of the Sjolin type operator T a4 Withiits
definition defined by

X PN R (Asx,
) = [ Kel- ) P gy = [ SO )y (1.5)

=yt n =yl o=yt
Li [5] proved that if A has derivatives of order m — 1 in BMO(R") with m > 1, then
the operator T, a4 is bounded on the LP(R") for some p > 1.
Motivated by the above background, it is natural to ask whether we can prove the
L? boundedness of 7,7} if DA € Ag(|yl =m—1) with m € Z*? In this paper, we
will give a positive answer to this question. Moreover, when m = 1, we simply denote
Ty by Tf, . thatis

Tf o f () 1= Ty f (%) = AT f (x) = TS (ASf) (). (1.6)

Our results can be stated as follows.
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THEOREM 1.1. Supposethat a >0, a# 1 and an <2. If B+n—an< o <n+
B— 5 and A€ Ag with 5 < <1, then T} , is bounded on LP(R") with Po<p<pj
where l<p0=ﬁ+"n"_a<2.

THEOREM 1.2. Suppose that a > 0, aZland an <2. If B+n—an< o <
n+pB—% and DA € Ag(lyl =m—1) with G <B <1 and m > 2, then T, is

bounded on LP(R") with py < p < p{, where 1 < pg = ﬁﬁq—”_a <2.

2. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. The basic idea of proving
Theorem 1.1 is the scale changing method which was introduced by Carleson and Sjolin
in [1]. In [1], Carleson and Sjolin used this method to prove the L? (Rz) boundedness of
the Bochner-Riesz operators below the critical index. Later, the scale changing method
was used to study the boundedness of strongly singular integral and its commutators,
please see [6, 7, 8] for details.

Before giving the proof of Theorem 1, we introduce some lemmas and notations.
Let ¥ be a smooth function of compact supportin x and &, and ® be real valued and
smooth. We assume that the support of ‘¥, the Hessian determinant of @ is nonvanish-

ing, i.e.
2 (x
i (72021 1o o

Moreover, we have the following lemma.

LEMMA 2.1. ([7] or [14]) Denote Ty f(E) = [pn €*®OSW(x, &) f(x)dx, where
@ and Y satisfy (2.1). Then we have

T3l < CA 2 fll2-

Obviously, we also have || Ty f||i= < C||fl= and | Ty fllpr < C|fl;1- Then using
interpolation, we obtain (see [7])

| T fllr SCA 7| fllr, 2< p<oo (2.2)
ITafllr <CA P ||fllr, 1< p<2. (2.3)

Proof of Theorem 1.1. We only need to prove that for any fixed N € Z*, there
exists a positive constant C independent of f and A, such that

/[‘0 , N] n

By the scale changing method, (2.4) is equivalent to

J

p

ax<clalf [ s @4)
B Jjo,N]

ei\x— |4
/[ " (A) — A FO)dy

ON] Jx —y[*

p

eiNalx_y‘a
dx < CNPPA / £ (Nx)[Pdx.
1

N (ANR) —AWN) T )y

(2.5)
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where 1 = [0,1]" is the unit cube in R".

Now, we take some notations from [7].

Let Q, (u=0,1,---) be the set of all dyadic cubes in (—2,2)" with side length
27 and let Q* be the set of all cubes which satisfy the union of 2" cubes in Q.
For x € I and x does not belong to the boundary of any dyadic cubes, we denote
that @ (x) is the unique element of € satisfying x € %a);j (x). Moreover, we set
o* (x ) = (—2,2)". Then for a measurable set D C I, we denote

eiNa |x7Y‘a

T‘af(NY)dy’ xel,

EL(e.D) =N [ (AN~ A(V)

and
Ey(x) = Ey%(x, 05 () \ wy(x)NI),  u=0.

Furthermore, we may denote

N | y|@
N x=y

SAS (N0 = N0 [ S (AN~ A(NY)) £ (V)

e —y|*
Thus, we conclude that Theorem 1.1 reduces to prove the following inequality,

ISy % (Nl ) < CNP 1Al &g 1A Ny - (2.6)
To prove (2.6), by the definition of E,, we can decompose SX,’Z as
Syaf(Nx) Z Ey(x)+ Y Eu()
pu=puy+1

where uy belong to Z* and satisfies 2 ¥~ < N1 <27 By the fact that when p
is big enough, there is a) 1\ w; C1.

Thus, we may assume that Ej(x) = E{%(x,® ;1 (x) \ @y (x)), u > 0. By the
construction of @;_;(x) \ @j;(x), we have Ey(x) = wEZ E“a( )XF( )(x) where
Qy
XF()(x) is the characteristic function of F(®). As 3 xp(w)(x) < 6" —2" and
WEQy

F(w) = 6w\ 2 is the union of cubes in Q, |, with the property that the distance
from each cube to @ is approximately 2. Then by the Holder inequality, we con-
clude that |E,(x)[? < 3 |EY(x, @)|P xp(w)(x). Thus, we get

weQy

[IEulrax<c
1

For any fixed o € Q,;, we denote x, = (x1,x2,---,x,) be a pointin ®, such that
for any y = (y1,y2,"**,Vm) € @, x; < y;, i = 1,2,--- n. Recall the fact that the side

¥ / E* (x, )|"dx.
(@)

ey,
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length of @ is 27#. Then for any u < Uy, we have

ES% (x,0)|Pd
o [EEC )P

iN“\x—y|“ . P
_ / T (A(Nx) — A(Ny))f(Ny) 0| dx
Flo) x — |
¢Vl !
- / / NS [A(Nxr+ o) — ANy +x0) | f(NY)dy| dx
0.2 K] e =l

i(N27H) =yl

/Nn—azuaz—une [A(Z_“Nx—l—xw)
1

= 2_'un
/F<I> x — y|*

—AQ2 7 Ny +x0)|f27*Ny +x0)dy|" dx.
First, we consider the case u < Uy . As x € F(I), y € I, we obtain
e — y| < Jx— ol + [y — yol < Cly —x0] < C27%%,

Thus, we get
S/ (N8) < AN NN [ L=yl )y
< ClA|| 4, NP EM(F(N) 1) ().
where M denotes the Hardy-Littlewood maximal function. Then we have
IS L N oy < CIANA NP IMO N1 (D) oy,
which implies
ISV AL N lo ey < CIAN NP FN) o
From the above estimates and the definition of EX’O‘, there is
/ B4 (v @)Pdx < CJA]} (v27H) P / F(N)|Pdx.
F(o)
By the above inequality and the definition of E, , we obtain
|Eullry < C”AHA (N27Hy B f(N Mer

Now, we conclude that for the case t < Ly, we have

ZHEu ) <CNﬁHA||A AN er - (2.7)
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Next, we will consider the case (> Ly . In order to use Lemma 2.1, we would like
to mention that from [8, p. 45—p. 46], we know both q)(x y) = |x—y|* and ¥(x,y) =
W satisfy (2.1) on F(I) x I. Then, let ¥(x,y) = iy be a smooth function sup-
ported on F(I) x I, otherwise we may choose a class of smooth function defined on
F(I) x I and approximating to it.

When p > 2, using (2.2), we have

/F(w)

< / ( 27H" |A27HNx +x0) — AQ27HNxo + x0)|”
F(I)

p

eIV lx=yl
[ N AW — AN ()| dx

b — |

p
dx

i(27HN) =yl

% /Nn—oczuoc—une F(27* Ny +x0)dy

1 Jx — |

+ / 2 Hn
F(I)

X|A(27*Nxg +x0) — A(2T*NY +x0) | f (2T Ny + x0)dy|" dx

i(27HN) o=yl

/N}’Z—Otz,u(x—ﬂne
1 e —y[*

< C||A\\iﬁNﬁI’N”I’*I’O‘2*“”2(“0‘*“”)1’2*”[51’(2*“N)7%”/I\f(2’“Ny+xw)|pdy
4 CN(n=a)pp—uny(n—ajpy(po—un)p (2~ MN)—%p
X /I’[A(Z*“Nxo +Xo) —A(Zf”Ny+xw)}f(27“Ny—|—xw)’pdx

< C||AHiﬁN(n+ﬁfa)pz(uafun)pzfﬂﬁp(zfﬂ]v)fanzfﬂn/|f(27ﬂNy+xw)|de

gCHAHZ N(n+;3—a)p—anzpua—unp—uﬁpwan||f( )||LP
B
< CJAf) Nerhm ey PROB=3 | PN

For the case 1 < p < 2, by a similar argument as in the above case, we may get

/F(a))

o) & _on
< CllA§ NPTETT ety kB oy T (v I

p
dx

N =yl
SV ey AW AWy

(@)
<Al N |,

By the above two estimates and the condition py < p < p; with 1 < pg = ﬁfﬁ <2,
we obtain

1/p
> { E/ Eﬁ’a(x,w)l”dX} <CNﬁHAIIAﬁIIf(N-)IILP(z)- (2.8)
>ty | weQ, /F(®)
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Combining (2.7)—(2.8), we finish the proof of Theorem 1.1. [

3. Proof of Theorem 1.2
Before giving the proof of Theorem 1.2, we give some lemmas that will be very
useful throughrout this section.

LEMMA 3.1. ([2]) Let b be a function on R" with m(m > 2)-th order derivatives
in L] (R") for some q > n, then there exists a positive constant C independent of b,

loc
such that

1/q

D)z

R (b:,9)| < ol — 1" z;(

[v|=m

1
|Q(X,y)‘ O(xy)

where Q(x,y) is the cube centered at x and having diameter 5/n|x —y|.
LEMMA 3.2. ([11]) Let 0< B <1 and 1 < q < =, then

1
111y %500 oz [, U~ molla

11 ta
z?@mﬁabmwwmm%.

LEMMA 3.3. ([3]) Letting Q" C Q and g € Aﬁ(O < B < 1), we have

img:+(g) —mo(g)| < CIQlﬁ/”IIgIIAﬁ~

Proof of Theorem 1.2. By the same argument as in the above section, it suffices to
prove

ei\xfy\” p
Jony [Jonp 5@ Ru(Asx,0) f(y)dy| dx < C‘ | ) 1||DYAHiﬁ Jonp |f(x)[Pdx,
Yi=m—
(3.1)
which is equivalent to
peamir_€ NN '
/ /N e 7 Rm(A;Nx,Ny) f(Ny)dy| dx
Y (3.2)

<enbrenie 3ol i)y
=1 P

for any fixed N > 1

Now, we define

E{%(x,D) = Nt / —R,,(A;Nx,Ny) f(Ny)dy
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and
o ] eINGx=y)[
Furthermore, we denote
Ey(x) =Ey*(x, o5 \ oy NI), u=0.

Then we have

Syaf(Nx) < ZE,I + > Eulx)
u=pun+1

When u < uy, denote A(Nz) = [A(Nz) — 3 ,mjx (DYA(N-))]¢(z), where Jy is
ly|=m—1

a cube centered at x with its side length equals 4 and ¢ € C°(R"). Furthermore, we

assume that when |x| < 10, ¢ =1 and when |x| > 20, ¢ =0. Thus, we get

SAS ) S ONT L [Ry (AV-)exy)LF(N)

Lonremt Y /\DVA (Nx) = my, (DYA(N-))|| £ (Ny)|dy.
I1l=m—1

From Lemmas 3.1-3.3, we know that for any x € F(I) and y € I, there is
IRn—1(A(N-);x,y)|

1 1/q
< Clx—y[m ! {7/ DYA(Nz) —mpy, ) (DTA(N- qd}
‘ y‘ M:Zm_l \Q(x,y)| Q(Ly)‘ ( Z) o( ’J’)( ( ))| <

+Clx—y[" 1Y mg(ey) (DYA(N-)) — my, (DYA(N-))|
[y|=m—1

<C 3 |DYANN)| 5, =CNPN"TL R (DA 5,
lyl=m—1 [1l=m—1

As p > 1, we may choose a positive real number r satisfying 1 < r < p. Moreover,
1/r
we denote M, (f)(x) = sup (ﬁ Jolf (y)\%z’y) . Then by the Holder inequality and
0>x

Lemmas 3.2-3.3, we have

S, [IDTANY) ~ my (DANILFNY)ldy

[Y|=m—1
1/r 1/r
4 —m YAN)I "
< C\)/|:2m471 (/I|D A(Ny) —my,(DYA(N-))| dy) (/Ilf(Ny) dy)
<CNPNm1 Y IDYA| ;M (f(N)20) (),

[y|=m—1

forany x€ F(I) and y € 1.
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Combing the above two estimates, we may get

Syaf (Nx) < CHZ IDYA|| 3, NP (M(F(N-) ) (6) + Mo (F(N) ) ()
Y|l=m—1

Then, by the boundedness of M,(f)(x) on L* (p > r) space, we obtain

ISNaS N oy <C Y, IDYA[[j, N OB FN) iy
[y|=m—1

By a similar argument as in Section 2, we conclude that for the case u < v, there is

Uy
2Nl <C Y N "‘*ﬁIIDyAHA IF N @) (3.3)
u=0 [Y=m—1

Next, we will consider the case when u > uy. First, we have the following esti-
mates.

E¢%(x,0)|"d
/F(w)| A (x )| X
:/F(w)
g /
F()

XRm(A(N);27Hx +x0,27 "y +y0) f (27 Ny +yo)dy|” dx.

p

ilx—y|*N¢
e
dx

nn—amt] WR,“ (A(N-);x,y) f(Ny)dy

p

e ylana
et\x YN
dx

/02 s N"_O‘_m'HWR,H(A(N-);x—i—xw,y—i—yw)f(Ny—l—yw)dy

ei2’“”|x—y\”N”
/Nn—oc—m+12u(a+m—1)2—un
b ‘x _ y‘(x+m—l

For any ® € Q, and any xq € 61\ 51, there is

E4%(x, 0)|Pdx
L [EE )

<o Hn /
F(0)

P
XRi 1 (AN-);2 x4+ %0, 27Xy +x0) f(27 Ny + x¢)dy| dx

+C Y phm /
m;—l F)

e
o2 N )|

n—o—m+1Au(o+m—1)n—kn
‘/IN 2 2 |x_y|oc+m—1

27 ANy p
DYA(Ny)f (2 HNy+xp)dy| dx

anaferlzuazfpne
I ‘x_y‘OCerfl

{27 HN (x—y)[*

/F(I) Nn—a—m+12u(a+m—1—n)ei[Rmil(N(N,);z—ﬂx+xw,2—ﬂy+xw)

-
= e

—Ry 1(A(N-); 27" x +x6,2 Hxg —|—xw)}f(2_“Ny—|—xw)dy’pdx
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+C27”"/( ) |Rm_1(A(N-);Z*“x—kxw,zfﬂxo +xw)}p
F(1

P2 N (x—y) r

x| [rmammiguteneiol oy Ny o)y dx
PI27ENG=y)le P
+C Z Z_un / Nn—oc—m+12uoc—un WDYA(Ny)f(Z_MNy‘i‘Xw)dy d}C
ot F(1) [x—y|
=C(I+1I+1II).

Next, we will estimate I, I and I1I respectively. Note that (see [2])

Z (x —)c())‘s

Ry—1(8:%,y) — Ru—1(g:,%,%0) = s Ru1-15)(D°8:%0,),

[8|<m—1
where & is any n-tuple index with |6] <m—1.
Then we have

[Ry—1(A(N-);27 x4+ x0,2 "y +x0) — Ry 1 (A(N-); 27 x + x6,2 7 x0 + x0) |
DMy _p—mu 13 N

_ 2 (27 Hx e X0) |Rm_1_‘5|(D5A(N~);2’“xo+xw,2’“y+xw)|.

18| <m—1 -

Moreover, we denote Q;()“y =027 "x0+x0,27"y+xp). Thus, using Lemmas 3.1, 3.3
and the fact |xo —y| < C, we get

Ry 15/ (DPA(N-);27Hx0 + x0,2 My +x0)|

1/q
<2_“(’”—1_‘5”\)60—y‘m—l_l‘s‘ Z ( E# » DYA(Nz)—mw(DyA(N-))Wdz)
[y|=m—1 ‘QXO=Y| Q"Ou"
<ot 5 LIDYAN:)|| g, (74P + mgy_u (DTA(N-)) = mo(DYAN-))|}
B Oxyy
[y|=m—1
—p(m—1=[8]) (9=t a1\ B pym—1 YAl .
<2 @ NN S |IDTA 5,

[y|l=m—1

Combing the above estimates, we obtain

IR 1(A(N-); 27 x4+ x6, 2 Hy +x0) — Ru_1(A(N-); 27 x +x6,2 7 x0 + x0)|

<C Z 2—I~l|5\2—ﬂ(m—1—|5\)(2—HN)I3N"1—1 Z IDYA||;..
[6|<m—1 [Yl=m—1 P
Thus, for p > 2 and an n-tuple index & with || < m— 1, we may choose W(x,y) a
s
smooth function approximating to ny}% on F(I)x I. Then using (2.2), we have
1< C2Hn (2—[JN)—%pzu(Oc-‘rm—l—n)pN(n—a—m-‘rl)p
X [|[Rm—1(A(N-);27*x0 + X0, 27y + X))
—Rp 1 (A(N-); 27 x4 x4, 2 Fx0 + X0) ] f(2THN - +x0) Hfm)
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<C Z ”DyAHp N—na+p(n o—m+1) Z 2—/J(m—1—2|8\)
[Y|=m—1 [8]<m—1

w D —Mnyu(ot+m—1—n)pyunapBpy— l~ll3p||f(2 B +xw)||Lp

<C z ”DYAHP N na+p(n—o—m+1+p) (m 1)p 2[117(0( n— ﬁJr ||f( )
[Yl=m—1

12

For 11, note the following fact

IRy 1 (A(N-):27Hx + x¢0, 2 Fxg + X0 )| < C27Hm=1) yBo—HB =1 Y ID"Ally,-
lyl=m—1

Thus, we can choose W¥(x,y) a smooth function approximating to W on F(I)x

1. So, we have

H<szﬂnzfﬂ(mfl)PNﬁpzfﬂﬁP z |IDYA|? NP(n—o—m+1)
o

x Q@I QTN) TP F2TEN - +x0) o)
<C 2 ||DYA||P NPB+(n—o—m+1)p—nan— Bl F(27HN - +xw)||u, 9—u(pn—na+pBp—pa)
[Y|=m—1
<C Z |D7A"11;/3Npﬁ+(n—a—m+1)p—naN(m—1)pHf( )HP 2 u(pn—na+pp—pa)
[Y|=m—1
For 111, as @ € Q and by the definition of €, there is
IDYA(Ny)| = [DYA(Ny) — me(DYA(N-))|
< ClofP|DIAN.)||4, < C2HNBNTY DA
Thus, we may choose ¥(x,y) a smooth function approximating to W on F(I)x
I and we obtain from (2.2) that

]]]gcz*#"NP("*a*er1)217(#06*#")2*#[517]\/!317HDVA||I_7 (quN)f%”p”f(zfﬂN +x0) 1)

<C Z HDYAHP NP(—o—m+1)+Bp—nap;(m— 1)p2ﬂp(0€ n—p+3 Hf( )HZ’(I)
ly|=m—1
Similarly, for the case 1 < p < 2, there is

IHI+II<C 3, DA} NPl P e m =) Nn—1)p
[Yl=m—1

x 2O p v 18,

By the above estimates and the condition py < p < pj, with 1 < pg = Bin—a + 5 <2,we
obtain

1/p
{2 Jr(o IEZ""(x,w>|de} SCNPN™t 5 |IDTA] o IFON) e
U=ty | 0€Qy [y|=m—1
(34)
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Combining (3.3)—(3.4), we finish the proof of Theorem 1.2. [
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