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Abstract. In this paper, we show some sufficient conditions on a Banach space X concerning the
generalized von Neumann-Jordan constant, the coefficient R(1,X) and the coefficient of weak
orthogonality, which imply the existence of fixed points for multivalued nonexpansive mappings.

1. Introduction

In 1969, Nadler [14] established the multivalued version of Banach contraction
principle. By using Edelstein’s method of asymptotic centers, T. C. Lim [13] proved
that every multivalued nonexpansive self-mapping T : E → K(E) has a fixed point
where E is a nonempty bounded closed convex subset of a uniformly convex Banach
space X . In 1990, W.A. Kirk and S. Massa [12] proved that if a nonempty bounded
closed convex subset E of a Banach space X has a property that the asymptotic center
in E of each bounded sequence of X is nonempty and compact, then every multivalued
nonexpansive self-mapping T : E → KC(E) has a fixed point.

In 2004, Domı́nguez and Lorenzo [4] proved that every multivalued nonexpansive
mapping T : E → KC(E) has a fixed point where E is a nonempty bounded closed
convex subset of a nearly uniformly convex Banach space X . In 2006, S. Dhom-
pongsa et al. [7, 8] introduced the Domı́nguez-Lorenzo condition and property (D)
which imply the fixed point property for multivalued nonexpansive mappings. In 2007,
T. D. Benavides and Gavira [2] had established the fixed point property for multival-
ued nonexpansive mappings in terms of the modulus of squareness, universal infinite-
dimensional modulus, and Opial modulus. A. Kaewkhao [11] has established the fixed
point property for multivalued nonexpansive mappings in terms of the James constant,
the Jordan-von Neumann constant, weak orthogonality. In 2010, T. D. Benavides and
Gavira [3] had given a survey of this subject and presented the main known results and
current research directions.

Recently, Yunan Cui et al. [6] introduced a new geometric constant C(p)
NJ (X) called

generalized von Neumann-Jordan constant. In this paper, we show some sufficient con-
ditions on a Banach space X concerning the generalized von Neumann-Jordan constant,
the coefficient R(1,X) and the coefficient of weak orthogonality, which imply the ex-
istence of fixed points for multivalued nonexpansive mappings.
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2. Preliminaries

Let X be a Banach space. The following constant of a Banach space

CNJ(X) := sup

{‖x+ y‖2 +‖x− y‖2

2(‖x‖2 +‖y‖2)
: x,y ∈ X ,notbothzero

}
.

is called the von Neumann-Jordan constant [5], and is widely studied by many authors
[14, 7, 2, 3].

The following coefficient is defined by T. D. Benavides [1] as

R(1,X) = sup{liminf
n→∞

‖xn + x‖},

where the supremum is taken over all x∈X with ‖x‖� 1 and all weakly null sequences
(xn) in the unit ball BX such that

D[(xn)] := limsup
n→∞

(limsup
m→∞

‖xn− xm‖) � 1.

It is clear that 1 � R(1,X) � 2. Some geometric condition sufficient for normal struture
in term of this coefficient have been studied in [9, 15].

The coefficient of weak orthogonality μ(X) , defined by the infmum of the set of
real numbers λ > 0 such that

limsup
n→∞

‖x+ xn‖ � λ limsup
n→∞

‖x− xn‖

for all x ∈ X and all weakly null sequences (xn) in X [10].

The generalized von Neumann-Jordan constant C(p)
NJ (X) [6], defined by

C(p)
NJ (X) := sup{‖x+ y‖p +‖x− y‖p

2p−1(‖x‖p +‖y‖p)
: x,y ∈ X ,(x,y) �= (0,0)},

where 1 � p < ∞ .
The parametrized formula of this constant is the following

C(p)
NJ (X) = sup

{‖x+ ty‖p +‖x− ty‖p

2p−1(1+ t p)
: x,y ∈ SX ,0 � t � 1

}
,

where 1 � p < ∞ .
It was proved that the generalized von Neumann-Jordan constant satisfies the in-

equality C(p)
NJ (X) � 2, and that Banach space X is uniformly non-square if and only if

C(p)
NJ (X) < 2 [6]. If C(p)

NJ (X) < 1+ 1
μ(X)p , then the Banach space X has normal structure

[15].
Let C be a nonempty subset of a Banach space X . We shall denote by CB(X) the

family of all nonempty closed bounded subsets of X and by KC(X) the family of all
nonempty compact convex subsets of X . A multivalued mapping T : C → CB(X) is
said to be nonexpansive if

H(Tx,Ty) � ‖x− y‖,x,y ∈C
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where H(., .) denotes the Hausdorff metric on CB(X) defined by

H(A,B) := max{sup
x∈A

inf
y∈B

‖x− y‖,sup
y∈B

inf
x∈A

‖x− y‖},A,B∈CB(X).

Let {xn} be a bounded sequence in X . The asymptotic radius r(C,{xn}) and the
asymptotic center A(C,{xn}) of {xn} in C are defined by

r(C,{xn}) = inf{limsup
n

‖xn− x‖x ∈C}

and
A(C,{xn}) = {x ∈C : limsup

n
‖xn− x‖ = r(C,{xn})},

respectively. It is known that A(C,{xn}) is a nonempty weakly compact convex set
whenever C is. The sequence {xn} is called regular with respect to C if r(C,{xn}) =
r(C,{xni}) for all subsequences {xni} of {xn} , and {xn} is called asymptotically uni-
form with respect to C if A(C,{xn}) = A(C,{xni}) for all subsequences {xni} of {xn} .
If D is a bounded subset of X , the Chebyshev radius of D relative to C is defined by

rC(D) = inf
x∈C

sup
y∈D

‖x− y‖.

S. Dhompongsa et al. [8] introduced the property (D) if there exists λ ∈ [0,1)
such that for any nonempty weakly compact convex subset C of X , any sequence
{xn} ⊂ C which is regular asymptotically uniform relative to C , and any sequence
{yn} ⊂ A(C,{xn}) which is regular asymptotically uniform relative to X we have

r(C,{yn}) � λ r(C,{xn}).
The Domı́nguez-Lorenzo condition((DL)-condition,in short) introduced in [7] is

defined as follows: if there exists λ ∈ [0,1) such that for every weakly compact convex
subset C of X and for every bounded sequence {xn} in C which is regular with respect
to C ,

rC(A(C,{xn})) � λ r(C,{xn}).
It is clear from the definition that property (D) is weaker than the (DL)-condition.

The next results shows that property (D) is stronger than weak normal structure and
also implies the existence of fixed points for multivalued nonexpansive mappings [8]:
Let X be a Banach space satisfying ((DL)-condition) property (D), Then X has weak
normal structure; Let C be a nonempty weakly compact convex subset of a Banach
space X which satisfies ((DL)-condition) the property (D). Let T : C → KC(C) be a
multivalued nonexpansive mapping, then T has a fixed point.

3. The generalized von Neumann-Jordan constant and the coefficient R(1,X)

In this section, we show a sufficient condition concerning the generalized von
Neumann-Jordan constant, and the coefficient R(1,X) , which implies the existence of
fixed points for multivalued nonexpansive mappings.
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First recall some basic facts about ultrapowers. Let F be a filter on N . A se-
quence {xn} in X converges to x with respect to F , denoted by limF xn = x if for
each neighborhood U of x , {n∈ N} ∈F . A filter U on N is called to be an ultrafilter
if it is maximal with respect to set inclusion. An ultrafilter is called trivial if it is of the
form A : A ∈ N , n0 ∈ A for some fixed n0 ∈ N , otherwise, it is called nontrivial. let
l∞(X) denotes that the subspace of the product space Πn∈NX equipped with the norm
‖(xn)‖ := supn∈N ‖xn‖ < ∞ . Let U be an ultrafilter on N and let

NU = {(xn) ∈ l∞(X) : lim
U

‖xn‖ = 0}.

The ultrapower of X , denoted by X̃ , is the quotient space l∞(X)/NU equipped
with the quotient norm, and (xn)U denotes the elements of the ultrapower. Note that if
U is non-trivial, then X can be embedded into X̃ isometrically.

THEOREM 1. (Main) Let C be a weakly compact convex subset of a Banach space
X and {xn} is a bounded sequence in C regular with regular to C, then we obtain

rC(A(C,{xn})) � 2
p−1
p R(1,X)(C(p)

NJ (X))
1
p

R(1,X)+1
r(C,{xn}).

Proof. Denote r(C,{xn}) as r and A(C,{xn}) as A . We should assume that r > 0,
by passing to a subsequence if necessary, we can also assume that {xn} is weakly con-
vergent to a point x ∈C and d = limn �=m ‖xn − xm‖ exists. Since {xn} is regular with
respect to C , passing through a subsequence does not have any effect to the asymptotic
radius of the whole sequence {xn} . Observe that the norm is weakly lower semicontin-
uous, we have

liminf
n

‖xn− x‖ � liminf
n

liminf
m

‖xn− xm‖ = lim
n �=m

‖xn− xm‖ = d.

Let ε > 0, taking a subsequence if necessary, we can assume that ‖xn− x‖ < d + ε for
all n . Let z∈ A , then we have limsupn ‖xn−z‖= r and ‖x−z‖� liminfn ‖xn−z‖� r .
Denote R = R(1,X) , then by definition we have

R � liminf
n

∥∥∥xn− x
d + ε

+
z− x

r

∥∥∥ = liminf
n

∥∥∥xn− x
d + ε

− z− x
r

∥∥∥.

By the convexity of C , we have R−1
R+1x+ 2

R+1z ∈C , since the norm is weak lower
semicontinuity, we get

liminf
n

Rr
∥∥∥xn− z

r
+

1
R

(xn − x
d + ε

− x− z
r

)∥∥∥
= liminf

n
Rr

∥∥∥(1
r

+
1

R(d + ε)

)
(xn − x)+

(1
r
− 1

Rr

)
x−

(1
r
− 1

Rr

)∥∥∥
� ‖(R−1)x+2z− (R+1)z‖
= (R+1)

∥∥∥R−1
R+1

x+
2

R+1
z− z

∥∥∥
� (R+1)rC(A),
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and

liminf
n

∥∥∥R(xn− z)−
(r(xn − x)

d + ε
− (x− z)

)∥∥∥
�

∥∥∥(
R− r

d + ε

)
(xn− x)+ (R+1)(x− z)

∥∥∥
�| R+1 | rC(A).

For every ε > 0, there exists N ∈ N such that

1. ‖xN − z‖ � r+ ε ;

2. ‖ r(xN−x)
d+ε − (x− z)‖ � R(r+ ε) ;

3. ‖R(xN − z)+ r(xN−x)
d+ε − (x− z)‖� ‖R+1‖rC(A)( r−ε

r ) ;

4. ‖R(xN − z)− ( r(xN−x)
d+ε − (x− z))‖�| R+1 | rC(A)( r−ε

r ) .

Now, let ũ = R(xN − z)U , ṽ = ( r(xN−x)
d+ε − (x− z))U . Using the above estimates, we

obtain ‖ũ‖ � R(r+ ε) , ‖ṽ‖ � R(r+ ε) and

‖ũ+ ṽ‖ =
∥∥∥R(xN − z)+

r(xN − x)
d + ε

− (x− z)
∥∥∥

� ‖R+1‖rC(A)
(r− ε

r

)
,

‖ũ− ṽ‖ =
∥∥∥R(xN − z)− r(xN − x)

d + ε
− (x− z)

∥∥∥
�| R+1 | rC(A)

( r− ε
r

)
.

By the definition of C(p)
NJ (X̃) , then

C(p)
NJ (X̃) �

{‖ũ+ ṽ‖p +‖ũ− ṽ‖p

2p−1(‖ũ‖p +‖ṽ‖p)

}

� (R+1)p

2p−1Rp

rp
C(A)
rp

( r− ε
r+ ε

)p
.

Since the above inequality is true for every ε > 0 and C(p)
NJ (X) = C(p)

NJ (X̃) , we obtain

rC(A(C,{xn})) � 2
p−1
p R(1,X)(C(p)

NJ (X))
1
p

R(1,X)+1
r(C,{xn}). �

COROLLARY 1. Let C be a nonempty bounded closed convex subset of a Banach

space X such that C(p)
NJ (X) < (R+1)p

2p−1Rp and T : C → KC(C) be a multivalued nonexpan-
sive mapping, then T has a fixed point.
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Proof. If C(p)
NJ (X) < (R+1)p

2p−1Rp , then X satisfy the (DL)-condition by Theorem 1, so
T has a fixed point. �

COROLLARY 2. Let X be a Banach space such that C(p)
NJ (X) < (R+1)p

2p−1Rp , then X
has normal structure.

Proof. By Theorem 1, it is easy to prove that X has weak normal structure. Since

1 � R(1,X) � 2, we obtain C(p)
NJ (X) < (R+1)p

2p−1Rp < 2. This implies that X is uniformly
nonsquare, then X is reflexive, therefore weak normal structure coincide with normal
structure. �

4. The generalized von Neumann-Jordan constant and
the coefficient of weak orthogonality

In this section, we show a sufficient condition concerning the generalized von
Neumann-Jordan constant, and the coefficient of weak orthogonality, which implies
the existence of fixed points for multivalued nonexpansive mappings.

THEOREM 2. Let C be a weakly compact convex subset of a Banach space X and
{xn} is a bounded sequence in C regular with regular to C, then we obtain

rC(A(C,{xn})) � 2
p−2
p (C(p)

NJ (X)(μ2p + μ p))
1
p

μ2 +1
r(C,{xn}).

Proof. Denote r(C,{xn}) as r , A(C,{xn}) as A and μ(X) as μ . We should
assume that r > 0, by passing to a subsequence if necessary, we can also assume that
{xn} is weakly convergent to a point x ∈C and z ∈ A . Thus,

limsup
n

‖xn− z‖ = r

limsup
n

‖xn−2x+ z‖� μr.

Since (2/(μ2 +1))x+(μ2−1)/(μ2 +1)z ∈C and by the definition of r , we obtain

limsup
n

∥∥∥xn−
( 2

μ2 +1
x+

μ2−1
μ2 +1

z
)∥∥∥ � r.

On the other hand, by the weak lower semicontinuity of the norm, we get

liminf
n

‖(μ2−1)(xn− x)− (μ2 +1)(z− x)‖� (μ2 +1)‖z− x‖.

For every ε > 0, there exists N ∈ N such that

1. ‖xN − z‖ � r+ ε ;
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2. ‖xN −2x+ z‖� μ(r+ ε) ;

3. ‖xN − ( 2
μ2+1

)x+( μ2−1
μ2+1

)z‖ � r− ε ;

4. ‖(μ2−1)(xN − x)− (μ2 +1)(z− x)‖� (μ2 +1)‖z− x‖( r−ε
r ) .

Now, let u = μ2(xN − z) and v = (xN − 2x + z) , then we use the above estimates to
obtain ‖u‖ � μ2(r+ ε) and ‖v‖ � μ(r+ ε) , so that

‖u+ v‖= ‖μ2((xN − x)− (z− x))+ (xN− x)+ (z− x)‖

= (μ2 +1)
∥∥∥(xN − x)− μ2−1

μ2 +1
(z− x)

∥∥∥
� (μ2 +1)

∥∥∥xN −
( 2

μ2 +1
x+

μ2 −1
μ2 +1

z
)∥∥∥

� (μ2 +1)(r− ε),

‖u− v‖= ‖μ2((xN − x)− (z− x))− (xN− x)− (z− x)‖
= ‖(μ2−1)(xN − x)− (μ2 +1)(z− x)‖
� (μ2 +1)‖z− x‖

(r− ε
r

)
.

By the definition of C(p)
NJ (X) we get

C(p)
NJ (X) �

{‖u+ v‖p +‖u− v‖p

2p−1(‖u‖p +‖v‖p)

}
�

( r− ε
r+ ε

)p 2(μ2 +1)p +(‖z− x‖/r)p

2p−1(μ2p+μ p)
.

Let ε → 0+ , we obtain

‖z− x‖� 2
p−2
p (C(p)

NJ (X)(μ2p)+ μ p)
1
p

μ2 +1
r.

Since this inequality holds for arbitrary z ∈ A , we obtain that

rC(A) � 2
p−2
p (C(p)

NJ (X)(μ2p + μ p))
1
p

μ2 +1
r. �

COROLLARY 3. Let C be a nonempty bounded closed convex subset of a Banach

space X such that C(p)
NJ (X) < (μ2 +1)p/2p−2(μ2p + μ p) and let T : C → KC(C) be a

multivalued nonexpansive mapping. Then T has a fixed point.

Proof. If C(p)
NJ (X) < (μ2 + 1)p/2p−2(μ2p + μ p) , then by Theorem 2, X satisfies

the (DL)-condition, then T has a fixed point. �
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