SHARP BOUNDS FOR THE TOADER-QI MEAN IN TERMS OF HARMONIC AND GEOMETRIC MEANS

WEI-MAO QIAN, XIAO-HUI ZHANG AND YU-MING CHU

(Communicated by J. Pečarić)

Abstract. In the article, we present the greatest values α and λ , and the least values β and μ in [0,1/2] such that the double inequalities

$$H[\alpha a + (1-\alpha)b, \alpha b + (1-\alpha)a] < TQ(a,b) < H[\beta a + (1-\beta)b, \beta b + (1-\beta)a],$$

$$G[\lambda a + (1-\lambda)b, \lambda b + (1-\lambda)a] < TQ(a,b) < G[\mu a + (1-\mu)b, \mu b + (1-\mu)a]$$
 hold for all $a,b>0$ with $a\neq b$, where $H(a,b)=2ab/(a+b)$, $G(a,b)=\sqrt{ab}$ and $TQ(a,b)=\frac{2}{\pi}\int_0^{\pi/2}a^{\cos^2\theta}b^{\sin^2\theta}d\theta$ are respectively the harmonic, geometric and Toader-Qi means of a and b .

1. Introduction

For a,b>0, the Toader-Qi mean TQ(a,b) [1], harmonic mean H(a,b) and geometric mean G(a,b) are defined by

$$TQ(a,b) = \frac{2}{\pi} \int_0^{\pi/2} a^{\cos^2 \theta} b^{\sin^2 \theta} d\theta,$$

$$H(a,b) = \frac{2ab}{a+b}, \ G(a,b) = \sqrt{ab},$$

respectively.

Recently, the Toader-Qi mean TQ(a,b) have attracted the attention of several researchers. In particular, many remarkable inequalities for the Toader-Qi mean TQ(a,b) can be found in the literature [2, 3].

In [2], Qi et al. proved that the identity

$$TQ(a,b) = \sqrt{ab} I_0 \left(\frac{1}{2} \log \frac{b}{a}\right) \tag{1.1}$$

and the inequalities

$$L(a,b) < TQ(a,b) < \frac{A(a,b) + G(a,b)}{2} < \frac{2A(a,b) + G(a,b)}{3} < I(a,b)$$
 (1.2)

Mathematics subject classification (2010): 26E60, 33C10.

Keywords and phrases: Toader-Qi mean, harmonic mean, geometric mean, modified Bessel function.

hold for all a, b > 0 with $a \neq b$, where

$$I_0(t) = \sum_{n=0}^{\infty} \frac{t^{2n}}{2^{2n}(n!)^2}$$
 (1.3)

is the modified Bessel function of the first kind [4], $L(a,b) = (b-a)/(\log b - \log a)$, A(a,b) = (a+b)/2 and $I(a,b) = (b^b/a^a)^{1/(b-a)}/e$ are respectively the classical logarithmic, arithmetic and identric means of a and b.

In [3], Yang proved that the double inequalities

$$\sqrt{\frac{2A(a,b)L(a,b)}{\pi}} < TQ(a,b) < \sqrt{A(a,b)L(a,b)},$$

$$A^{1/4}(a,b)L^{3/4}(a,b) < TQ(a,b) < \frac{1}{4}A(a,b) + \frac{3}{4}L(a,b)$$

hold for all a, b > 0 with $a \neq b$.

It is well-known that the inequalities

$$H(a,b) < G(a,b) < L(a,b) < I(a,b) < A(a,b)$$
 (1.4)

hold for all a, b > 0 with $a \neq b$.

Let $x \in [0, 1/2]$, f(x) = H[xa + (1-x)b, xb + (1-x)a] and g(x) = G[xa + (1-x)b, xb + (1-x)a]. Then we clearly see that both f and g are continuous and strictly increasing on the interval [0, 1/2] for all fixed a, b > 0 with $a \ne b$.

Note that

$$f(0) = H(a,b), \ g(0) = G(a,b), \ f\left(\frac{1}{2}\right) = g\left(\frac{1}{2}\right) = A(a,b).$$
 (1.5)

It follows from (1.2), (1.4) and (1.5) that

$$f(0) < TQ(a,b) < f\left(\frac{1}{2}\right), \ g(0) < TQ(a,b) < g\left(\frac{1}{2}\right).$$
 (1.6)

Motivated by (1.6) and the monotonicity of f and g on the interval [0,1/2], it is natural to ask what are the greatest values α and λ , and the least values β and μ in [0,1/2] such that the double inequalities

$$H[\alpha a + (1-\alpha)b, \alpha b + (1-\alpha)a] < TQ(a,b) < H[\beta a + (1-\beta)b, \beta b + (1-\beta)a],$$

$$G[\lambda a + (1 - \lambda)b, \lambda b + (1 - \lambda)a] < TQ(a,b) < G[\mu a + (1 - \mu)b, \mu b + (1 - \mu)a]$$

hold for all a,b>0 with $a \neq b$? The main purpose of this paper is to answer this question.

2. Lemmas

In order to prove our main results we need several lemmas, which we present in this section.

LEMMA 2.1. (See [5]) For $n \in \mathbb{N}$, the Wallis ratio

$$W_n = \frac{(2n-1)!!}{(2n)!!}$$

satisfies the double inequality

$$\frac{1}{\sqrt{\pi\left(n+\frac{1}{2}\right)}} < W_n < \frac{1}{\sqrt{\pi\left(n+\frac{1}{4}\right)}}.$$

LEMMA 2.2. (See [3]) Let $I_0(t)$ be defined by (1.3). Then the identity

$$I_0^2(t) = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^4} t^{2n}$$

holds for all $t \in \mathbb{R}$.

LEMMA 2.3. (See [3]) Let $s_n = (2n)!(2n+1)!/[2^{4n}(n!)^4]$. Then the sequence $\{s_n\}_{n=0}^{\infty}$ is strictly decreasing and

$$\lim_{n \to \infty} s_n = \frac{2}{\pi}.\tag{2.1}$$

LEMMA 2.4. (See [6, 7]) Let $A(t) = \sum_{k=0}^{\infty} a_k t^k$ and $B(t) = \sum_{k=0}^{\infty} b_k t^k$ be two real power series converging on (-r,r) (r>0) with $b_k>0$ for all k. If the non-constant sequence $\{a_k/b_k\}$ is increasing (decreasing) for all k, then the function A(t)/B(t) is strictly increasing (decreasing) on (0,r).

LEMMA 2.5. (See [8]) Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be two real sequences with $b_n > 0$ and $\lim_{n \to \infty} a_n/b_n = s$. Then the power series $\sum_{n=0}^{\infty} a_n t^n$ is convergent for all $t \in \mathbb{R}$ and

$$\lim_{t \to \infty} \frac{\sum_{n=0}^{\infty} a_n t^n}{\sum_{n=0}^{\infty} b_n t^n} = s$$

if the power series $\sum_{n=0}^{\infty} b_n t^n$ is convergent for all $t \in \mathbb{R}$.

LEMMA 2.6. Let $I_0(t)$ be defined by (1.3). Then the function

$$\varphi(t) = \frac{\cosh(t)[\cosh(t) - I_0(t)]}{\sinh^2(t)}$$

is strictly increasing from $(0,\infty)$ onto (1/4,1).

Proof. We clearly see that

$$\varphi(t) = \frac{\cosh(t)}{\cosh(t) + 1} \times \frac{\cosh(t) - I_0(t)}{\cosh(t) - 1}$$

and $\cosh(t)/[\cosh(t)+1]$ is strictly increasing from $(0,\infty)$ onto (1/2,1). Therefore, it suffices to prove that the function

$$\varphi_1(t) = \frac{\cosh(t) - I_0(t)}{\cosh(t) - 1}$$
(2.2)

is strictly increasing from $(0, \infty)$ onto (1/2, 1).

Let

$$a_n = \frac{2^n n! - (2n-1)!!}{2^n n! (2n)!}, \qquad b_n = \frac{1}{(2n)!}.$$
 (2.3)

Then simple computations lead to

$$\frac{a_n}{b_n} = 1 - \frac{(2n-1)!!}{(2n)!!},\tag{2.4}$$

$$\frac{a_{n+1}}{b_{n+1}} - \frac{a_n}{b_n} = \frac{(2n-1)!!}{2^{n+1}(n+1)!} > 0$$
 (2.5)

for all $n \ge 1$.

From Lemma 2.1 and (2.4) we get

$$1 - \frac{1}{\sqrt{\pi \left(n + \frac{1}{4}\right)}} < \frac{a_n}{b_n} < 1 - \frac{1}{\sqrt{\pi \left(n + \frac{1}{2}\right)}},$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1. \tag{2.6}$$

It follows from (1.3) and (2.2) together with (2.3) that

$$\varphi_1(t) = \frac{\sum_{n=0}^{\infty} \frac{t^{2n}}{(2n)!} - \sum_{n=0}^{\infty} \frac{t^{2n}}{2^{2n}(n!)^2}}{\sum_{n=0}^{\infty} \frac{t^{2n}}{(2n)!} - 1} = \frac{\sum_{n=1}^{\infty} a_n t^{2n}}{\sum_{n=1}^{\infty} b_n t^{2n}}.$$
 (2.7)

Lemma 2.4, (2.5) and (2.7) lead to the conclusion that $\varphi_1(t)$ is strictly increasing on $(0, \infty)$.

From Lemma 2.5, (2.4), (2.6) and (2.7) we have

$$\lim_{t \to 0} \varphi_1(t) = \frac{a_1}{b_1} = \frac{1}{2}, \quad \lim_{t \to \infty} \varphi_1(t) = \frac{a_n}{b_n} = 1. \quad \Box$$

LEMMA 2.7. Let $I_0(t)$ be defined by (1.3). Then the function

$$\phi(t) = \frac{\cosh^2(t) - I_0^2(t)}{\sinh^2(t)}$$
 (2.8)

is strictly increasing from $(0,\infty)$ onto (1/2,1).

Proof. Let s_n be defined as in Lemma 2.3 and

$$c_n = \frac{(2n)!}{2^{2n-1}(n!)^4}, \qquad d_n = \frac{2^{2n}}{(2n)!}.$$
 (2.9)

Then simple computations lead to

$$\frac{c_n}{d_n} = \frac{2s_n}{2n+1},\tag{2.10}$$

$$\frac{c_{n+1}}{d_{n+1}} - \frac{c_n}{d_n} = -\frac{(4n+3)s_n}{2(n+1)^2(2n+1)} < 0$$
 (2.11)

for all $n \ge 1$.

It follows from (2.8) and (2.9) together with Lemma 2.2 and the power series formula $\cosh(t) = \sum_{n=0}^{\infty} t^{2n}/(2n)!$ that

$$\phi(t) = \frac{1 + \cosh(2t) - 2I_0^2(t)}{\cosh(2t) - 1} = 1 - \frac{\sum_{n=1}^{\infty} c_n t^{2n}}{\sum_{n=1}^{\infty} d_n t^{2n}}.$$
 (2.12)

Lemma 2.4, (2.11) and (2.12) lead to the conclusion that $\phi(t)$ is strictly increasing on $(0,\infty)$.

From Lemma 2.5, (2.1), (2.9), (2.10) and (2.12) we clearly see that

$$\lim_{t \to 0} \phi(t) = 1 - \frac{c_1}{d_1} = \frac{1}{2},$$

$$\lim_{t \to \infty} \phi(t) = 1 - \lim_{n \to \infty} \frac{c_n}{d_n} = 1 - \lim_{n \to \infty} \frac{2s_n}{2n+1} = 1.$$

3. Main results

THEOREM 3.1. Let $\alpha, \beta \in [0, 1/2]$. Then the double inequality

$$H[\alpha a + (1-\alpha)b, \alpha b + (1-\alpha)a] < TQ(a,b) < H[\beta a + (1-\beta)b, \beta b + (1-\beta)a]$$

holds for all a,b>0 with $a\neq b$ if and only if $\alpha=0$ and $\beta\geqslant 1/4$.

Proof. Since both the Toader-Qi mean TQ(a,b) and harmonic mean H(a,b) are symmetric and homogeneous of degree 1, without loss of generality, we assume that b>a>0. Let $p\in[0,1/2]$, $t=(\log b-\log a)/2>0$ and $v=(a-b)/(a+b)=\tanh(t)\in(0,1)$. Then (1.1) leads to

$$TQ(a,b) - H[pa + (1-p)b, pb + (1-p)a]$$

$$= \sqrt{ab} I_0(t) - \frac{a+b}{2} \left[1 - (1-2p)^2 v^2 \right]$$

$$= \sqrt{ab} I_0(t) - \sqrt{ab} \cosh(t) \left[1 - (1-2p)^2 \tanh^2(t) \right]$$

$$= \frac{\sqrt{ab} \sinh^2(t)}{\cosh(t)} \left[(1-2p)^2 - \varphi(t) \right],$$
(3.1)

where $\varphi(t)$ is defined as in Lemma 2.6.

Therefore, Theorem 3.1 follows easily from Lemma 2.6 and (3.1). \Box

From Theorem 3.1 we get Corollary 3.1 immediately.

COROLLARY 3.1. The double inequality

$$\frac{1}{\cosh(t)} < I_0(t) < \frac{3\cosh(t)}{4} + \frac{1}{4\cosh(t)}$$

holds for all t > 0.

THEOREM 3.2. Let $\lambda, \mu \in [0, 1/2]$. Then the double inequality

$$G[\lambda a + (1 - \lambda)b, \lambda b + (1 - \lambda)a] < TQ(a,b) < G[\mu a + (1 - \mu)b, \mu b + (1 - \mu)a]$$

holds for all a,b>0 with $a\neq b$ if and only if $\lambda=0$ and $\mu\geqslant 1/2-\sqrt{2}/4$.

Proof. Without loss of generality, we assume that b>a>0. Let $q\in[0,1/2]$, $t=(\log b-\log a)/2>0$ and $v=(a-b)/(a+b)=\tanh(t)\in(0,1)$. Then (1.1) leads to

$$TQ(a,b) - G[qa + (1-q)b, qb + (1-q)a]$$

$$= \sqrt{ab}I_0(t) - \frac{a+b}{2}\sqrt{1 - (1-2q)^2v^2}$$

$$= \sqrt{ab}I_0(t) - \sqrt{ab}\cosh(t)\sqrt{1 - (1-2q)^2\tanh^2(t)}$$

$$= \frac{\sqrt{ab}\sinh^2(t)}{\cosh(t)\sqrt{1 - (1-2q)^2\tanh^2(t)} + I_0(t)} \left[(1-2q)^2 - \phi(t) \right],$$
(3.2)

where $\phi(t)$ is defined by (2.8).

Therefore, Theorem 3.2 follows easily from Lemma 2.7 and (3.2). \Box

From Theorem 3.2 we get Corollary 3.2 immediately.

COROLLARY 3.2. The inequality

$$I_0(t) < \frac{\sqrt{2\left[1 + \cosh^2(t)\right]}}{2}$$

holds for all t > 0.

Acknowledgements. The research was supported by the Natural Science Foundation of China under Grants 11371125, 61374086 and 11401191.

REFERENCES

- GH. TOADER, Some mean values related to the arithmetic-geometric mean, J. Math. Anal. Appl., 1998, 218 (2), 358–368.
- [2] F. QI, X.-T. SHI, F.-F. LIU AND ZH.-H. YANG, A double inequality for an integral mean in terms of the exponential and logarithmic means, DOI: 10.13140/RG.2.1.2353.6800, available online at http://www.researchgate.net/publication/278968439.

- [3] ZH.-H. YANG, Some sharp inequalities for the Toader-Qi mean, arXiv:1507.05430 [math.CA], available online at http://lib-arxiv-008.serverfarm.cornell.edu/abs/1507.05430.
- [4] M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U. S. Government Printing Office, Washington, 1964.
- [5] D. K. KAZARINOFF, On Wallis' formula, Edinburgh Math. Notes, 1956, 1956 (40), 19–21.
- [6] M. BIERNACKI AND J. KRZYŻ, On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 1955, 9, 135–147.
- [7] ZH.-H. YANG, Y.-M. CHU AND M.-K. WANG, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 2015, 428 (1): 587–604.
- [8] G. PÓLYA AND G. SZEGŐ, Problems and Theorems in Analysis I, Springer-Verlag, Berlin, 1998.

(Received October 20, 2015)

Wei-Mao Qian School of Distance Education Huzhou Broadcast and TV University Huzhou 313000, China e-mail: qwm661977@126.com

Xiao-Hui Zhang
Department of Mathematics
Huzhou University
Huzhou 313000, China

 $e ext{-}mail: zhangxiaohui2005@126.com}$

Yu-Ming Chu
Department of Mathematics
Huzhou University
Huzhou 313000, China
e-mail: chuyuming@zjhu.edu.cn