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Abstract. In the article, we present the greatest values o and A, and the least values 8 and u
in [0,1/2] such that the double inequalities

Hloa+ (1— a)b,ob+ (1 — t)a] < TQ(a,b) < H[Ba+ (1—B)b,Bb+ (1 — B)dl.,

GlAa+ (1—2A)b,Ab+ (1 —2)a] < TQ(a,b) < Glua+ (1 —pu)b,ub+ (1 — p)a]
hold for all a,b >0 with a # b, where H(a,b) =2ab/(a+b), G(a,b) = ab and TQ(a,b) =
% j;)n/ 2052 0psin 0 19 are respectively the harmonic, geometric and Toader-Qi means of a and

1. Introduction

For a,b > 0, the Toader-Qi mean 7Q(a,b) [1], harmonic mean H(a,b) and geo-
metric mean G(a,b) are defined by

2 (72 ,
T0(a,b) = = /0 a0 g,

H(a,b) = 2ab
a

5 G(a,b) = Vab,

respectively.

Recently, the Toader-Qi mean TQ(a,b) have attracted the attention of several re-
searchers. In particular, many remarkable inequalities for the Toader-Qi mean TQ(a,b)
can be found in the literature [2, 3].

In [2], Qi et al. proved that the identity

TQ(a,b):\/a_bIOGmgg) (1.1)

and the inequalities
A(a,b) +G(a,b) 2A(a,b)+G(a,b)
2 < 3
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L(a,b) <TQ(a,b) <

<I(a,b) (1.2)
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hold for all a,b > 0 with a # b, where
oo t2"
Ip(t) = —_— 1.3
0( ) Z 22n(n!)2 (1.3)

n=0

is the modified Bessel function of the first kind [4], L(a,b) = (b —a)/(logb —loga),
A(a,b) = (a+b)/2 and I(a,b) = (b”/a®)"/ (=% /¢ are respectively the classical loga-
rithmic, arithmetic and identric means of a and b.

In [3], Yang proved that the double inequalities

2AaDLD) _ 1(4,p) < \/ATaHTE@D)

AY*(a,b)L3*(a,b) < TO(a,b) < %A(a,b) + %L(a,b)

hold for all a,b > 0 with a # b.
It is well-known that the inequalities

H(a,b) < G(a,b) < L(a,b) <I(a,b) < A(a,b) (1.4)

hold for all a,b > 0 with a # b.
Let x € [0,1/2], f(x) = H[xa+ (1 —x)b,xb+ (1 —x)a] and g(x) = Glxa+ (1 —
x)b,xb+ (1 —x)a]. Then we clearly see that both f and g are continuous and strictly

increasing on the interval [0,1/2] for all fixed a,b >0 with a #b.
Note that

£(0) = H(a.b), 2(0) = G(a,b), f(%) ¢ (%) —A@h).  (5)
It follows from (1.2), (1.4) and (1.5) that
10 <10(@b) < (3 ) 60 <705 <4 3). 16

Motivated by (1.6) and the monotonicity of f and g on the interval [0,1/2], it is
natural to ask what are the greatest values o and A, and the least values § and y in
[0,1/2] such that the double inequalities

Hlaa+ (1—a)b,ab+ (1—a)a] < TQ(a,b) < H[Ba+ (1 —B)b,Bb+ (1—P)d],

Glha+(1—A)b,Ab+ (1 —A)a] < TQ(a,b) < Glua+ (1 — u)b, ub+ (1 — )]

hold for all a,b > 0 with a # b? The main purpose of this paper is to answer this
question.
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2. Lemmas

In order to prove our main results we need several lemmas, which we present in
this section.

LEMMA 2.1. (See [5]) For n € N, the Wallis ratio

2n—1)!
Wy =—7—F—
8 (2n)
satisfies the double inequality
1 1
— < W, < —.
T (n + %) T (n + %)

LEMMA 2.2. (See [3]) Let Iy(t) be defined by (1.3). Then the identity
< (2n)!
12 t) = ( t2n
0( ) ngb 22”(71!)4
holds for all t € R.

LEMMA 2.3. (See [3]) Let s, = (2n)!(2n+ 1)!/[2%(n!)*]. Then the sequence
{sn}i_q is strictly decreasing and

2
lim s, = —. 2.1)
T

n—oo

LEMMA 2.4. (See[6,7]) Let A(t) = 35 qart* and B(t) = X5 bit* be two real
power series converging on (—r,r) (r > 0) with by > 0 for all k. If the non-constant
sequence {ay/by} is increasing (decreasing) for all k, then the function A(t)/B(t) is
strictly increasing (decreasing) on (0,r).

LEMMA 2.5. (See [8]) Letr {an};_, and {b,};;_, be two real sequences with
b, > 0 and lim,_.a, /b, = s. Then the power series Yo ant” is convergent for all
teR and

if the power series Y=o but" is convergent for all t € R.
LEMMA 2.6. Let Iy(t) be defined by (1.3). Then the function

_cosh(z)[cosh(r) — I(1)]
B sinh?(r)

o(t)

is strictly increasing from (0,0) onto (1/4,1).
Proof. We clearly see that

_ cosh(z) cosh(r) — Io(1)
~ cosh(t) +1 8 cosh(r) — 1

o(t)
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and cosh(z)/[cosh(r) + 1] is strictly increasing from (0,ec) onto (1/2,1). Therefore, it
suffices to prove that the function

_ cosh(z) — Io(1)

t 2.2
i) cosh(r) — 1 22)
is strictly increasing from (0,e) onto (1/2,1).
bt 2"l — (2n—1)N 1
n!—(2n—1)N
= b = . 2.3
n 2ui2n) 0 " (2a)! 23)
Then simple computations lead to
ap (2n—1)!
—=1l-— 24
by I @4
Ant1  an 2n—1)!
——=——>0 2.5
boet  Dn 27 D) @5)
foralln > 1.
From Lemma 2.1 and (2.4) we get
1
1 < ;ﬁ <1 ,
T (n + %) n T (n + %)
lim =% = 1. (2.6)
n—oeo Dy
It follows from (1.3) and (2.2) together with (2.3) that
o 2n o 2n
Zio G ~ S0 TG S an™
(pl (t = oo t2)1 = 200 b 1‘2" . (2'7)
n—0 m —1 n=1%n

Lemma 2.4, (2.5) and (2.7) lead to the conclusion that @;(¢) is strictly increasing
on (0,).
From Lemma 2.5, (2.4), (2.6) and (2.7) we have

- _a_ 1y _
lim gy (1) = b2 lim 1 (1) = b~ D

LEMMA 2.7. Let Iy(t) be defined by (1.3). Then the function

cosh?(t) — I3(t)
)= —5——> 2.8
@) sinh?(r) 28)
is strictly increasing from (0,e0) onto (1/2,1).
Proof. Let s, be defined as in Lemma 2.3 and
2n)! 2n
P 0L
22=1(pl)4 (2n)!

(2.9)
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Then simple computations lead to

Cn 25

&~ 2.10

d, 2n+1’ ( )
Gt w3 (2.11)

dn+l dn 2(n+ 1)2(21’l+ 1)
foralln>1.

It follows from (2.8) and (2.9) together with Lemma 2.2 and the power series
formula cosh(r) = ¥ 12" /(2n)! that

_ lcosh(20) —205(1) S et

o) = cosh(2t)—1 = S (2.12)

Lemma 2.4, (2.11) and (2.12) lead to the conclusion that ¢ () is strictly increasing
on (0,e0).

From Lemma 2.5, (2.1), (2.9), (2.10) and (2.12) we clearly see that
1

. C1
limo(r) =1— 2L = =
tggq)() a2

. . .Cn 2sp
th_)rgq)(t)—l r}g}-}odn_l V}I—I}n}ozlfl_'_l_l. 0

3. Main results

THEOREM 3.1. Let o, € [0,1/2]. Then the double inequality
Hlaa+ (1—a)b,ab+ (1—a)al < TQ(a,b) <H[Ba+ (1—B)b,Bb+ (1—P)d]
holds for all a,b >0 with a b ifand only if o =0 and B > 1/4.

Proof. Since both the Toader-Qi mean 7Q(a,b) and harmonic mean H(a,b) are
symmetric and homogeneous of degree 1, without loss of generality, we assume that
b>a>0. Let pe0,1/2], t = (logh —loga)/2 >0 and v= (a—Db)/(a+b) =
tanh(z) € (0,1). Then (1.1) leads to

TQ(a,b)—H[pa+ (1 —p)b,pb+ (1 —p)q] (3.1)
— Vably(t) - “;b [1—(1-2p)?]
= VabIo(t) — Vabcosh(r) [1 — (1 —2p)*tanh?(r)]

Vabsinh?(r)

= W [(1 —ZP)2— <P(f)] )

where @(¢) is defined as in Lemma 2.6.
Therefore, Theorem 3.1 follows easily from Lemma 2.6 and (3.1). U

From Theorem 3.1 we get Corollary 3.1 immediately.
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COROLLARY 3.1. The double inequality

1 <holt) < 3cosh(r) 1
cosh(7) 0 4 4.cosh(r)

holds for all t > 0.
THEOREM 3.2. Let A,u € [0,1/2]. Then the double inequality

GlAa+ (1 =A)b,Ab+ (1—A)a] < TQ(a,b) < Glua+ (1 —p)b,ub+ (1—p)a]

holds for all a,b >0 with a# b ifand only if A =0 and p > 1/2 —~/2/4.

Proof. Without loss of generality, we assume that b > a > 0. Let ¢ € [0,1/2],
t = (logh—1loga)/2>0 and v = (a—b)/(a+Db) = tanh(r) € (0,1). Then (1.1) leads
to

= Vably(t) — a;—b 1—(1—-2g)*?

VablIy(t) — \/a_bcosh(t)\/l — (1 —2¢)?tanh?(r)

inh?
- Vabsint 1) [(1-2¢P— 9(0)],
cosh(r)y/1— (1 —2g)?tanh? (1) + Io(1)

where ¢(z) is defined by (2.8).
Therefore, Theorem 3.2 follows easily from Lemma 2.7 and (3.2). U

From Theorem 3.2 we get Corollary 3.2 immediately.

COROLLARY 3.2. The inequality

2 [14cosh?(7)]
2

I(r) <

holds for all t > 0.
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